Road Friction Virtual Sensing: a Review of Estimation Techniques with Emphasis on Low Excitation Approaches
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Road Texture and Tire Noise
Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 1.3 ROAD TEXTURE AND TIRE NOISE J.-F. Hamet, P. Klein INRETS, 25 av. F. Mitterrand, F69675, Bron, France Tel.: +33(0)472142402 / Fax: +33(0)472376837 / Email: [email protected] Keywords: TIRE, ROAD, NOISE, TEXTURE ABSTRACT The research project presented here addresses the influence of road texture profile on tire noise. It is deemed more appropriate, when seeking for correlation between road profile and tire noise spectra, to ’envelope’ the road profile before evaluating its spectrum. Two approaches are taken to tackle the problem. A static approach based on evaluating the contact between two plane surfaces. A dynamic approach based on a rolling tire model. Since the latter enables the evaluation of tire noise from any given road texture profile, it is also used to get a better grasp of the phenomena. Only the fundamentals of the processes are presented: experiments will be performed in the coming years. The static approach is worked in the PREDIT project ”Relation between road texture and the tire noise” [1]. The partners are: INRETS, LCPC, ENPC, MICROdB, Gerland Routes, Colas S.A. The dynamic approach is developed in the frame of the European project SI.R.U.US. The partners are Autostrade (it), CRR (be), Pavimental (it), INRETS (fr), SACER (fr), Argex (be), LNEC (pt). 1 - INTRODUCTION Although some 20 years elapsed since the basics of the road texture influence on tire noise were given [2] the principles for designing low noise surfaces remain mostly qualitative [3]. -
Newmark Sliding Block Analysis
TRANSPORTATION RESEARCH RECORD 1411 9 Predicting Earthquake-Induced Landslide Displacements Using Newmark's Sliding Block Analysis RANDALL W. }IBSON A principal cause of earthquake damage is landsliding, and the peak ground accelerations (PGA) below which no slope dis ability to predict earthquake-triggered landslide displacements is placement will occur. In cases where the PGA does exceed important for many types of seismic-hazard analysis and for the the yield acceleration, pseudostatic analysis has proved to be design of engineered slopes. Newmark's method for modeling a landslide as a rigid-plastic block sliding on an inclined plane pro vastly overconservative because many slopes experience tran vides a workable means of predicting approximate landslide dis sient earthquake accelerations well above their yield accel placements; this method yields much more useful information erations but experience little or no permanent displacement than pseudostatic analysis and is far more practical than finite (2). The utility of pseudostatic analysis is thus limited because element modeling. Applying Newmark's method requires know it provides only a single numerical threshold below which no ing the yield or critical acceleration of the landslide (above which displacement is predicted and above which total, but unde permanent displacement occurs), which can be determined from the static factor of safety and from the landslide geometry. Earth fined, "failure" is predicted. In fact, pseudostatic analysis tells quake acceleration-time histories can be selected to represent the the user nothing about what will occur when the yield accel shaking conditions of interest, and those parts of the record that eration is exceeded. lie above the critical acceleration are double integrated to deter At the other end of the spectrum, advances in two-dimensional mine the permanent landslide displacement. -
Identification of Maximum Road Friction Coefficient and Optimal Slip Ratio Based on Road Type Recognition
CHINESE JOURNAL OF MECHANICAL ENGINEERING ·1018· Vol. 27,aNo. 5,a2014 DOI: 10.3901/CJME.2014.0725.128, available online at www.springerlink.com; www.cjmenet.com; www.cjmenet.com.cn Identification of Maximum Road Friction Coefficient and Optimal Slip Ratio Based on Road Type Recognition GUAN Hsin, WANG Bo, LU Pingping*, and XU Liang State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China Received November 21, 2013; revised June 9, 2014; accepted July 25, 2014 Abstract: The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control. However, it is always not easy to identify the maximum road friction coefficient with high robustness and good adaptability to various vehicle operating conditions. The existing investigations on robust identification of maximum road friction coefficient are unsatisfactory. In this paper, an identification approach based on road type recognition is proposed for the robust identification of maximum road friction coefficient and optimal slip ratio. The instantaneous road friction coefficient is estimated through the recursive least square with a forgetting factor method based on the single wheel model, and the estimated road friction coefficient and slip ratio are grouped in a set of samples in a small time interval before the current time, which are updated with time progressing. The current road type is recognized by comparing the samples of the estimated road friction coefficient with the standard road friction coefficient of each typical road, and the minimum statistical error is used as the recognition principle to improve identification robustness. Once the road type is recognized, the maximum road friction coefficient and optimal slip ratio are determined. -
Performance Analysis of Constant Speed Local Abstacle Avoidance Controller Using a MPC Algorithym on Granular Terrain Nicholas Haraus Marquette University
Marquette University e-Publications@Marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects Performance Analysis of Constant Speed Local Abstacle Avoidance Controller Using a MPC Algorithym on Granular Terrain Nicholas Haraus Marquette University Recommended Citation Haraus, Nicholas, "Performance Analysis of Constant Speed Local Abstacle Avoidance Controller Using a MPC Algorithym on Granular Terrain" (2017). Master's Theses (2009 -). 443. http://epublications.marquette.edu/theses_open/443 PERFORMANCE ANALYSIS OF A CONSTANT SPEED LOCAL OBSTACLE AVOIDANCE CONTROLLER USING A MPC ALGORITHM ON GRANULAR TERRAIN by Nicholas Haraus, B.S.M.E. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Master of Science Milwaukee, Wisconsin December 2017 ABSTRACT PERFORMANCE ANALYSIS OF A CONSTANT SPEED LOCAL OBSTACLE AVOIDANCE CONTROLLER USING A MPC ALGORITHM ON GRANULAR TERRAIN Nicholas Haraus, B.S.M.E. Marquette University, 2017 A Model Predictive Control (MPC) LIDAR-based constant speed local obstacle avoidance algorithm has been implemented on rigid terrain and granular terrain in Chrono to examine the robustness of this control method. Provided LIDAR data as well as a target location, a vehicle can route itself around obstacles as it encounters them and arrive at an end goal via an optimal route. This research is one important step towards eventual implementation of autonomous vehicles capable of navigating on all terrains. Using Chrono, a multibody physics API, this controller has been tested on a complex multibody physics HMMWV model representing the plant in this study. A penalty-based DEM approach is used to model contacts on both rigid ground and granular terrain. -
Mechanics of Pneumatic Tires
CHAPTER 1 MECHANICS OF PNEUMATIC TIRES Aside from aerodynamic and gravitational forces, all other major forces and moments affecting the motion of a ground vehicle are applied through the running gear–ground contact. An understanding of the basic characteristics of the interaction between the running gear and the ground is, therefore, essential to the study of performance characteristics, ride quality, and handling behavior of ground vehicles. The running gear of a ground vehicle is generally required to fulfill the following functions: • to support the weight of the vehicle • to cushion the vehicle over surface irregularities • to provide sufficient traction for driving and braking • to provide adequate steering control and direction stability. Pneumatic tires can perform these functions effectively and efficiently; thus, they are universally used in road vehicles, and are also widely used in off-road vehicles. The study of the mechanics of pneumatic tires therefore is of fundamental importance to the understanding of the performance and char- acteristics of ground vehicles. Two basic types of problem in the mechanics of tires are of special interest to vehicle engineers. One is the mechanics of tires on hard surfaces, which is essential to the study of the characteristics of road vehicles. The other is the mechanics of tires on deformable surfaces (unprepared terrain), which is of prime importance to the study of off-road vehicle performance. 3 4 MECHANICS OF PNEUMATIC TIRES The mechanics of tires on hard surfaces is discussed in this chapter, whereas the behavior of tires over unprepared terrain will be discussed in Chapter 2. A pneumatic tire is a flexible structure of the shape of a toroid filled with compressed air. -
Analysis of the Rigid Multibody Tire
Umea University A Thesis presented for the Bachelor Degree in Physics Analysis of the rigid multibody tire Ruben Yruretagoyena Conde supervised by Dr.Martin Servin February 12, 2018 Abstract A brief description of the multibody system mechanics is given as the first step in this thesis to present the dynamical equations which will be the main tool to analyze the two-body tire model. After establishing the basic theory about multibody systems to understand the main character in the thesis (the tire) all the physical components playing in the tire terrain interaction will be defined together with some of the developed ways and models to describe the tire rolling on non-deformable terrain and the tyre rolling on the deformable terrain. The two-body tire model definition and general description will be introduced. Using the tools acquired on the course of the thesis the dynamic equations will be solved for the particular case of the two-body tire model rolling on a flat rigid surface. After solving the equation we are going to find out some incongruences with respect to reality and then we are going to have a proposal to adjust the model to agree with real tires. Contents 1 Introduction 2 2 Theory 4 2.1 Multibody systems theory . 4 2.1.1 A brief introduction to Multibody systems . 4 2.1.2 Rigid body mechanics . 5 2.1.3 Dynamic equations for the multibody system . 13 3 The tire 17 3.1 The tire mechanics . 17 3.1.1 Preliminar definitions . 17 3.1.2 Tire-Terrain interaction. -
Undergraduate Research on Conceptual Design of a Wind Tunnel for Instructional Purposes
AC 2012-3461: UNDERGRADUATE RESEARCH ON CONCEPTUAL DE- SIGN OF A WIND TUNNEL FOR INSTRUCTIONAL PURPOSES Peter John Arslanian, NASA/Computer Sciences Corporation Peter John Arslanian currently holds an engineering position at Computer Sciences Corporation. He works as a Ground Safety Engineer supporting Sounding Rocket and ANTARES launch vehicles at NASA, Wallops Island, Va. He also acts as an Electrical Engineer supporting testing and validation for NASA’s Low Density Supersonic Decelerator vehicle. Arslanian has received an Undergraduate Degree with Honors in Engineering with an Aerospace Specialization from the University of Maryland, Eastern Shore (UMES) in May 2011. Prior to receiving his undergraduate degree, he worked as an Action Sport Design Engineer for Hydroglas Composites in San Clemente, Calif., from 1994 to 2006, designing personnel watercraft hulls. Arslanian served in the U.S. Navy from 1989 to 1993 as Lead Electronics Technician for the Automatic Carrier Landing System aboard the U.S.S. Independence CV-62, stationed in Yokosuka, Japan. During his enlistment, Arslanian was honored with two South West Asia Service Medals. Dr. Payam Matin, University of Maryland, Eastern Shore Payam Matin is currently an Assistant Professor in the Department of Engineering and Aviation Sciences at the University of Maryland Eastern Shore (UMES). Matin has received his Ph.D. in mechanical engi- neering from Oakland University, Rochester, Mich., in May 2005. He has taught a number of courses in the areas of mechanical engineering and aerospace at UMES. Matin’s research has been mostly in the areas of computational mechanics and experimental mechanics. Matin has published more than 20 peer- reviewed journal and conference papers. -
UNIT 1 ELECTROMAGNETIC RADIATION Radiation
Electromagnetic UNIT 1 ELECTROMAGNETIC RADIATION Radiation Structure 1.1 Introduction Objectives 1.2 What is Electromagnetic Radiation? Wave Mechanical Model of Electromagnetic Radiation Quantum Model of Electromagnetic Radiation 1.3 Consequences of Wave Nature of Electromagnetic Radiation Interference Diffraction Transmission Refraction Reflection Scattering Polarisation 1.4 Interaction of EM Radiation with Matter Absorption Emission Raman Scattering 1.5 Summary 1.6 Terminal Questions 1.7 Answers 1.1 INTRODUCTION You would surely have seen a beautiful rainbow showing seven different colours during the rainy season. You know that this colourful spectrum is due to the separation or dispersion of the white light into its constituent parts by the rain drops. The rainbow spectrum is just a minute part of a much larger continuum of the radiations that come from the sun. These are called electromagnetic radiations and the continuum of the electromagnetic radiations is called the electromagnetic spectrum. In the first unit of this course you would learn about the electromagnetic radiation in terms of its nature, characteristics and properties. Spectroscopy is the study of interaction of electromagnetic radiation with matter. We would discuss the ways in which different types of electromagnetic radiation interact with matter and also the types of spectra that result as a consequence of the interaction. In the next unit you would learn about ultraviolet-visible spectroscopy ‒ a consequence of interaction of electromagnetic radiation in the ultraviolet-visible -
Realization of a Micrometre-Sized Stochastic Heat Engine Valentin Blickle1,2* and Clemens Bechinger1,2
Erschienen in: Nature Physics ; 8 (2012), 2. - S. 143-146 https://dx.doi.org/10.1038/nphys2163 Realization of a micrometre-sized stochastic heat engine Valentin Blickle1,2* and Clemens Bechinger1,2 The conversion of energy into mechanical work is essential trapping centre and k(t), the time-dependent trap stiffness. The for almost any industrial process. The original description value of k is determined by the laser intensity, which is controlled of classical heat engines by Sadi Carnot in 1824 has largely by an acousto-optic modulator. By means of video microscopy, the shaped our understanding of work and heat exchange during two-dimensional trajectory was sampled with spatial and temporal macroscopic thermodynamic processes1. Equipped with our resolutions of 10 nm and 33 ms, respectively. Keeping hot and cold present-day ability to design and control mechanical devices at reservoirs thermally isolated at small length scales is experimentally micro- and nanometre length scales, we are now in a position very difficult to achieve, so rather than coupling our colloidal to explore the limitations of classical thermodynamics, arising particle periodically to different heat baths, here we suddenly on scales for which thermal fluctuations are important2–5. Here changed the temperature of the surrounding liquid. we demonstrate the experimental realization of a microscopic This variation of the bath temperature was achieved by a second heat engine, comprising a single colloidal particle subject to a coaxially aligned laser beam whose wavelength was matched to an time-dependent optical laser trap. The work associated with absorption peak of water. This allowed us to heat the suspension the system is a fluctuating quantity, and depends strongly from room temperature to 90 ◦C in less than 10 ms (ref. -
Hybrid Electrochemical Capacitors
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 1-11-2018 Hybrid Electrochemical Capacitors: Materials, Optimization, and Miniaturization Richa Agrawal Department of Mechanical and Materials Engineering, Florida International University, [email protected] DOI: 10.25148/etd.FIDC006581 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, and the Physical Chemistry Commons Recommended Citation Agrawal, Richa, "Hybrid Electrochemical Capacitors: Materials, Optimization, and Miniaturization" (2018). FIU Electronic Theses and Dissertations. 3680. https://digitalcommons.fiu.edu/etd/3680 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida HYBRID ELECTROCHEMICAL CAPACITORS: MATERIALS, OPTIMIZATION, AND MINIATURIZATION A dissertation submitted in partial fulfillment of the requirement for the degree of DOCTOR OF PHILOSOPHY in MATERIALS SCIENCE AND ENGINEERING by Richa Agrawal 2018 To: Dean John L. Volakis College of Engineering and Computing This dissertation entitled Hybrid Electrochemical Capacitors: Materials, Optimization, and Miniaturization, written -
Slope Stability 101 Basic Concepts and NOT for Final Design Purposes! Slope Stability Analysis Basics
Slope Stability 101 Basic Concepts and NOT for Final Design Purposes! Slope Stability Analysis Basics Shear Strength of Soils Ability of soil to resist sliding on itself on the slope Angle of Repose definition n1. the maximum angle to the horizontal at which rocks, soil, etc, will remain without sliding Shear Strength Parameters and Soils Info Φ angle of internal friction C cohesion (clays are cohesive and sands are non-cohesive) Θ slope angle γ unit weight of soil Internal Angles of Friction Estimates for our use in example Silty sand Φ = 25 degrees Loose sand Φ = 30 degrees Medium to Dense sand Φ = 35 degrees Rock Riprap Φ = 40 degrees Slope Stability Analysis Basics Explore Site Geology Characterize soil shear strength Construct slope stability model Establish seepage and groundwater conditions Select loading condition Locate critical failure surface Iterate until minimum Factor of Safety (FS) is achieved Rules of Thumb and “Easy” Method of Estimating Slope Stability Geology and Soils Information Needed (from site or soils database) Check appropriate loading conditions (seeps, rapid drawdown, fluctuating water levels, flows) Select values to input for Φ and C Locate water table in slope (critical for evaluation!) 2:1 slopes are typically stable for less than 15 foot heights Note whether or not existing slopes are vegetated and stable Plan for a factor of safety (hazards evaluation) FS between 1.4 and 1.5 is typically adequate for our purposes No Flow Slope Stability Analysis FS = tan Φ / tan Θ Where Φ is the effective -
Texture-Based Vanishing Point Voting for Road Shape Estimation
Texture-Based Vanishing Point Voting for Road Shape Estimation Christopher Rasmussen Dept. Computer & Information Sciences University of Delaware [email protected] Abstract Many rural roads lack sharp, smoothly curving edges and a homogeneous surface appearance, hampering traditional vision-based road-following methods. However, they often have strong texture cues parallel to the road direction in the form of ruts and tracks left by other vehicles. This paper describes an unsupervised al- gorithm for following ill-structured roads in which dominant texture orientations computed with Gabor wavelet filters vote for a consensus road vanishing point lo- cation. The technique is first described for estimating the direction of straight-road segments, then extended to curved and undulating roads by tracking the vanishing point indicated by a differential “strip” of voters moving up toward the nominal vanishing line. Finally, the vanishing point is used to constrain a search for the road boundaries by maximizing texture- and color-based region discriminant func- tions. Results are shown for a variety of road scenes including gravel roads, dirt trails, and highways. 1. Introduction Many complementary strategies for visual road following have been developed based on certain assumptions about the characteristics of the road scene. For ex- ample, edge-based methods such as those described in [17, 16, 1] are often used to identify lane lines or road borders, which are fit to a model of the road curvature, width, and so on. These algorithms typically work best on well-engineered roads such as highways which are paved and/or painted, resulting in a wealth of high- contrast contours suited for edge detection.