Invertebrate Diversity in the Deep Great Australian Bight (200–5000 M) H

Total Page:16

File Type:pdf, Size:1020Kb

Invertebrate Diversity in the Deep Great Australian Bight (200–5000 M) H MacIntosh et al. Marine Biodiversity Records (2018) 11:23 https://doi.org/10.1186/s41200-018-0158-x RESEARCH Open Access Invertebrate diversity in the deep Great Australian Bight (200–5000 m) H. MacIntosh1*, F. Althaus2, A. Williams2, J. E. Tanner3, P. Alderslade2, S. T. Ahyong4, N. Bax5, F. Criscione4, A. L. Crowther6, C. A. Farrelly1, J. K. Finn1, L. Goudie1, K. Gowlett-Holmes2, A. M. Hosie7, E. Kupriyanova4, C. Mah8, A. W. McCallum1, K. L. Merrin1, A. Miskelly9, M. L. Mitchell1, T. Molodtsova10, A. Murray4,T.D.O’Hara1, P. M. O’Loughlin1, H. Paxton4, A. L. Reid4, S. J. Sorokin3, D. Staples1, G. Walker-Smith1, E. Whitfield1 and R. S. Wilson1 Abstract Background: The Great Australian Bight (GAB) comprises the majority of Australia’s southern coastline, but to date its deep water fauna has remained almost unknown. Recent issuing of oil and gas leases in the region has highlighted this lack of baseline biological data and established a pressing need to characterise benthic abyssal fauna. Methods: From 2013 to 2017, six large-scale systematic surveys of the GAB were conducted from 200 to 5000 m depth, constituting the deepest systematic biological sampling in Australia. Sampling was conducted on soft sediment and hard substrates, both at pre-determined depth intervals along north-south transect lines and at sites of interest identified by multibeam sonar. Results: A total of 66,721 invertebrate specimens were collected, comprising 1267 species, with 401 species (32%) new to science. In addition to the novelty of the fauna, there was a high degree of rarity, with 31% of species known only from single specimens. Conclusions: In this paper, we provide an annotated checklist of the benthic invertebrate fauna of the deep GAB, supplemented with colour photos of live specimens and commentary on taxonomy, diversity and distributions. This work represents an important addition to knowledge of Australia’s deep sea fauna, and will provide the foundation for further ecological, biogeographical and systematic research. Keywords: Deep sea, Infauna, Epifauna, Taxonomy, Biodiversity, Biogeography, Great Australian bight Background Conlan et al., 2015). Faunal records that exist were It is often noted how vast and unexplored the deep sea mostly collected either on an ad hoc basis from com- is, but it is a rare opportunity to explore an almost com- mercial fishing trawls, as part of fisheries bycatch sur- pletely unknown marine region — particularly adjacent veys focussing on fishes and with no systematic to a region famed for its unique biodiversity. Such is the collection of invertebrates, or from a very small number case with the Great Australian Bight (GAB), an area of opportunistic samples taken from a research vessel encompassing most of southern Australia’s coastline. passing through the area. These records are also over- While deep sea exploration in Australian waters dates whelmingly from the shallower (< 1000 m) part of the back to the Challenger expedition and has included sur- depth range sampled during our study (200–4961 m). veys of the Coral Sea (Ahyong, 2012), Norfolk Ridge The recent uptake of deep sea oil and gas leases in the (Williams et al., 2011), Tasmanian seamounts (Koslow et region has highlighted a lack of baseline biological and al., 2001) and Western Australia (McEnnulty et al., environmental data, and established a pressing need to 2011), the GAB has been virtually unsampled below con- characterise the composition, abundance and distribu- tinental shelf depths (200 m) (Currie & Sorokin, 2011; tions of benthic fauna before industry activity com- mences. Two major science programs have been * Correspondence: [email protected] implemented to enhance ecological knowledge of the 1 Museums Victoria, Melbourne, Australia deep GAB: the GAB Research Program (GABRP) (The Full list of author information is available at the end of the article © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. MacIntosh et al. Marine Biodiversity Records (2018) 11:23 Page 2 of 21 Great Australian Bight Research Program, 2017), and sedimentary layers of the Ceduna sub-basin (Williams et the GAB Deepwater Marine Program (GABDMP) (The al., 2018c). As deep sea communities can vary greatly with Great Australian Bight Deepwater Marine Program, both depth and substrate type (Rowden et al., 2016), sam- 2017). These programs have supported six surveys be- pling was designed to cover a full range of bathomes as tween 2013 and 2017 that targeted the benthic diversity well as substrates to ensure a representative collection of of the deep GAB, resulting in a substantial and fauna could be made. high-quality collection of epifauna (animals dwelling at Benthic invertebrates were collected on six offshore sur- or slightly above the surface of the seabed), infauna (ani- veys (Table 1)bytheRVSouthern Surveyor (voyage mals dwelling within sediment) and bentho-pelagic SS2013_C02), RV Southern Supporter (survey FU201301), fauna (suprabenthic). This sampling, and resulting data RV Investigator (surveys IN2015_C01, IN2015_C02 and set, comprise the deepest systematic biological sampling IN2017_C01) and Industry Inspection Vessel REM Etive in Australian waters. This paper provides a detailed (RE2017_C01) (MNF, 2013;MNF,2015a;MNF,2015b). checklist of the benthic invertebrate fauna of the deep Surveys SS2013_C02 and IN2015_C02 sampled stations GAB, with colour photos of live specimens and com- along five transects, at depths of 200, 400, 1000, 1500, mentary on taxonomy, diversity and distributions. This 2000 and 2800 m (30 sites; Fig. 1). Survey FU201301 op- research is intended to underpin further studies analys- portunistically collected biological samples at seven sites ing community structure, macroevolution and biogeo- identified as being of particular interest for the drilling of graphic patterns (Williams et al., 2018a; Tanner et al., exploration wells. The IN2015_C01 and IN2017_C01 sur- 2018). Corresponding treatment of the fishes of the deep veys were focussed on targets of interest at 1000 to GAB has also been completed (Williams et al., 2018b). 5000 m depth, including rocky outcroppings in canyons, All specimens are now stored in Australian museums volcanic seamounts, and potential seep zones (21 sites; and other research institutes where they are accessible Fig. 1). Survey RE2017_C01 used two sub-sea Remotely to researchers conducting taxonomic, and other studies, Operated Vehicles (ROVs) to closely explore five of these ensuring this benthic data set will continue to contribute sites. to knowledge and understanding of the deep sea fauna Biological sampling totalled 304 operations over 58 in local, regional and global contexts. sites, using eight gear types (Table 2, Fig. 1). This mix of site selection and sampling gear ensured that a wide Methods range of habitat types and their associated fauna were Biological sampling sampled. The geomorphology of the GAB is broadly similar to most Epifauna mainly consisting of animals larger than continental margins, with a moderately wide continental 10 mm in size, and living on or just below the sediment shelf (0-200 m depth), continental slope and rise (200– surface, were predominantly collected using three gear 5000 m depth) and large abyssal plain (> 5000 m). The types suited to different terrains. The main sampling tool Ceduna sub-basin, where most sampling took place, fea- was a beam trawl with a mouth size of 4.0 m wide × tures a notably wide, gently descending slope (Sayers et 0.5 m high fitted with a net bag that has a 25 mm al., 2003). The majority of the deep GAB consists of soft stretch mesh cod end, designed at CSIRO (Lewis, 2010) substrates comprised primarily of thick pelagic ooze but adapted from another design (Forest, 1981). This (Rogers et al., 2013). In contrast with this soft, gear was used for sampling flat, soft sediment terrains, homogenous environment are several volcanic seamounts where it recovered nearly 70,000 specimens of inverte- associated with the Bight Basin Igneous Complex (BBIC), brates in 63 operations. Harder and rougher substrates, consisting of heterogeneous, basaltic rock substrates such as seamounts and rocky outcrops were sampled (Williams et al., 2018c). The continental slope also bears a using the ‘Sherman sled’, a CSIRO designed and built ro- series of incised canyons and outcroppings, exposing bust epibenthic sampler with a mouth-size of 1.2 m wide Table 1 Summary of deep water surveys in the Great Australian Bight, 2013–2017, with survey duration and number of sampling operations Survey Name Vessel Dates Depth Range Operations SS2013_C02 RV Southern Surveyor 03.04.2013–22.04.2013 189–2018 m 32 FU201301 RV Southern Supporter 09.04.2013–08.05.2013 478–2095 m 5 IN2015_C01 RV Investigator 25.10.2015–25.11.2015 932–4677 m 66 IN2015_C02 RV Investigator 29.11.2015–22.12.2015 184–3021 m 48 RE2017_C01 REM Etive 10.03.2017–06.04.2017 1338–3079 m 133 IN2017_C01 RV Investigator 10.04.2017–28.04.2017 137–4961 m 20 MacIntosh et al. Marine Biodiversity Records (2018) 11:23 Page 3 of 21 Fig. 1 Map of the central and eastern GAB regions showing the sampling stations from each of the six GAB deep water surveys (marked as coloured circles). The sampling transects (pink lines) and target sites (green shaded) are shown × 0.6 m high, fitted with a 25 mm stretch mesh cod end In addition to the epifauna collections, 75 operations (Lewis, 1999; Lewis, 2009), and a standard Geoscience were conducted to collect soft sediment macro-infauna, Australia design rock dredge.
Recommended publications
  • On the Food of the Antarctic Sea Anemone Urticinopsis Antarctica Carlgren, 1927 (Actiniidae, Actiniaria, Anthozoa) N
    Journal of the Marine Biological Association of the United Kingdom, page 1 of 6. # Marine Biological Association of the United Kingdom, 2016 doi:10.1017/S0025315415002131 On the food of the Antarctic sea anemone Urticinopsis antarctica Carlgren, 1927 (Actiniidae, Actiniaria, Anthozoa) n. yu. ivanova1 and s.d. grebelnyi2 1Saint Petersburg State University, Saint Petersburg, Russia, 2Zoological Institute of Russian Academy of Sciences, Saint Petersburg, Russia The results of an investigation into coelenteron content of the Antarctic sea anemone Urticinopsis antarctica Carlgren, 1927 are presented. Remains of invertebrate animals and fishes were found in the gastrovascular cavity of anemones. Some of them were damaged by digestion and were considered as food items of U. antarctica. These items were molluscs Addamussium colbecki (Smith, 1902), Laevilacunaria pumilia Smith, 1879, Eatoniella caliginosa Smith, 1875 and one not strictly identified gastropod species from the family Rissoidae; a crinoid from the family Comatulida; sea-urchin Sterechinus neumayeri Meissner, 1900; ophiuroid Ophiurolepis brevirima Mortensen, 1936 and a fish Trematomus sp. In contrast to the prey men- tioned above, three specimens of amphipods Conicostoma sp. were not destroyed by digestion. They may represent commen- sals, which live in the gastrovascular cavity of the anemone. Keywords: Antarctica, Urticinopsis antarctica, prey capture, coelenteron content, diet, generalist Submitted 1 June 2015; accepted 23 November 2015 INTRODUCTION disposed on the surface of a wide oral disc. The disc in this anemone can assume the form of a tube that allows selecting Sea anemones are well represented in marine benthic commu- of food particles from water passing through it (Figure 1.1–3).
    [Show full text]
  • THE BATTLE of the CORAL SEA — an OVERVIEW by A.H
    50 THE BATTLE OF THE CORAL SEA — AN OVERVIEW by A.H. Craig Captain Andrew H. Craig, RANEM, served in the RAN 1959 to 1988, was Commanding officer of 817 Squadron (Sea King helicopters), and served in Vietnam 1968-1979, with the RAN Helicopter Flight, Vietnam and No.9 Squadroom RAAF. From December 1941 to May 1942 Japanese armed forces had achieved a remarkable string of victories. Hong Kong, Malaya and Singapore were lost and US forces in the Philippines were in full retreat. Additionally, the Japanese had landed in Timor and bombed Darwin. The rapid successes had caught their strategic planners somewhat by surprise. The naval and army staffs eventually agreed on a compromise plan for future operations which would involve the invasion of New Guinea and the capture of Port Moresby and Tulagi. Known as Operation MO, the plan aimed to cut off the eastern sea approaches to Darwin and cut the lines of communication between Australia and the United States. Operation MO was highly complex and involved six separate naval forces. It aimed to seize the islands of Tulagi in the Solomons and Deboyne off the east coast of New Guinea. Both islands would then be used as bases for flying boats which would conduct patrols into the Coral Sea to protect the flank of the Moresby invasion force which would sail from Rabaul. That the Allied Forces were in the Coral Sea area in such strength in late April 1942 was no accident. Much crucial intelligence had been gained by the American ability to break the Japanese naval codes.
    [Show full text]
  • Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
    Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000).
    [Show full text]
  • The Coral Trait Database, a Curated Database of Trait Information for Coral Species from the Global Oceans
    www.nature.com/scientificdata OPEN The Coral Trait Database, a curated SUBJECT CATEGORIES » Community ecology database of trait information for » Marine biology » Biodiversity coral species from the global oceans » Biogeography 1 2 3 2 4 Joshua S. Madin , Kristen D. Anderson , Magnus Heide Andreasen , Tom C.L. Bridge , , » Coral reefs 5 2 6 7 1 1 Stephen D. Cairns , Sean R. Connolly , , Emily S. Darling , Marcela Diaz , Daniel S. Falster , 8 8 2 6 9 3 Erik C. Franklin , Ruth D. Gates , Mia O. Hoogenboom , , Danwei Huang , Sally A. Keith , 1 2 2 4 10 Matthew A. Kosnik , Chao-Yang Kuo , Janice M. Lough , , Catherine E. Lovelock , 1 1 1 11 12 13 Osmar Luiz , Julieta Martinelli , Toni Mizerek , John M. Pandolfi , Xavier Pochon , , 2 8 2 14 Morgan S. Pratchett , Hollie M. Putnam , T. Edward Roberts , Michael Stat , 15 16 2 Carden C. Wallace , Elizabeth Widman & Andrew H. Baird Received: 06 October 2015 28 2016 Accepted: January Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to Published: 29 March 2016 an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository.
    [Show full text]
  • Shell Classification – Using Family Plates
    Shell Classification USING FAMILY PLATES YEAR SEVEN STUDENTS Introduction In the following activity you and your class can use the same techniques as Queensland Museum The Queensland Museum Network has about scientists to classify organisms. 2.5 million biological specimens, and these items form the Biodiversity collections. Most specimens are from Activity: Identifying Queensland shells by family. Queensland’s terrestrial and marine provinces, but These 20 plates show common Queensland shells some are from adjacent Indo-Pacific regions. A smaller from 38 different families, and can be used for a range number of exotic species have also been acquired for of activities both in and outside the classroom. comparative purposes. The collection steadily grows Possible uses of this resource include: as our inventory of the region’s natural resources becomes more comprehensive. • students finding shells and identifying what family they belong to This collection helps scientists: • students determining what features shells in each • identify and name species family share • understand biodiversity in Australia and around • students comparing families to see how they differ. the world All shells shown on the following plates are from the • study evolution, connectivity and dispersal Queensland Museum Biodiversity Collection. throughout the Indo-Pacific • keep track of invasive and exotic species. Many of the scientists who work at the Museum specialise in taxonomy, the science of describing and naming species. In fact, Queensland Museum scientists
    [Show full text]
  • Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
    NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D.
    [Show full text]
  • 7. Index of Scientific and Vernacular Names
    Cephalopods of the World 249 7. INDEX OF SCIENTIFIC AND VERNACULAR NAMES Explanation of the System Italics : Valid scientific names (double entry by genera and species) Italics : Synonyms, misidentifications and subspecies (double entry by genera and species) ROMAN : Family names ROMAN : Scientific names of divisions, classes, subclasses, orders, suborders and subfamilies Roman : FAO names Roman : Local names 250 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1 A B Acanthosepion pageorum .....................118 Babbunedda ................................184 Acanthosepion whitleyana ....................128 bandensis, Sepia ..........................72, 138 aculeata, Sepia ............................63–64 bartletti, Blandosepia ........................138 acuminata, Sepia..........................97,137 bartletti, Sepia ............................72,138 adami, Sepia ................................137 bartramii, Ommastrephes .......................18 adhaesa, Solitosepia plangon ..................109 bathyalis, Sepia ..............................138 affinis, Sepia ...............................130 Bathypolypus sponsalis........................191 affinis, Sepiola.......................158–159, 177 Bathyteuthis .................................. 3 African cuttlefish..............................73 baxteri, Blandosepia .........................138 Ajia-kouika .................................. 115 baxteri, Sepia.............................72,138 albatrossae, Euprymna ........................181 belauensis, Nautilus .....................51,53–54
    [Show full text]
  • Redescription and Notes on the Reproductive Biology of the Sea Anemone Urticina Fecunda (Verrill, 1899), Comb
    Zootaxa 3523: 69–79 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:142C1CEE-A28D-4C03-A74C-434E0CE9541A Redescription and notes on the reproductive biology of the sea anemone Urticina fecunda (Verrill, 1899), comb. nov. (Cnidaria: Actiniaria: Actiniidae) PAUL G. LARSON1, JEAN-FRANÇOIS HAMEL2 & ANNIE MERCIER3 1Department of Evolution, Ecology and Organismal Biology, The Ohio State University (Ohio) 43210 USA [email protected] 2Society for the Exploration and Valuing of the Environment (SEVE), Portugal Cove-St. Philips (Newfoundland and Labrador) A1M 2B7 Canada [email protected] 3Department of Ocean Sciences (OSC), Memorial University, St. John’s (Newfoundland and Labrador) A1C 5S7 Canada [email protected] Abstract The externally brooding sea anemone Epiactis fecunda (Verrill, 1899) is redescribed as Urticina fecunda, comb. nov., on the basis of preserved type material and anatomical and behavioural observations of recently collected animals. The sea- sonal timing of reproduction and aspects of the settlement and development of brooded offspring are reported. Precise locality data extend the bathymetric range to waters as shallow as 10 m, and the geographical range east to the Avalon Peninsula (Newfoundland, Canada). We differentiate it from other known northern, externally brooding species of sea anemone. Morphological characters, including verrucae, decamerous mesenterial arrangement, and non-overlapping sizes of basitrichs in tentacles and actinopharynx, agree with a generic diagnosis of Urticina Ehrenberg, 1834 rather than Epi- actis Verrill, 1869. Key words: Brooding, Epiactis, Epigonactis Introduction Since its original description in 1899 based on two preserved specimens, no subsequent collection of the species currently known as Epiactis fecunda (Verrill, 1899) has been reported in the literature, nor have details of its life history nor descriptions of the live animal.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • Habitat Suitability and Environmental Niche Comparison of Cold-Water Coral Species Along the Brazilian Continental Margin
    1 Deep-sea Research Part I-oceanographic Research Papers Archimer January 2020, Volume 155 Pages 103147 (12p.) https://doi.org/10.1016/j.dsr.2019.103147 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00607/71927/ Habitat suitability and environmental niche comparison of cold-water coral species along the Brazilian continental margin Barbosa Romina 1, 4, *, Davies A. J. 2, 3, Sumida P. Y. G. 4 1 UBO, Lab Sci Environm Marin LEMAR, Plouzane, France. 2 Bangor Univ, Sch Ocean Sci, Anglesey, Wales. 3 Univ Rhode Isl, Dept Biol Sci, Kingston, RI 02881 USA. 4 Univ Sao Paulo, Inst Oceanog, 191 Praca Oceanog, BR-05508120 Sao Paulo, SP, Brazil. * Corresponding author : Romina Barbosa, email address : [email protected] Abstract : In face of increasing anthropogenic disturbance in the deep sea, it is a priority to better understand the regional distribution of cold-water corals (CWC). These organisms create some of the most species-rich habitats in the deep sea and, for this reason, they must be properly protected and managed. In this study, we aimed to identify suitable habitat for multiple CWC taxa off the Brazilian continental margin and compare their environmental niches. Habitat suitability models were developed using the Maxent approach, which allowed for the prediction of species distribution and for the identification of potential 'hot spot' areas that may be important for biodiversity conservation. Ecological niches were determined by a PCA-env approach, and niche similarity and equivalence were evaluated based on niche overlap using the Schoener's D metric. Potentially suitable habitat for Octocorallia covered a broad latitudinal range encompassing nearly the entire Brazilian continental margin, whereas Scleractinia had greater potentially suitable habitat in the Central and Southern areas.
    [Show full text]
  • Mollusca, Archaeogastropoda) from the Northeastern Pacific
    Zoologica Scripta, Vol. 25, No. 1, pp. 35-49, 1996 Pergamon Elsevier Science Ltd © 1996 The Norwegian Academy of Science and Letters Printed in Great Britain. All rights reserved 0300-3256(95)00015-1 0300-3256/96 $ 15.00 + 0.00 Anatomy and systematics of bathyphytophilid limpets (Mollusca, Archaeogastropoda) from the northeastern Pacific GERHARD HASZPRUNAR and JAMES H. McLEAN Accepted 28 September 1995 Haszprunar, G. & McLean, J. H. 1995. Anatomy and systematics of bathyphytophilid limpets (Mollusca, Archaeogastropoda) from the northeastern Pacific.—Zool. Scr. 25: 35^9. Bathyphytophilus diegensis sp. n. is described on basis of shell and radula characters. The radula of another species of Bathyphytophilus is illustrated, but the species is not described since the shell is unknown. Both species feed on detached blades of the surfgrass Phyllospadix carried by turbidity currents into continental slope depths in the San Diego Trough. The anatomy of B. diegensis was investigated by means of semithin serial sectioning and graphic reconstruction. The shell is limpet­ like; the protoconch resembles that of pseudococculinids and other lepetelloids. The radula is a distinctive, highly modified rhipidoglossate type with close similarities to the lepetellid radula. The anatomy falls well into the lepetelloid bauplan and is in general similar to that of Pseudococculini- dae and Pyropeltidae. Apomorphic features are the presence of gill-leaflets at both sides of the pallial roof (shared with certain pseudococculinids), the lack of jaws, and in particular many enigmatic pouches (bacterial chambers?) which open into the posterior oesophagus. Autapomor- phic characters of shell, radula and anatomy confirm the placement of Bathyphytophilus (with Aenigmabonus) in a distinct family, Bathyphytophilidae Moskalev, 1978.
    [Show full text]