Ostrich Producti Joan S

Total Page:16

File Type:pdf, Size:1020Kb

Ostrich Producti Joan S Tooe Z TA24S.7 . :r-- - 8873 8-5049 NO.S049 gricultural ~ Extension se;'ce .J~---.~{/ Ostrich Producti Joan s. Jeffrey BnensioD Veterinarian The Tsas A&II University Sptem Commercial ostrich farming began in South Mrica more than 150 years ago and is now practiced in Israel and Ostrich leather is a popular the United States as well. product for making boots, Currently there are 40,000 clothing and upholstery. An to 60,000 birds in the U.S. adult ostrich will produce 14 Some breeders project that square feet of hide. One hide in order to penetrate the can make three pairs of boots. existing meat and hide In Texas, several custom markets, 250,000 breeding leather goods companies and pairs would be required, and one large boot manufacturer that a slaughterhouse would are buying ostrich leather have to handle 200,000 produced in the U.S. ostriches annually to Ostrich meat is being promoted operate economically. as a low-cholesterol red meat because o~ its red color, beef-like texture and low fat content. Texas Agricultural Extension Service' Zerle L. Carpenter, Director The Texas A&M University System· College Station, Texas Processing studies conducted and newly hatched chicks, they. at Texas A&M University show require incubation equipment that the average carcass and eggs are not insurable. dressing percentage is ,57.57 There is tIle possibility of percent. Therefore, a 2_50- , having too many chicks of one pound ostrich would yield sex. Also, birds don't reproduce about 130 pounds of meat. until 2 to 3 years o~ age. Private companies in Bowie and Austin, Texas are Current prices for sexed chick slaughtering birds. Ostrich pairs 3 to 6 months of age are meat products are being $6,500 to $9,500. Chicks of this marketed under the trade '. age can be judged for size and name "Table Readi Meats" by conformation, the sex is known a company in Arizona. At least and they are less costly than one restaurant in Dallas is adults. Disadvantages are that serving ostrich meat as an . mortality risk is still high until appetizer. after 6 months, it is still 2 to 3 years until birds reproduce and Ostrich feathers can be cropped chicks mayor may not be once a year. Feathers a"re used insurable. for a variety of products including the well known Current prices for yearling "feather-duster." There 'are U.S. ' pairs are $17,000 to $25,000. companies which are potential Birds this age can be judged buyers of American ostrich for size and conformation, feathers. mortality is not as big a factor and birds are insurable. However, birds are still 1 to 2 years from reproducing and Starting a Buslnes. ~ their reproductive potential is unknown. There are several options for getting into the ostrich business, Current prices for pre-breeders each with its own advantages more than 30 months of age are and disadvantages. ' $35,000 to, $40,000. Advantages and disadvantages are about Current prices for eggs or the same as for yearlings, hatched chicks are $1,000 to except that the birds are much $1,500. This is the least co~tly closer to reproducing. method of buying an ostrich, but there are disadvantages. Current prices for p~oven Mortality is highest with eggs breeders are $45,000 to $90,000 per pair. These birds are ~~------~--------------------------------~--. ~------- insurable, their reproductive The large intestine or colon potential is known, and comprises almost 60 percent of because there is no wait for the total length. reproduction there is a faster I return on capital. Disadvantages Ostriches come in several are that adult birds are most "colors," each representing a costly, incubation and hatching different subspecies or group of , requires special equipment and subspecies. The "African black" knowledge, and there are is a hybrid produced by mortality risks in raising ostrich selective breeding from blue chicks to saleable age. and red species. The Redneck ostrich is from east Africa Buying shares in a syndicated (Tanzania and Kenya). The pair of proven breeders is also Blueneck ostrich is one of three an option. species native to north, west or south Africa. The African black is shorter, smaller and has darker feathers than other species. It has iittle Ostriches are ratites, a group skin color. Redneck males have that includes all species of creamy white skin on the thighs flightless birds: ostrich, emu, and neck except during breed­ rhea, cassowary and kiwi. The ing season when the skin of name comes from the shape of the entire leg and neck turns a the keel or breastbone, which bright pinkish red. Blueneck resembles a raft and is actually males have blue-gray skin on a large, mostly cartilagenous the neck, legs and thighs; only plate. The wings of the ostrich the fronts of the shanks turn are well developed but are used red during the breeding season. primarily for expression during The adult female Blueneck has courtship or aggressive displays. blue-gray skin, while the Ostriches have two toes, are well Redneck female is creamy adapted for running and can white. The adult male plumage attain speeds of up to 40 mph. is black with white, while the Kicking is the major means of female plumage is a light grey defense; some birds also are to grey-brown. reported to peck and bite when threatened. The gastrointestinal Ostriches live an estimated 20 tract of the ostrich is very long to 30 years in the wild. Domestic (approximately 26 feet in an ostriches have been reported to adult) with large, paired ceca. live and reproduce for up to 50 years. An ostrich will reach ----~------------------------~ adult height between 18 and 20 territory. Both males and months of age and continue to females sit on the nest. Laying gain weight for a few months season for ostriches begins in after that. Adult height is 7 to 9 the early spring and continues feet tall. Weight varies from for 2 to 3 months. Usually an 200 to 350 pounds. Birds are egg is laid every 1 to 2 days. slaughtered at 12 to 16 months Production estimates vary or older, when they weigh at widely frofIl 30 to 90 eggs per least 250 pounds. hen. The average range is 35 to 55 eggs per hen. incubation Ostriches reach sexual maturity and Batehlng :'\ between 2 and 3 years of age. Females tend to mature slightly Ostrich eggs have an incubation faster than males; different period of 39 to 49 days, with an species may mature at different average of 42 days. Incubation ages. Laying season is heralded and hatching techniques are by courtship behavior, a improving rapidly in the ratite complicated series of displays, industry, which helps reduce dancing," vocalization and early mortality. Inadequate synchronous behavior. An ventilation, improper humidity example of receptive behavior and ill-fitting egg racks have by the female includes bowing been major problems in the and ruffling her wings at her past. At least five U.S. sides. Male ostriches also get a companies are marketing lot of color during the breeding incubators and hatchers for the season. Ostriches will reproduce ratite industry (e.g., Buckeye, in monogamous or polygamous GQF, Humidaire, Natureform, situations. Most breeders let Pureflo). Eggs are turned the selection of mates occur through a 90-degree rotation naturally in a large communal four to six times per day and pen and then separate the set air cell up. Suggested bonded pairs. The male "builds" temperatures for incubation (digs) the nest, typically a range from 90 to 98 degrees F, shallow depression in the earth. but a temperature range of 96 A male ostrich can become very to 98 F is most common. aggressive during the breeding Humidity is also very import­ season and will guard the ant. Eggs need to lose a certain female, the nest and his amount of water during -------------------------------------------Jr-'~, -------- incubation; 15 to 15 percent is chicks are removed from the optimal. Humidity and airflow hatcher when dry. Some play important roles in the rate producers give each chick a of water loss. Humidity settings dose of beneficial bacterial flora will vary widely from one at hatch. Chicks are unable to geographic region to the next, thermoregulate at hatch and but usually range between 10 must have an external source and 50 percent. Egg weight loss of heat. At hatch, supplemental is determined by weekly heat should be 90 to 95 degrees weighing. Based on egg weight F. The temperature can be loss, humidity adjustments can dropped 5 degrees every 2 be made in the incubator. Good weeks and supplemental heat record keeping is very impor­ removed at 16 to 24 weeks. The tant. Computer software has heat source should be large been developed that can help. enough for all the chicks to get Candling of eggs is usually around it. Also, the pen area done at weekly intervals to should be large enough that the identify infertile or dead eggs. chicks can get away from the It is also performed prior to heat to avoid overheating. transferring the·eggs to the hatcher. LIBR.f\ .t?y .---~-~ Eggs are moved to the hatcher Nutridl.14 199 " when they have internally TfAli8 A&M U . pipped. Internal pipping Commercial ostr~W~tilfi¥are usually occurs 24 to 48 hours available from a number of before hatching. Hatcher sources. Most commercial feed temperatures are usually 1 to 2 companies are producing degrees lower than incubation starter, grower and breeder temperatures and the humidity rations. Rations may be in a slightly higher. Percent mash or pelleted form. Limits hatchability, or the number of on the addition of other sources chicks hatched divided by the of roughage or nutrients, such number of eggs set, is around as alfalfa hay, may be recom­ 70 percent.
Recommended publications
  • Ostrich Production Systems Part I: a Review
    11111111111,- 1SSN 0254-6019 Ostrich production systems Food and Agriculture Organization of 111160mmi the United Natiorp str. ro ucti s ct1rns Part A review by Dr M.M. ,,hanawany International Consultant Part II Case studies by Dr John Dingle FAO Visiting Scientist Food and , Agriculture Organization of the ' United , Nations Ot,i1 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-21 ISBN 92-5-104300-0 Reproduction of this publication for educational or other non-commercial purposes is authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale dells Terme di Caracalla, 00100 Rome, Italy. C) FAO 1999 Contents PART I - PRODUCTION SYSTEMS INTRODUCTION Chapter 1 ORIGIN AND EVOLUTION OF THE OSTRICH 5 Classification of the ostrich in the animal kingdom 5 Geographical distribution of ratites 8 Ostrich subspecies 10 The North
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Convergent Regulatory Evolution and the Origin of Flightlessness in Palaeognathous Birds
    bioRxiv preprint doi: https://doi.org/10.1101/262584; this version posted February 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Convergent regulatory evolution and the origin of flightlessness in palaeognathous birds Timothy B. Sackton* (1,2), Phil Grayson (2,3), Alison Cloutier (2,3), Zhirui Hu (4), Jun S. Liu (4), Nicole E. Wheeler (5,6), Paul P. Gardner (5,7), Julia A. Clarke (8), Allan J. Baker (9,10), Michele Clamp (1), Scott V. Edwards* (2,3) Affiliations: 1) Informatics Group, Harvard University, Cambridge, USA 2) Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA 3) Museum of Comparative Zoology, Harvard University, Cambridge, USA 4) Department of Statistics, Harvard University, Cambridge, USA 5) School of Biological Sciences, University of Canterbury, New Zealand 6) Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK 7) Department of Biochemistry, University of Otago, New Zealand 8) Jackson School of Geosciences, The University of Texas at Austin, Austin, USA 9) Department of Natural History, Royal Ontario Museum, Toronto, Canada 10) Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada *correspondence to: TBS ([email protected]) or SVE ([email protected]) bioRxiv preprint doi: https://doi.org/10.1101/262584; this version posted February 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The relative roles of regulatory and protein evolution in the origin and loss of convergent phenotypic traits is a core question in evolutionary biology.
    [Show full text]
  • A Giant Ostrich from the Lower Pleistocene Nihewan Formation of North China, with a Review of the Fossil Ostriches of China
    diversity Review A Giant Ostrich from the Lower Pleistocene Nihewan Formation of North China, with a Review of the Fossil Ostriches of China Eric Buffetaut 1,2,* and Delphine Angst 3 1 Centre National de la Recherche Scientifique—CNRS (UMR 8538), Laboratoire de Géologie de l’Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, CEDEX 05, 75231 Paris, France 2 Palaeontological Research and Education Centre, Maha Sarakham University, Maha Sarakham 44150, Thailand 3 School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; [email protected] * Correspondence: [email protected] Abstract: A large incomplete ostrich femur from the Lower Pleistocene of North China, kept at the Muséum National d’Histoire Naturelle (Paris), is described. It was found by Father Emile Licent in 1925 in the Nihewan Formation (dated at about 1.8 Ma) of Hebei Province. On the basis of the minimum circumference of the shaft, a mass of 300 kg, twice that of a modern ostrich, was obtained. The bone is remarkably robust, more so than the femur of the more recent, Late Pleistocene, Struthio anderssoni from China, and resembles in that regard Pachystruthio Kretzoi, 1954, a genus known from the Lower Pleistocene of Hungary, Georgia and the Crimea, to which the Nihewan specimen is referred, as Pachystruthio indet. This find testifies to the wide geographical distribution Citation: Buffetaut, E.; Angst, D. A of very massive ostriches in the Early Pleistocene of Eurasia. The giant ostrich from Nihewan was Giant Ostrich from the Lower contemporaneous with the early hominins who inhabited that region in the Early Pleistocene.
    [Show full text]
  • The Endangered Kiwi: a Review
    REVIEW ARTICLE Folia Zool. – 54(1–2): 1–20 (2005) The endangered kiwi: a review James SALES Bosman street 39, Stellenbosch 7600, South Africa; e-mail: [email protected] Received 13 December 2004; Accepted 1 May 2005 A b s t r a c t . Interest in ratites has necessitated a review of available information on the unique endangered kiwi (Apteryx spp.). Five different species of kiwis, endemic to the three islands of New Zealand, are recognized by the Department of Conservation, New Zealand, according to genetic and biological differences: the North Island Brown Kiwi (Apteryx mantelli), Okarito Brown Kiwi/Rowi (A. rowi), Tokoeka (A. australis), Great Spotted Kiwi/Roroa (A. haastii), and Little Spotted Kiwi (A owenii). As predators were found to be the main reason for declining kiwi numbers, predator control is a main objective of management techniques to prevent kiwis becoming extinct in New Zealand. Further considerations include captive breeding and release, and establishment of kiwi sanctuaries. Body size and bill measurements are different between species and genders within species. Kiwis have the lowest basal rates of metabolism compared with all avian standards. A relative low body temperature (38 ºC), burrowing, a highly developed sense of smell, paired ovaries in females, and a low growth rate, separate kiwis from other avian species. Kiwis have long-term partnerships. Females lay an egg that is approximately 400 % above the allometrically expected value, with an incubation period of 75–85 days. Kiwis mainly feed on soil invertebrate, with the main constituent being earthworms, and are prone to parasites and diseases found in other avian species.
    [Show full text]
  • Emu Production
    This article was originally published online in 1996. It was converted to a PDF file, 10/2001 EMU PRODUCTION Dr. Joan S. Jefferey Extension Veterinarian Texas Agricultural Extension Service The Texas A&M University System Emus are native to Australia. Commercial production there and in the United States is a very recent development. The first emu producer's organization started in Texas in 1989. PRODUCTS Emu products include leather, meat and oil. Leather from emu hides is thinner and finer textured than ostrich leather. Anticipated uses include clothing and accessories. Emu meat, like ostrich meat, is being promoted as a low-fat, low-cholesterol red meat. Slaughter statistics from Emu Ranchers Incorporated (ERI) report average carcass weight is 80 pounds, with a 53.75 percent dressed yield. The average meat per carcass is 26 pounds and average fat is 17 pounds. ERI anticipates the sale price of emu meat to the public will be $20.00 per pound. A private company is processing under the name brand New Breed(r). New Breed(r) meat products include sausage, hot links and summer sausage at $15.00 per pound, jerky at $5.00 per packet and steak at $20.00 per pound. Emu oil, rendered from emu fat, is being used in skin care products in Australia (Emmuman(r)). One emu will yield 4 to 5 liters of oil. Emu producers in the U.S. are developing products and have two nearing the market stage: Emuri(r) Daytime Skin Therapy with Sunscreen (spf 8)- 1.7 ounces for $36.00; and Emuri(r) Night Revitalizing Cream - 1.7 ounces for $45.00.
    [Show full text]
  • Research and Conservation of Forest-Dependent Tinamou Species in Amazonia Peru
    ORNITOLOGIA NEOTROPICAL 15 (Suppl.): 317–321, 2004 © The Neotropical Ornithological Society RESEARCH AND CONSERVATION OF FOREST-DEPENDENT TINAMOU SPECIES IN AMAZONIA PERU Wendy M. Schelsky1 University of Illinois-Urbana-Champaign, Department of Animal Biology, 606 East Healey Street, Champaign, Illinois 61820, USA. Email: [email protected] Resumen. – Investigación y conservación de los tinamúes amazónicos en Perú. – La investigación y la conservación en Sudamérica han crecido mucho durante las últimas décadas. Sin embargo, pocas investigaciones se han enfocado en los tinamúes (Familia: Tinamidae) y menos en las especies amazónicas. A consecuencia, no entendemos bien su estado de conservación, historia natural, ni uso del hábitat. En este estudio, proveo información sobre la comunidad de tinamúes de un bosque húmedo de la estación biológica de Cocha Cashu en el Parque Nacional del Manu en Perú. En ese bosque, se encuentran nueve especies de tinamúes y cuatro tipos de hábitat. Destaco aquellas especies que pueden ser más susceptibles a la pérdida de hábitat y fragmentación y discuto las necesidades específicas de investigaciones futuras en los tinamúes amazónicos. Abstract. – Research and conservation in the Neotropics has grown significantly in recent decades, but few studies have focused on tinamous (Order: Tinamiformes), and even fewer on forest-dependent tinamou species. Consequently, their status, natural history, and habitat use remain little understood. Here I provide information regarding the tinamou community in a lowland forest at Cocha Cashu Biological Station, Manu National Park, Peru, where nine tinamou species occur among four dominant habitat types. I highlight species that may be susceptible to habitat loss and fragmentation and discuss specific needs for future research in Amazonian tinamous.
    [Show full text]
  • On Ratites and Their Interactions with Plants*
    Revista Chilena de Historia Natural 64: 85-118, 1991 On ratites and their interactions with plants* Las rátidas y su interacci6n con las plantas JAMES C. NOBLE CSIRO, Division of Wildlife and Ecology, National Rangelands Program, P.O. Box 84, Lyneham, A.C.T. 2602, Australia RESUMEN Se revisan las historias de los fosiles, patrones de distribucion y preferencias de medio ambiente natural-nabitat, tanto de miembros extintos como sobrevivientes de las ratidas. Se pone especial enfasis en aquellas caracterlsticas f{sicas y anatomicas de las rátidas que tienen aparente significacion desde el punto de vista de Ia dinamica vegetal, especialmente aquellos aspectos relacionados con Ia germinacion de las semillas y establecimiento de los brotes. Aparte de los kiwis de Nueva Zelanda (Apteryx spp.), Ia caracteristica principal que distingue a las ratidas de otras aves es su gran tamafio. En tanto que las consecuencias evolutivas del gigantismo han resultado en Ia extincion comparativamente reciente de algunas especies, tales como, las moas (las Dinornidas y Emeidas) de Nueva Zelanda y los pajaros elefantes (Aeporní- tidas) de Madagascar, el gran tamaño de las rátidas contemporáneas les confiere Ia capacidad de ingerior considerables cantidades de alimentos, como as{ tambien {temes particulares como frutas y piedras demasiado grandes para otras aves, sin sufrir ningún menoscabo en el vuelo. Muchos de estos alimentos vegetates, especialmente frutas como las de los Lauranceae, pueden ser altamente nutritivos, pero las ratidas son omnivoras y pueden utilizar una gama de alternativas cuando es necesario. Es aún incierto si Ia seleccion de alimentos está relaeionada directamente con Ia recompensa nutritiva; sin embargo, Ia estacion de reproduccion del casuario australiano (Casuarius casuarius johnsonii) está estrecha- mente ligada al per{odo de máxima produccion frutal de los árboles y arbustos en sus habitat de selvas tropicales lluviosas.
    [Show full text]
  • Ratites Are Now Consid- Ered to Be Derived from Unrelated Groups of Flighted Birds That Have Adapted to a Highly Specialized Ter- Restrial Lifestyle
    atites are a group of large, ground-dwelling birds that share the common characteristic CHAPTER of flightlessness. The term ratite is derived R from the Latin ratitus, meaning raft, and refers to the shape of the sternum that lacks a keel. There is no scientific classification “ratite,” but the term is used to collectively describe the ostrich (from Africa), rhea (from South America), emu (from Aus- tralia), cassowary (from Australia and the New Guinea archipelago) and the kiwi (from New Zea- 48 land).1 Once considered to be a single category of related primitive birds, the ratites are now consid- ered to be derived from unrelated groups of flighted birds that have adapted to a highly specialized ter- restrial lifestyle. In the 1980’s, it was estimated that between 90,000 to 120,000 ostriches existed on approximately 400 ATITES farms as part of a multi-crop rotation system in R South Africa. During the same time period, a fledg- ling industry arose in the United States and by the end of the decade, it was estimated that there were close to 10,000 ostriches and about 3,000 emus in the US.55 This growing interest in breeding ostriches and emus has occurred due to the birds’ potential as producers of meat, feathers and skin. Ostrich skin is charac- James Stewart terized by prominent feather follicles and is a high status product of the leather industry. Ostriches yield a red meat that has the flavor and texture of beef, yet has the cholesterol and nutritional value of poultry. Ostrich feathers, still used for dusters, are also used in the manufacture of fashion and theatrical attire.
    [Show full text]
  • First Record of Ostriches (Aves, Struthioniformes, Struthionidae) from the Late Miocene of Bulgaria with Taxonomic and Zoogeographic Discussion
    First record of ostriches (Aves, Struthioniformes, Struthionidae) from the late Miocene of Bulgaria with taxonomic and zoogeographic discussion Zlatozar BOEV National Museum of Natural History, Bulgarian Academy of Sciences, 1 Blvd Tzar Osvoboditel, BG-1000 Sofi a (Bulgaria) [email protected] Nikolaï SPASSOV National Museum of Natural History, Bulgarian Academy of Sciences, 1 Blvd Tzar Osvoboditel, BG-1000 Sofi a (Bulgaria) [email protected] Boev Z. & Spassov N. 2009. — First record of ostriches (Aves, Struthioniformes, Struthio- nidae) from the late Miocene of Bulgaria with taxonomic and zoogeographic discussion. Geodiversitas 31 (3): 493-507. ABSTRACT We describe two new fossils, the distal end of a right tarsometatarsus and a KEY WORDS Aves, proximal pedal phalanx of the left third toe, from two sites in southwestern Struthioniformes, Bulgaria: Kalimantsi (middle Turolian) and Hadzhidimovo-2 (MN 11/12 Struthionidae, Struthio karatheodoris, boundary). Th ese specimens are compared to Neogene-Quaternary ostriches, taxonomy, and are referred to Struthio cf. karatheodoris. A general overview of Neogene- palaeoecology, Quaternary ostrich specimens, a taxonomic discussion of late Miocene Eurasian palaeogeography, Bulgaria, struthionid taxa, and the ecological and zoogeographic implications of the new late Miocene. specimens are presented. RÉSUMÉ Premières découvertes d’autruches (Aves, Struthioniformes, Struthionidae) du Miocène supérieur de Bulgarie et discussion taxonomique et zoogéographique. MOTS CLÉS Aves, Deux vestiges du membre postérieur, l’extrémité distale d’un tarsométatarse Struthioniformes, droit et une phalange proximale du troisième doigt gauche, provenant de deux Struthionidae, Struthio karatheodoris, gisements de la Bulgarie du sud-ouest : Kalimantsi (niveaux du Turolien moyen) taxonomie, et Hadzhidimovo-2 (limite MN 11/12) sont décrits et rapportés à Struthio cf.
    [Show full text]
  • The Elephant Birds of Madagascar 17Th Century
    NEWS & VIEWS offered for (illegal) sale as curios. A little- The Arabian Nights. The rokh, so the story known fact about the eggs is that until as goes, was an eagle-like bird so enormous recently as the mid-19th century they were that it preyed on elephants. There is good used by humans to transport liquids. There reason to suspect that this fanciful tale enormous, is something distinctly surreal about the originated from birds that occurred on notion of a gigantic egg, several centuries Madagascar, and elephant birds have long old, being used as a water container by a been seen as the obvious candidates. thirsty Malagasy traveller. But Steven Goodman and William enigmatic & extinct All the elephant birds were extinct by the Jungers have recently pointed out that The elephant birds of Madagascar 17th century. A French governor stationed another extinct Malagasy bird could in Madagascar during the mid-1600s men- have contributed to the origin of this n the mid-1800s three huge eggs Aepyornis and three Mullerornis species, mainly in forests, since the spiny vegeta- tioned ostrich-like birds that occurred in legend. Belonging to the same genus and were transported from Madagas- although the actual numbers remain un- tion typical of Madagascar’s arid regions remote regions, but he did not see them WIKIMEDIA COMMONS (2) approxi mately the same size as Africa’s car to France, and the Western clear. This uncertainty reflects the fact generally is characterised by other, iso- at first hand. There is no way of knowing Aepyornis skull on display in the National Crowned Eagle, Stephanoaetus mahery worldI came to learn that this island had that all these species were described topically distinct, photosynthetic path- whether the birds still existed at that time Museum of Natural History, Paris.
    [Show full text]
  • Ratite Production: Ostrich, Emu and Rhea
    RATITE PRODUCTION: OSTRICH, EMU AND RHEA CURRENT TOPIC BY LANCE E. GEGNER ATTRA PROGRAM SPECIALIST OCTOBER 2001 Abstract: This publication discusses the history of ratite production as an alternative livestock enterprise, and goes into many of the issues a beginning producer needs to consider before starting to raise ratites. It also lists ratite-related associations, websites, magazines, and books. Introduction The Ratite family includes flightless birds with a flat, keelless breastbone (the keel is where the flight muscles connect). Most of their muscle is in their legs and thighs. In the wild, ratites eat seeds, herbaceous plants, insects, and small rodents. Ostriches, rheas, and emus are the ra- tites most commonly raised as livestock in the United States. Ratites produce red meat that is similar to beef or venison, and the hide makes fine leather products. The birds adapt to most climates, so long as they are given proper protection and management. Other ratites less commonly raised in the United States are the cassowary from Australia and New Guinea, and the kiwi from New Zealand. Regulations Before purchasing any ratites, would-be producers should first contact their state Department of Agriculture, their local Exten- Table of Contents sion service, and a ratite association (see Further Resources) to determine whether there are any requirements for permits or licenses, or other regulations concerning ratites, in their state or Regulations ............................. 1 locality. In many states, the ostrich, the emu, and sometimes Ostriches ................................. 2 the rhea are classified as livestock rather than as exotic animals, Rheas ....................................... 2 so that no permits or licenses may be required.
    [Show full text]