Size Limits of Very Small Microorganisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nanobacteria: an Alternative Mechanism for Pathogenic Intra- and Extracellular Calcification and Stone Formation
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 8274–8279, July 1998 Medical Sciences Nanobacteria: An alternative mechanism for pathogenic intra- and extracellular calcification and stone formation E. OLAVI KAJANDER* AND NEVA C¸ IFTC¸IOGLU Department of Biochemistry and Biotechnology, University of Kuopio, P.O.B. 1627, Fin-70211, Kuopio, Finland Communicated by J. Edwin Seegmiller, University of California, La Jolla, CA, April 23, 1998 (received for review January 9, 1998) ABSTRACT Calcium phosphate is deposited in many aminoglycoside antibiotics prevented their multiplication. Ac- diseases, but formation mechanisms remain speculative. cording to the 16S rRNA gene sequence (EMBL X98418 and Nanobacteria are the smallest cell-walled bacteria, only re- X98419), nanobacteria fall within the a-2 subgroup of Pro- cently discovered in human and cow blood and commercial cell teobacteria, which also includes Brucella and Bartonella species culture serum. In this study, we identified with energy- (10). The latter genera include human and animal pathogens dispersive x-ray microanalysis and chemical analysis that all that share similarities with nanobacteria, e.g., some antigens growth phases of nanobacteria produce biogenic apatite on (our unpublished data), intra- and extracellular location in the their cell envelope. Fourier transform IR spectroscopy re- host, and cytopathic effects (5). vealed the mineral as carbonate apatite. The biomineraliza- In this study, we provide evidence that nanobacteria can act as tion in cell culture media resulted in biofilms and mineral crystallization centers (nidi) for the formation of biogenic apatite aggregates closely resembling those found in tissue calcifica- structures. The mineralization process was studied in vitro with tion and kidney stones. -
Allies and Enemies: How the World Depends on Bacteria
Allies and Enemies This page intentionally left blank Allies and Enemies How the World Depends on Bacteria Anne Maczulak Vice President, Publisher: Tim Moore Associate Publisher and Director of Marketing: Amy Neidlinger Acquisitions Editor: Kirk Jensen Editorial Assistant: Pamela Boland Operations Manager: Gina Kanouse Senior Marketing Manager: Julie Phifer Publicity Manager: Laura Czaja Assistant Marketing Manager: Megan Colvin Cover Designer: Alan Clements Managing Editor: Kristy Hart Senior Project Editor: Lori Lyons Copy Editor: Geneil Breeze Proofreader: Apostrophe Editing Services Senior Indexer: Cheryl Lenser Compositor: Nonie Ratcliff Senior Manufacturing Buyer: Dan Uhrig © 2011 by Pearson Education, Inc. Publishing as FT Press Upper Saddle River, New Jersey 07458 FT Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more information, please contact U.S. Corporate and Government Sales, 1-800-382-3419, [email protected]. For sales outside the U.S., please contact International Sales at [email protected]. Company and product names mentioned herein are the trademarks or registered trademarks of their respective owners. All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher. Printed in the United States of America First Printing July 2010 ISBN-10: 0-13-701546-1 ISBN-13: 978-0-13-701546-7 Pearson Education LTD. Pearson Education Australia PTY, Limited. Pearson Education Singapore, Pte. Ltd. Pearson Education North Asia, Ltd. Pearson Education Canada, Ltd. Pearson Educación de Mexico, S.A. de C.V. Pearson Education—Japan Pearson Education Malaysia, Pte. Ltd. -
Animal Body Size
introduction On Being the Right Size: The Impor tance of Size in Life History, Ecology, and Evolution Felisa A. Smith and S. Kathleen Lyons “For every type of animal there is an optimum size.” —J. B. S. Haldane, “On Being the Right Size” iving things vary enormously in body size. Across the spectrum of Llife, the size of animals spans more than twenty-one orders of mag- nitude, from the smallest (mycoplasm) at ∼10 –13 g to the largest (blue whale) at 108 g (fi g. I.1, table I.1). We now know that much of this range was achieved in two “jumps” corresponding to the evolution of eukary- otes and metazoans, at 2.1 Ga and 640 Ma, respectively (Payne et al. 2009). Yet the drivers behind these jumps, the factors underlying similar- ities and differences in body size distributions, and the factors selecting for the “characteristic” or “optimum” size of organisms remain unre- solved (Smith et al. 2004; Storch and Gaston 2004). The study of body size has a long history in scientifi c discourse. Some of our earliest scientifi c treatises speculate on the factors underlying the body mass of organisms (e.g., Aristotle 347–334 B.C.). Many other emi- nent scientists and philosophers, including Galileo Galilei, Charles Dar- win, J. B. S. Haldane, George Gaylord Simpson, and D’Arcy Thompson, have also considered why organisms are the size they are and the con- sequences of larger or smaller size. As Galileo stated, “Nature cannot produce a horse as large as twenty ordinary horses or a giant ten times taller than an ordinary man unless by miracle or by greatly altering the proportions of his limbs and especially of his bones” (Galileo 1638). -
The Ocean Biosphere: from Microbes to Mammals
Keywords: biosphere, bioaccumulate, biodiversity, food web, ecology, abiotic factors, and biotic factors. Lesson II: The Ocean Biosphere: From Microbes to Mammals Planet Earth is truly a water environments is called ecology. planet! We have a connection to all Living things such as plants and living things in the ocean, from the animals in the environment are called microscopic floating plants that biotic factors, or biota. Nonliving supply us with the oxygen we breathe, things in the environment, such as to the huge blue whale that fills its soil, water, temperature, light, belly with a ton of krill. This circle of salinity, chemical composition, and life is called a biosphere. The earth’s currents are abiotic factors. biosphere is composed of all living Together, these factors interact and things, from the deepest oceans to the function as an ecosystem. An upper atmosphere. It includes all the ecosystem is a community of different air, land and water where life exists. organisms interacting with the abiotic All living things depend upon and parts of its environment. Ecosystems interact with each other and with the may be as small as a beehive, or as non-living things in their large as the Atlantic Ocean. With the environment. aid of technology, we are discovering The study of interactions entire new ecosystems that survive in between organisms and their our biosphere. Our Ocean Biosphere Look at an atlas of the world animals. A few abiotic factors are and identify one of the major oceans temperature, salinity, pressure, found on planet earth. In short, the dissolved gases and depth. -
Bio-Systems As Self-Organizing Quantum Systems
1 BIO-SYSTEMS AS SELF-ORGANIZING QUANTUM SYSTEMS Matti Pitk¨anen K¨oydenpunojankatuD 11, 10900, Hanko, Finland iii Preface This book belongs to a series of online books summarizing the recent state Topological Geometro- dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu- dents at seventies and eighties using detailed recipes for how to reduce everything to group theory. Nowadays this activity has been completely computerized and it probably takes only a few hours to print out the predictions of this kind of unified theory as an article in the desired format. TGD is something different and I am not ashamed to confess that I have devoted the last 32 years of my life to this enterprise and am still unable to write The Rules. I got the basic idea of Topological Geometrodynamics (TGD) during autumn 1978, perhaps it was October. What I realized was that the representability of physical space-times as 4-dimensional surfaces of some higher-dimensional space-time obtained by replacing the points of Minkowski space with some very small compact internal space could resolve the conceptual difficulties of general rela- tivity related to the definition of the notion of energy. This belief was too optimistic and only with the advent of what I call zero energy ontology the understanding of the notion of Poincare invariance has become satisfactory. It soon became clear that the approach leads to a generalization of the notion of space-time with particles being represented by space-time surfaces with finite size so that TGD could be also seen as a generalization of the string model. -
States of Origin: Influences on Research Into the Origins of Life
COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Director of Copyright Services sydney.edu.au/copyright Influences on Research into the Origins of Life. Idan Ben-Barak Unit for the History and Philosophy of Science Faculty of Science The University of Sydney A thesis submitted to the University of Sydney as fulfilment of the requirements for the degree of Doctor of Philosophy 2014 Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma of a University or other institute of higher learning. -
Microbial Cooking, Cleaning, and Control Under Stress
life Review Housekeeping in the Hydrosphere: Microbial Cooking, Cleaning, and Control under Stress Bopaiah Biddanda 1,* , Deborah Dila 2 , Anthony Weinke 1 , Jasmine Mancuso 1 , Manuel Villar-Argaiz 3 , Juan Manuel Medina-Sánchez 3 , Juan Manuel González-Olalla 4 and Presentación Carrillo 4 1 Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA; [email protected] (A.W.); [email protected] (J.M.) 2 School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA; [email protected] 3 Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; [email protected] (M.V.-A.); [email protected] (J.M.M.-S.) 4 Instituto Universitario de Investigación del Agua, Universidad de Granada, 18071 Granada, Spain; [email protected] (J.M.G.-O.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +1-616-331-3978 Abstract: Who’s cooking, who’s cleaning, and who’s got the remote control within the waters blan- keting Earth? Anatomically tiny, numerically dominant microbes are the crucial “homemakers” of the watery household. Phytoplankton’s culinary abilities enable them to create food by absorbing sunlight to fix carbon and release oxygen, making microbial autotrophs top-chefs in the aquatic kitchen. However, they are not the only bioengineers that balance this complex household. Ubiqui- tous heterotrophic microbes including prokaryotic bacteria and archaea (both “bacteria” henceforth), Citation: Biddanda, B.; Dila, D.; eukaryotic protists, and viruses, recycle organic matter and make inorganic nutrients available to Weinke, A.; Mancuso, J.; Villar-Argaiz, primary producers. Grazing protists compete with viruses for bacterial biomass, whereas mixotrophic M.; Medina-Sánchez, J.M.; protists produce new organic matter as well as consume microbial biomass. -
New Developments in Cardiovascular Disease
“Fire in the Heart” New Developments in the Diagnosis, Prevention, and Treatment of Cardiovascular Disease Stephen Sinatra, M.D., FACC, FACN, CNS, CBT Assistant Clinical Professor of Medicine, University of Connecticut School of Medicine and Graham Simpson, M.D. ABSTRACT The aim of this paper is to discuss the integration of conventional cardiology and alternative cardiology. The world of cardiology is moving fast and in multiple directions. In this paper we will discuss the importance of inflammation and how nutraceuticals can be used in the fight against cardiovascular disease. INTRODUCTION Most of us have some idea of what inflammation is. If a wound gets hot, turns red, hurts, and swells, we recognize that inflammation is at work. In this instance, inflammation is a beneficial process, serving to immobilize and rest the area of injury as the rest of the immune system mobilizes to heal... Regardless of the source of assault on our bodies, inflammation is the “first alert” mechanism that calls into action the cells responsible for surveillance and protection, heralding them to go to work and limit the damage. These cells attack and destroy the invaders, and clean up the damaged cells, repairing and clearing as they go until a healthy state is restored. As such, inflammation is your body’s first line of defense against injury or infection. Researchers now recognize another kind of inflammation: silent inflammation, or SI, which is very different from the type of inflammation described above. This type of internal inflammation has an insidious nature and is the culprit behind the many chronic diseases that are primarily caused by poor lifestyle habits and environmental pollutants. -
Viral Genetic Evolution in Host Cells Supports Tumorigenesis
Short Communication Adv Res Gastroentero Hepatol Volume 4 Issue 2 - March 2017 DOI: 10.19080/ARGH.2017.03.555631 Copyright © All rights are reserved by Daniel A Achinko Viral Genetic Evolution in Host Cells Supports Tumorigenesis Daniel A Achinko* University City Science Center, USA Submission: March 01, 2017; Published: March 23, 2017 *Corresponding author: Daniel A Achinko, University City Science Center, PepVax, Inc.10411 Motor City Drive Bethesda, MD 20817, Immage Biotherapeutics Corp, 3711 Market St. 8th Floor, Philadelphia, PA 19104, USA, Email: Abstract Cancer genetics now associates several virus types to the disease. Six main viruses are considered underlying pathogenic agents of cancer and more of them are DNA viruses while a few are RNA retroviruses. The role of viruses in cancer is still elusive though several host cell genetic are different in the type of genetic material they carry but what makes them common to severe disease situations could be their ability to integrateexpression host patterns, genome, regulatory hence exploiting mechanisms the host and transcription genetic variations and translation have been factors identified to drive and theirassociated replication with relatedand encapsulation viral activity. of Virusesgenetic to immune target cells could be of therapeutic importance if these mechanisms are well understood. information for delivery out of the cell. The variation of these viruses in different cancer types and their evolutionary history with specificity Background until experimental analysis was able to show that, a virus was Viruses are considered the smallest organisms and known to bemetabolically inert out of a host cell but become active when they integrate and infect a host cell in order to reproduce. -
Enhanced Resolution of the Paleoenvironmental and Diagenetic Features of the Silurian Brassfield Formation
Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2013 Enhanced Resolution of the Paleoenvironmental and Diagenetic Features of the Silurian Brassfield ormationF Lisa Marie Oakley Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Earth Sciences Commons, and the Environmental Sciences Commons Repository Citation Oakley, Lisa Marie, "Enhanced Resolution of the Paleoenvironmental and Diagenetic Features of the Silurian Brassfield ormationF " (2013). Browse all Theses and Dissertations. 787. https://corescholar.libraries.wright.edu/etd_all/787 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. ENHANCED RESOLUTION OF THE PALEOENVIRONMENTAL AND DIAGENETIC FEATURES OF THE SILURIAN BRASSFIELD FORMATION A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By LISA MARIE OAKLEY B.S., Wright State University, 2009 2013 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Lisa Marie Oakley ENTITILED Enhanced Resolution Of The Paleoenvironmental And Diagenetic Features Of The Silurian Brassfield Formation BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. ______________________________ David Schmidt, Ph.D. Thesis Co-Director ______________________________ David Dominic, Ph.D. Thesis Co-Director Department Chair Committee on Final Examination ___________________________________ David Schmidt, Ph.D., Co-director ___________________________________ David Dominic, PhD., Co-director ___________________________________ Chuck Ciampiaglio, PhD., Committee member ______________________________________ R. -
An Alternative Interpretation of Nanobacteria- Induced Biomineralization
An alternative interpretation of nanobacteria- induced biomineralization John O. Cisar*†, De-Qi Xu*, John Thompson*, William Swaim‡, Lan Hu§, and Dennis J. Kopecko§ *Oral Infection and Immunity Branch, and ‡Cellular Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892; and §Laboratory of Enteric and Sexually Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 Edited by Stanley Falkow, Stanford University, Stanford, CA, and approved August 4, 2000 (received for review March 10, 2000) The reported isolation of nanobacteria from human kidney stones signed to the ␣-2 subgroup of proteobacteria, which also includes raises the intriguing possibility that these microorganisms are Brucella and Bartonella species that occur within and outside of etiological agents of pathological extraskeletal calcification [Ka- host cells (6, 8). jander, E. O. & C¸iftc¸ioglu, N. (1998) Proc. Natl. Acad. Sci. USA 95, The reported identification of nanobacteria from serum, 8274–8279]. Nanobacteria were previously isolated from FBS after kidney, and dental pulp stones (6–11) and of nannobacteria on prolonged incubation in DMEM. These bacteria initiated biomin- the tooth surface (12), raises important questions concerning the eralization of the culture medium and were identified in calcified natural distribution of these unusual microorganisms, their particles and biofilms by nucleic acid stains, 16S rDNA sequencing, occurrence as adventitious agents in biological products, and electron microscopy, and the demonstration of a transferable their association with pathological extraskeletal calcification biomineralization activity. We have now identified putative (13). To address these questions, we initiated studies to isolate nanobacteria, not only from FBS, but also from human saliva and and characterize nanobacteria from FBS, human saliva, and dental plaque after the incubation of 0.45-m membrane-filtered dental plaque. -
Tgd Based View About Living Matter and Remote Mental Interactions
1 TGD BASED VIEW ABOUT LIVING MATTER AND REMOTE MENTAL INTERACTIONS Matti Pitk¨anen K¨oydenpunojankatuD 11, 10900, Hanko, Finland iii Preface This book belongs to a series of online books summarizing the recent state Topological Geometro- dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu- dents at seventies and eighties using detailed recipes for how to reduce everything to group theory. Nowadays this activity has been completely computerized and it probably takes only a few hours to print out the predictions of this kind of unified theory as an article in the desired format. TGD is something different and I am not ashamed to confess that I have devoted the last 32 years of my life to this enterprise and am still unable to write The Rules. I got the basic idea of Topological Geometrodynamics (TGD) during autumn 1978, perhaps it was October. What I realized was that the representability of physical space-times as 4-dimensional surfaces of some higher-dimensional space-time obtained by replacing the points of Minkowski space with some very small compact internal space could resolve the conceptual difficulties of general rela- tivity related to the definition of the notion of energy. This belief was too optimistic and only with the advent of what I call zero energy ontology the understanding of the notion of Poincare invariance has become satisfactory. It soon became clear that the approach leads to a generalization of the notion of space-time with particles being represented by space-time surfaces with finite size so that TGD could be also seen as a generalization of the string model.