Contingent Claims Pricing

Total Page:16

File Type:pdf, Size:1020Kb

Contingent Claims Pricing Part III Contingent Claims Pricing 191 Chapter 7 Basics of Derivative Pricing Chapter 4 showed how general pricing relationships for contingent claims could be derived in terms of an equilibrium stochastic discount factor or in terms of elementary securities. This chapter takes a more detailed look at this important area of asset pricing.1 The field of contingent claims pricing experienced explo- sive growth following the seminal work on option pricing by Fischer Black and Myron Scholes (Black and Scholes 1973) and by Robert Merton (Merton 1973b). Research on contingent claims valuation and hedging continues to expand, with significant contributions coming from both academics and finance practitioners. This research is driving and is being driven by innovations in financial markets. Because research has given new insights into how potential contingent securi- ties might be priced and hedged, financial service providers are more willing to introduce such securities to the market. In addition, existing contingent securities motivate further research by academics and practitioners whose goal is to improve the pricing and hedging of these securities. 1 The topics in this chapter are covered in greater detail in undergraduate and masters- level financial derivatives texts such as (McDonald 2002) and (Hull 2000). Readers with a background in derivatives at this level may wish to skip this chapter. For others without this knowledge, this chapter is meant to present some fundamentals of derivatives that provide a foundation for more advanced topics covered in later chapters. 193 194 CHAPTER 7. BASICS OF DERIVATIVE PRICING We begin by considering two major categories of contingent claims, namely, forward contracts and option contracts. These securities are called derivatives because their cashflows derive from another “underlying” variable, such as an asset price, interest rate, or exchange rate.2 For the case of a derivative whose underlying is an asset price, we will show that the absence of arbitrage op- portunities places restrictions on the derivative’s value relative to that of its underlying asset.3 In the case of forward contracts, arbitrage considerations alone may lead to an exact pricing formula. However, in the case of options, these no-arbitrage restrictions cannot determine an exact price for the deriva- tive, but only bounds on the option’s price. An exact option pricing formula requires additional assumptions regarding the probability distribution of the underlying asset’s returns. The second section of this chapter illustrates how options can be priced using the well-known binomial option pricing technique. This is followed by a section covering different binomial model applications. The next section begins with a reexamination of forward contracts and how they are priced. We then compare them to option contracts and analyze how the absence of arbitrage opportunities restricts option values. 7.1 Forward and Option Contracts Chapter 3’s discussion of arbitrage derived the link between spot and forward contracts for foreign exchange. Now we show how that result can be generalized to valuing forward contracts on any dividend-paying asset. Following this, we compare option contracts to forward contracts and see how arbitrage places limits on option prices. 2 Derivatives have been written on a wide assortment of other variables, including commod- ity prices, weather conditions, catastrophic insurance losses, and credit (default) losses. 3 Thus, our approach is in the spirit of considering the underlying asset as an elementary security and using no-arbitrage restrictions to derive implications for the derivative’s price. 7.1. FORWARD AND OPTION CONTRACTS 195 7.1.1 Forward Contracts on Assets Paying Dividends Similar to the notation introduced previously, let F0 be the current date 0 forward price for exchanging one share of an underlying asset periods in the future. Recall that this forward price represents the price agreed to at date 0 but to be paid at future date > 0 for delivery at date of one share of the asset. The long (short) party in a forward contract agrees to purchase (deliver) the underlying asset in return for paying (receiving) the forward price. Hence, the date > 0 payoff to the long party in this forward contract is S F0 , where S is the spot price of one share of the underlying asset at the maturity date of the contract.4 The short party’spayoff is simply the negative of the long party’spayoff. When the forward contract is initiated at date 0, the parties set the forward price, F0 , to make the value of the contract equal zero. That is, by setting F0 at date 0, the parties agree to the contract without one of them needing to make an initial payment to the other. Let Rf > 1 be one plus the per-period risk-free rate for borrowing or lending over the time interval from date 0 to date . Also, let us allow for the possibility that the underlying asset might pay dividends during the life of the forward contract, and use the notation D to denote the date 0 present value of dividends paid by the underlying asset over the period from date 0 to date .5 The asset’sdividends over the life of the forward contract are assumed to be known at the initial date 0, so that D can be computed by discounting each dividend payment at the appropriate date 0 risk-free rate corresponding to the time until the dividend payment is made. In the analysis that follows, we also assume that risk-free interest rates are nonrandom, though most of our results in this section and the next continue to hold when interest rates are assumed to change 4 Obviously S is, in general, random as of date 0 while F0 is known as of date 0. 5 In our context, "dividends" refer to any cashflows paid by the asset. For the case of a coupon-paying bond, the cashflows would be its coupon payments. 196 CHAPTER 7. BASICS OF DERIVATIVE PRICING randomly through time.6 Now we can derive the equilibrium forward price, F0 , to which the long and short parties must agree in order for there to be no arbitrage opportunities. This is done by showing that the long forward contract’s date payoffs can be exactly replicated by trading in the underlying asset and the risk-free asset. Then we argue that in the absence of arbitrage, the date 0 values of the forward contract and the replicating trades must be the same. The following table outlines the cashflows of a long forward contract as well as the trades that would exactly replicate its date payoffs. Date 0 Trade Date 0 Cashflow Date Cashflow Long Forward Contract 0 S F0 Replicating Trades 1) Buy Asset and Sell Dividends S0 + DS 2) Borrow R F0 F0 f Net Cashflow S0 + D + R F0 S F0 f Note that the payoff of the long forward party involves two cashflows: a positive cashflow of S , which is random as of date 0, and a negative cashflow equal to F0 , which is certain as of date 0. The former cashflow can be replicated by purchasing one share of the underlying asset but selling ownership of the dividends paid by the asset between dates 0 and .7 This would cost S0 D, where S0 is the date 0 spot price of one share of the underlying asset. 6 This is especially true for cases in which the underlying asset pays no dividends over the life of the contract, that is, D = 0. Also, some results can generalize to cases where the underlying asset pays dividends that are random, such as the case when dividend payments are proportional to the asset’s value. 7 In the absence of an explict market for selling the assets’dividends, the individual could borrow the present value of dividends, D, and repay this loan at the future dates when the dividends are received. This will generate a date 0 cashflow of D, and net future cashflows of zero since the dividend payments exactly cover the loan repayments. 7.1. FORWARD AND OPTION CONTRACTS 197 The latter cashflow can be replicated by borrowing the discounted value of F0 . This would generate current revenue of Rf F0 . Therefore, the net cost of replicating the long party’s cashflow is S0 D R F0 . In the absence of f arbitrage, this cost must be the same as the cost of initiating the long position in the forward contract, which is zero.8 Hence, we obtain the no-arbitrage condition S0 D R F0 = 0 (7.1) f or F0 = (S0 D) R (7.2) f Equation (7.2) determines the equilibrium forward price of the contract. Note that if this contract had been initiated at a previous date, say, date 1, at the forward price F 1 = X, then the date 0 value (replacement cost) of the long party’spayoff, which we denote as f0, would still be the cost of replicating the two cashflows: f0 = S0 D R X (7.3) f 8 If S0 D R F0 < 0, the arbitrage would be to perform the following trades at f date 0: 1) purchase one share of the stock and sell ownership of the dividends; 2) borrow Rf F0 ; 3) take a short position in the forward contract. The date 0 net cashflow of these three transactions is (S0 D) + R F0 + 0 > 0, by assumption. At date the individual f would: 1) deliver the one share of the stock to satisfy the short forward position; 2) receive F0 as payment for delivering this one share of stock; 3) repay borrowing equal to F0 . The date net cashflow of these three transactions is 0 + F0 F0 = 0.
Recommended publications
  • Contingent-Claim-Based Expected Stock Returns∗
    Contingent-Claim-Based Expected Stock Returns∗ Zhiyao Chen Ilya A. Strebulaev ICMA Centre Graduate School of Business University of Reading Stanford University and NBER ∗We thank Harjoat Bhamra, Chris Brooks, Wayne Ferson, Vito Gala, Andrea Gamba, Jo˜ao Gomes, Patrick Gagliardini, Chris Hennessy, Chris Juilliard, Nan Li, Rajnish Mehra, Stefan Nagel, Stavros Panageas, Marcel Prokopczuk, Michael Roberts, Ravindra Sastry, Stephan Siegel, Neal Stoughton, Yuri Tserlukevich, Kathy Yuan, Jeffrey Zwiebel and participants at the ASU Sonoran 2013 Winter Finance Conference, the European Financial Associations 2013 annual meetings and the American Financial Associations 2014 annual meetings for their helpful comments. Zhiyao Chen: ICMA Centre, University of Reading, UK, email: [email protected]; Ilya A. Strebulaev: Graduate School of Business, Stanford University, and NBER, email: [email protected]. Contingent-Claim-Based Expected Stock Returns Abstract We develop and test a parsimonious contingent claims model for cross-sectional returns of stock portfolios formed on market leverage, book-to-market equity, asset growth rate, and equity size. Since stocks are residual claims on firms’ assets that generate operating cash flows, stock returns are cash flow rates scaled by the sen- sitivities of stocks to cash flows. Our model performs well because the stock-cash flow sensitivities contain economic information. Value stocks, high-leverage stocks and low-asset-growth stocks are more sensitive to cash flows than growth stocks, low- leverage stocks and high-asset-growth stocks, particularly in recessions when default probabilities are high. Keywords: Stock-cash flow sensitivity, structural estimation, implied-state GMM, financial leverage, default probability, asset pricing anomalies JEL Classification: G12, G13, G33 2 1 Introduction Equity is a residual claim contingent on a firm’s assets that generate operating cash flows.
    [Show full text]
  • Contingent Claims Valuation When the Security Price Is a Combination of an 11"O Process and a Random Point Process
    Stochastic Processes and their Applications 28 (1988) 185-220 185 North-Holland CONTINGENT CLAIMS VALUATION WHEN THE SECURITY PRICE IS A COMBINATION OF AN 11"O PROCESS AND A RANDOM POINT PROCESS Knut K. AASE Norwegian School of Economics and Business Administration, Institute of Insurance, Helleveien 30, N-5035 Bergen.Sandviken, Norway Received 18 September 1986 Revised 30 November 1987 This paper develops several results in the modern theory of contingent claims valuation in a frictionless security m~rket with continuous trading. The price model is a semi-martingale with a certain structure, making the return of the security a sum of an Ito-process and a random, marked point process. Dynamic equilibrium prices are known to be of this form in an Arrow- Debreu economy, so there is no real limitation in our approach. This class of models is also advantageous from an applied point of view. Within this framework we investigate how the model behaves under the equivalent martingale measure in the P*-equilibrium economy, where discounted security prices are marginales. Here we present some new results showing how the marked point process affects prices of contingent claims in equilibrium. We derive a new class of option pricing formulas when the Ito process is a general Gaussian process, one formula for each positive La[0, T]-function. We show that our general model is complete, although the set of equivalent martingale measures is not a singleton. We also demonstrate how to price contingent claims when the underlying process has after-effects in all of its parameters. contingent claims valuation * security market • semi-martingale model * option pricing formulas 1.
    [Show full text]
  • Venture Capitalists' Entry-Exit Investment Decisions
    A Dynamic Model for Venture Capitalists' Entry{Exit Investment Decisions∗ Ricardo M. Ferreiray, Paulo J. Pereiraz yFaculdade de Economia, Universidade do Porto, Portugal zCEF.UP and Faculdade de Economia, Universidade do Porto, Portugal. Abstract In this paper we develop a dynamic model to study the entry and the exit decision of a VC facing the opportunity to invest and expand a start-up firm. Two settings are considered. A benchmark setting, where no time constrain for exiting is in place, is compared with the one where, realistically, the VC has a finite time-window for divesting. In both cases we consider the trade sale (M&A) as the exit route. The model returns the entry and the exit triggers, the optimal post-money ownerships, the expected cash multiple for the VC, and also proposes a new time-adjusted version of the cash multiple, useful for measuring, ex ante, the expected performance of the investment. The model aims to guide the VCs when analyzing their investment op- portunities, considering the entire VC's business-cycle (entry{expand{exit). Finally, the model is applied to an hypothetical, but realistic, situation in order to understand the main outcomes. A comparative statics analysis is also performed. Keywords: Finance; Venture Capital; Start-ups; Real Options; Growth Options. JEL codes: G24; G34; L26; M13. ∗We thank Roel Nagy, Miguel Sousa, Miguel Tavares-G¨artner,Lenos Trigeorgis and the participants at the 2019 Annual International Real Options Conference in London. Paulo J. Pereira acknowledge that this research has been financed by Portuguese public funds through FCT - Funda¸c~aopara a Ci^enciae a Tecnologia, I.P., in the framework of the projects UID/ECO/04105/2019.
    [Show full text]
  • Asymptotics of Forward Implied Volatility
    ASYMPTOTICS OF FORWARD IMPLIED VOLATILITY by Patrick Francois Springfield Roome Department of Mathematics Imperial College London London SW7 2AZ United Kingdom Submitted to Imperial College London for the degree of Doctor of Philosophy 2015 1 Declaration I the undersigned hereby declare that the work presented in this thesis is my own. When mate- rial from other authors has been used, these have been duly acknowledged. This thesis has not previously been presented for this or any other PhD examinations. Patrick Francois Springfield Roome 2 Copyright The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 3 \Divergent series are the invention of the devil, and it is shameful to base on them any demonstration whatsoever." Niels Hendrik Abel, 1828 Abstract We study asymptotics of forward-start option prices and the forward implied volatility smile using the theory of sharp large deviations (and refinements). In Chapter 1 we give some intu- ition and insight into forward volatility and provide motivation for the study of forward smile asymptotics. We numerically analyse no-arbitrage bounds for the forward smile given calibration to the marginal distributions using (martingale) optimal transport theory. Furthermore, we derive several representations of forward-start option prices, analyse various measure-change symmetries and explore asymptotics of the forward smile for small and large forward-start dates.
    [Show full text]
  • Analytical Finance Volume I
    The Mathematics of Equity Derivatives, Markets, Risk and Valuation ANALYTICAL FINANCE VOLUME I JAN R. M. RÖMAN Analytical Finance: Volume I Jan R. M. Röman Analytical Finance: Volume I The Mathematics of Equity Derivatives, Markets, Risk and Valuation Jan R. M. Röman Västerås, Sweden ISBN 978-3-319-34026-5 ISBN 978-3-319-34027-2 (eBook) DOI 10.1007/978-3-319-34027-2 Library of Congress Control Number: 2016956452 © The Editor(s) (if applicable) and The Author(s) 2017 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Cover image © David Tipling Photo Library / Alamy Printed on acid-free paper This Palgrave Macmillan imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland To my soulmate, supporter and love – Jing Fang Preface This book is based upon lecture notes, used and developed for the course Analytical Finance I at Mälardalen University in Sweden.
    [Show full text]
  • Binomial Trees • Stochastic Calculus, Ito’S Rule, Brownian Motion • Black-Scholes Formula and Variations • Hedging • Fixed Income Derivatives
    Pricing Options with Mathematical Models 1. OVERVIEW Some of the content of these slides is based on material from the book Introduction to the Economics and Mathematics of Financial Markets by Jaksa Cvitanic and Fernando Zapatero. • What we want to accomplish: Learn the basics of option pricing so you can: - (i) continue learning on your own, or in more advanced courses; - (ii) prepare for graduate studies on this topic, or for work in industry, or your own business. • The prerequisites we need to know: - (i) Calculus based probability and statistics, for example computing probabilities and expected values related to normal distribution. - (ii) Basic knowledge of differential equations, for example solving a linear ordinary differential equation. - (iii) Basic programming or intermediate knowledge of Excel • A rough outline: - Basic securities: stocks, bonds - Derivative securities, options - Deterministic world: pricing fixed cash flows, spot interest rates, forward rates • A rough outline (continued): - Stochastic world, pricing options: • Pricing by no-arbitrage • Binomial trees • Stochastic Calculus, Ito’s rule, Brownian motion • Black-Scholes formula and variations • Hedging • Fixed income derivatives Pricing Options with Mathematical Models 2. Stocks, Bonds, Forwards Some of the content of these slides is based on material from the book Introduction to the Economics and Mathematics of Financial Markets by Jaksa Cvitanic and Fernando Zapatero. A Classification of Financial Instruments SECURITIES AND CONTRACTS BASIC SECURITIES DERIVATIVES
    [Show full text]
  • Fair Value Management: a Case Study of Employee Stock Option Pricing Models
    Fair Value Management: A Case Study of Employee Stock Option Pricing Models Loïc Belze EMLYON Business School Francois Larmande HEC Paris Lorenz Schneider EMLYON Business School 3 October 2014 ABSTRACT: This paper examines the fair value management of Employee Stock Options (ESOs). Departing from earlier literature focused on input estimates, we study the management of the pricing model itself, which is sometimes freely interpreted by companies. Relaxing certain assumptions of the Black-Scholes-Merton (BSM) model can lead to a range of possible prices. We first show that when estimating the ESO cost for the company, only prices equal to or above the BSM model price should be considered, whereas discounts are in fact observed at issuance. Second, based on a specific class of listed ESO in an IFRS context, our empirical study finds an overall average discount of 64% on our model price after controlling for ESO-specific characteristics. The discount results mainly from model management. These results provide interesting insights into the scope for model management under different accounting standards, and are also relevant for authorities in charge of enforcement. Keywords: Fair value – ESO – Transaction costs – IFRS 2 – SFAS 123R Data: All data are available from public sources 1 I. INTRODUCTION Implementing fair value principles is not a straightforward task. Standard setters have progressively refined the notion of fair value, as evidenced by the recent efforts of the FASB1 (e.g. the update of Topic 820 for US GAAP2) and the IASB3 (e.g. the recent implementation of IFRS 134) to produce new guidance on this issue. In the specific case of share-based compensation both standard setters (SFAS 123R5 for US GAAP and IFRS 26 for IFRS) determined in 2004 that, in order to improve accountability and transparency towards shareholders, share-based compensation instruments should be recognized as a cost by firms and expensed in the income statement at their fair value.
    [Show full text]
  • Employee Stock Options and Equity Valuation
    DOI: 10.1111/j.1475-679x.2005.00164.x Journal of Accounting Research Vol. 43 No. 1 March 2005 Printed in U.S.A. Employee Stock Options, Equity Valuation, and the Valuation of Option Grants Using aWarrant-Pricing Model ∗ FENG LI AND M.H.FRANCOWONG† Received 5 January 2004; accepted 11 July 2004 ABSTRACT We investigate the use of a warrant-pricing approach to incorporate em- ployee stock options (ESOs) into equity valuation and to account for the di- lutive effect of ESOs in the valuation of option grants for financial reporting purposes. Our valuation approach accounts for the jointly determined nature of ESO and shareholder values. The empirical results show that our stock price estimate exhibits lower prediction errors and higher explanatory powers for actual share price than does the traditional stock price estimate. We use our valuation approach to assess the implications of dilution on the fair-value es- timates of ESO grants. We find that the fair value is overstated by 6% if we ignore the dilutive feature of ESOs. Furthermore, this bias is larger for firms that are heavy users of ESOs, small, and R&D intensive, and for firms that have a broad-based ESO compensation plan. ∗ University of Michigan; †University of Chicago. We thank Ray Ball, Dan Bens, Phil Berger, Clement Har, Steve Kaplan, Doron Kliger, S. P. Kothari, Susan Krische, Richard Leftwich, Thomas Lys, James Myers, Dennis Oswald, Joe Piotroski, Doug Skinner, Abbie Smith, K. R. Subramanyam, Shyam V. Sunder, Brett Trueman, Martin Wu, Peter Wysocki, an anonymous referee, and workshop participants at Chicago, MIT, Northwestern, University of Illinois at Urbana-Champaign, and the London Business School 2004 Accounting Symposium for their comments and suggestions.
    [Show full text]
  • Financial Mathematics
    Financial Mathematics Rudiger¨ Kiesel February, 2005 0-0 1 Financial Mathematics Lecture 1 by Rudiger¨ Kiesel Department of Financial Mathematics, University of Ulm Department of Statistics, LSE RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 2 Aims and Objectives • Review basic concepts of probability theory; • Discuss random variables, their distribution and the notion of independence; • Calculate functionals and transforms; • Review basic limit theorems. RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 3 Probability theory To describe a random experiment we use sample space Ω, the set of all possible outcomes. Each point ω of Ω, or sample point, represents a possible random outcome of performing the random experiment. For a set A ⊆ Ω we want to know the probability IP (A). The class F of subsets of Ω whose probabilities IP (A) are defined (call such A events) should be be a σ-algebra , i.e. closed under countable, disjoint unions and complements, and contain the empty set ∅ and the whole space Ω. Examples. Flip coins, Roll two dice. RSITÄT V E U I L N M U · · S O C I D E N N A D R O U · C · D O O C D E c Rudiger¨ Kiesel N 4 Probability theory We want (i) IP (∅) = 0, IP (Ω) = 1, (ii) IP (A) ≥ 0 for all A, (iii) If A1,A2,..., are disjoint, S P IP ( i Ai) = i IP (Ai) countable additivity.
    [Show full text]
  • Glossary of Financial Derivatives* Paul D. Koch [email protected]
    1 Glossary of Financial Derivatives* Paul D. Koch [email protected] University of Kansas 785-864-7503 Lawrence, KS 66045 *This document draws heavily from several sources: (a) Website of Don Chance, www.fbox.vt.edu/filebox/business/finance/dmc/DRU; (b) Hull, J.C., Fundamentals of Futures & Options Markets, 8th Edition, Prentice-Hall, Inc.: New York, NY, 2014; I. Background. Yield Curve – relation among interest rates paid on securities alike in every respect except maturity. (How interest rates change from short term to long term securities.) Eurodollar - dollar-denominated deposits outside the jurisdiction of the U.S. regulatory authorities. Financial Derivative - financial claim whose value is contingent upon movements in some underlying variable such as a stock or stock index, interest rates, exchange rates, or commodity prices; includes forwards, futures, options, SWAPs, asset-backed securities, structured notes (hybrid debt), & other combinations of these instruments. LIBOR - London Interbank Offer Rate; rate charged on short term Eurodollar deposits; benchmark floating rate for international borrowing/lending in $. Margin - good faith 'collateral' deposit, specified as a percentage of the value of the financial instrument in question; ensures integrity of market. Organized Exchange - centralized location where organized trading is conducted in certain financial instruments under a specific set of rules. The exchange clearinghouse is the counter-party to every transaction; members of the exchange share the responsibility of fulfilling commitments. The exchange: (i) sets standardized terms for all contracts traded, and (ii) often places restrictions on trading (e.g. margin requirements, limits on daily price changes, limits on size of individual positions, ...). Standardization of contracts and other rules make clearing easier, reduce uncertainty about counterparty default risk, and help ensure an orderly market.
    [Show full text]
  • 6 Different Payoffs
    6Different payoffs Summary Most of the concrete examples of options considered so far have been the standard examples of calls and puts. Such options have liquid markets, their prices are fairly well determined and margins are competitive. Any option that is not one of these vanilla calls or puts is called an exotic option. Such options are introduced to extend a bank’s product range or to meet hedging and speculative needs of clients. There are usually no markets in these options and they are bought and sold purely ‘over the counter’. Although the principles of pricing and hedging exotics are exactly the same as for vanillas, risk management requires care. Not only are these exotic products much less liquid than standard options, but they often have discontinuous payoffs and so can have huge ‘deltas’ close to the expiry time making them difficult to hedge. This chapter is devoted to examples of exotic options. The simplest exotics to price and hedge are packages , that is, options for which the payoff is a combination of our standard ‘vanilla’ options and the underlying asset. We already encountered such options in §1.1. We relegate their valuation to the exercises. The next simplest examples are European options, meaning options whose payoff is a function of the stock price at the maturity time. The payoffs considered in §6.1 are discontinuous and we discover potential hedging problems. In §6.2 we turn our attention to multistage options. Such options allow decisions to be made or stipulate conditions at intermediate dates during their lifetime. The rest of the chapter is devoted to path-dependent options.
    [Show full text]
  • IFM-01-18 Page 1 of 104 SOCIETY of ACTUARIES EXAM IFM
    SOCIETY OF ACTUARIES EXAM IFM INVESTMENT AND FINANCIAL MARKETS EXAM IFM SAMPLE QUESTIONS AND SOLUTIONS DERIVATIVES These questions and solutions are based on the readings from McDonald and are identical to questions from the former set of sample questions for Exam MFE. The question numbers have been retained for ease of comparison. These questions are representative of the types of questions that might be asked of candidates sitting for Exam IFM. These questions are intended to represent the depth of understanding required of candidates. The distribution of questions by topic is not intended to represent the distribution of questions on future exams. In this version, standard normal distribution values are obtained by using the Cumulative Normal Distribution Calculator and Inverse CDF Calculator For extra practice on material from Chapter 9 or later in McDonald, also see the actual Exam MFE questions and solutions from May 2007 and May 2009 May 2007: Questions 1, 3-6, 8, 10-11, 14-15, 17, and 19 Note: Questions 2, 7, 9, 12-13, 16, and 18 do not apply to the new IFM curriculum May 2009: Questions 1-3, 12, 16-17, and 19-20 Note: Questions 4-11, 13-15, and 18 do not apply to the new IFM curriculum Note that some of these remaining items (from May 2007 and May 2009) may refer to “stock prices following geometric Brownian motion.” In such instances, use the following phrase instead: “stock prices are lognormally distributed.” November 2020 correction: Question 1 was edited to correct an error in the earlier version. Copyright 2018 by the Society of Actuaries IFM-01-18 Page 1 of 104 Introductory Derivatives Questions 1.
    [Show full text]