PDF Two-Sided

Total Page:16

File Type:pdf, Size:1020Kb

PDF Two-Sided TOPOLOGICAL ANALYSIS OF SCALAR FUNCTIONS ABSTRACT FOR SCIENTIFIC DATA VISUALIZATION TOPOLOGICAL ANALYSIS OF SCALAR FUNCTIONS by FOR SCIENTIFIC DATA VISUALIZATION Vijay Natarajan by Department of Computer Science Vijay Natarajan Duke University Department of Computer Science Duke University Date: Approved: Date: Prof. Herbert Edelsbrunner, Supervisor Approved: Prof. Lars Arge Prof. Herbert Edelsbrunner, Supervisor Prof. John Harer Prof. Lars Arge Prof. Xiaobai Sun Prof. John Harer Prof. Xiaobai Sun Dissertation submitted in partial fulfillment of the An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Department of Computer Science in the Graduate School of in the Graduate School of Duke University Duke University 2004 2004 Abstract • A new comparison measure between k functions defined on a common d-manifold. For the case d = k = 2, we give alternative formulations of the definition based Scientists attempt to understand physical phenomena by studying various quanti- on a Morse theoretic point of view. We also develop visualization software that ties measured over the region of interest. A majority of these quantities are scalar performs local comparison between pairs of functions in datasets containing (real-valued) functions. These functions are typically studied using traditional visual- multiple and sometimes time-varying functions. ization techniques like isosurface extraction, volume rendering etc. As the data grows We apply our methods to data from medical imaging, electron microscopy, and x-ray in size and becomes increasingly complex, these techniques are no longer effective. crystallography. The results of these experiments provide evidence of the usability of State of the art visualization methods attempt to automatically extract features and our methods. annotate a display of the data with a visualization of its features. In this thesis, we study and extract the topological features of the data and use them for visualization. We have three results: • An algorithm that simplifies a scalar function defined over a tetrahedral mesh. In addition to minimizing the error introduced by the approximation of the function, the algorithm improves the mesh quality and preserves the topology of the domain. We perform an extensive set of experiments to study the effect of requiring better mesh quality on the approximation error and the level of sim- plification possible. We also study the effect of simplification on the topological features of the data. • An extension of three-dimensional Morse-Smale complexes to piecewise linear 3-manifolds and an efficient algorithm to compute its combinatorial analog. Morse-Smale complexes partition the domain into regions with similar gradient flows. Letting n be the number of vertices in the input mesh, the running time of the algorithm is proportional to n log(n) plus the total size of the input mesh plus the total size of the output. We develop a visualization tool that displays different substructures of the Morse-Smale complex. iii iv Acknowledgements I owe whatever I have achieved to my parents. They have been there for me always, supporting my decisions and believing in me. I have learned a lot from them, most importantly my sense of values. I will treasure this for the rest of my life. My advisor, Prof. Herbert Edelsbrunner, has been a major influence in my re- search career. I got introduced to the field of computational topology when I was still To my parents an undergrad and Prof. Subir Ghosh at T.I.F.R. handed me the introductory paper that Herbert had written on the subject. I had recently taken courses in topology and algebra and was excited that these subjects had practical relevance. This excitement has grown by leaps and bounds while working with Herbert. Discussion sessions with him helped me refine my reasoning. His meticulous attention to detail and construc- tive feedback while working on manuscripts helped me improve my writing skills. I will be forever grateful to him for his support and guidance during the past five years. I have had the pleasure of working with two wonderful people: Prof. John Harer and Dr. Valerio Pascucci. I learned many mathematical ideas from John. He ex- plains them in a way that makes it all seem so simple. I can only hope that other mathematicians that I collaborate with in future are like him. Valerio introduced me to the wonderful area of visualization and shared the insights that he had gained from his experiences while doing interdisciplinary research. These have been very valuable to me due to the nature of my work where I need to talk with scientists from other disciplines. He has also played the role of a mentor, helping me make my career decisions. I was lucky to have great committee members in Prof. Lars Arge and Prof. Xiaobai Sun. I want to thank them for giving valuable comments on my thesis and for being so flexible in setting up a date for my final presentation. I will always be grateful to v vi Prof. Pankaj Agarwal for giving me valuable advice on many academic matters and and I want to thank all of them for their support: Jaishankar, Uma, Sunder and career options. He has often gone out of the way to offer his help or give a word of Subha. Finally, I want to thank my fianc´ee Mala for her patience and unconditional encouragement. The administrative and lab staff members in the department have support. always been very helpful. I would like to particularly thank Diane Riggs: she has This work was supported by NSF under grant NSF-CCR-0086013 and by Lawrence been of great assistance throughout the course of my stay in the department. I want Livermore National Laboratory under sub-contracts with Duke. to thank Celeste Hodges for her kind words of encouragement. Various students and postdocs at Duke and UNC gave much needed professional support, attending my practice talks and giving feedback, discussing ideas, answering questions etc. Besides being colleagues, they are my good friends as well. I want to thank Sathish Govindarajan, Yusu Wang, Ajith Mascarenhas, Gopi Meenakshisundaram, David Cohen-Steiner, Lipyeow Lim, Andrew Ban, and Vicky Choi and wish them a bright future. Going for coffee to the Bryan center with many of them, mostly with Yusu, served as a nice break in the afternoon. During my stay at Duke, I have enjoyed the friendship of many people. I want to thank all of them for making my graduate life memorable. I could not have asked for better housemates than Hari and Mohan. Knowing Vijay Srinivasan has been a rewarding and humbling experience. Friday dinners with Jaidev, Lavanya and us \usual suspects" were awesome. Late night discussions on spirituality, with Vamsee and Pramod arguing endlessly, were thought provoking. Having Srikanth as an officemate in my first year was enlightening because I learned a lot about doing research. With Dmitriy as my officemate in the past few months, there was never a dull moment. I have been fortunate to be able to stay in touch with great friends from college especially through our mailing list diljale. These are some of the most talented and versatile people that I have met. They have and continue to inspire me in many ways. My brothers and sisters-in-law have always encouraged me to pursue my dreams vii viii Contents 2.3.2 Algorithm Overview . 21 2.3.3 Checking Link Conditions . 22 Abstract iii 2.3.4 Contracting Edges . 23 Acknowledgements vi 2.3.5 Reentering Edges . 23 2.3.6 Accumulating Edge Bisectors . 24 List of Tables xiii 2.4 Experiments . 25 List of Figures xiv 2.4.1 Datasets . 25 1 Introduction 1 2.4.2 Tetrahedral Shape Improvement . 26 1.1 Scalar Functions . 1 2.4.3 Approximation Error vs Tetrahedral Shape . 27 1.2 Topological Analysis . 4 2.4.4 Topology Preservation vs Tetrahedral Shape . 27 1.3 Contributions . 5 2.4.5 Density Map Preservation . 28 1.4 Layout of Material . 7 2.4.6 Critical Point Statistics . 29 2 Density Map Simplification 8 2.4.7 Sanity Checks . 31 2.1 Introduction . 8 2.4.8 Inclusion-Exclusion . 33 2.1.1 Motivation . 8 2.5 Discussion . 33 2.1.2 Prior Work . 9 3 3D Morse-Smale Complexes 38 2.1.3 Approach and Results . 10 3.1 Introduction . 38 2.2 Edge contraction . 12 3.1.1 Motivation . 38 2.2.1 Preserving Topology . 13 3.1.2 Related work . 39 2.2.2 Specialized Link Conditions . 14 3.1.3 Approach and Results . 41 2.2.3 Cost of Contraction . 15 3.2 Definition . 42 2.2.4 Optimal Vertex Placement . 18 3.2.1 Smooth 3-Manifolds . 42 2.3 Algorithm . 20 3.2.2 Piecewise Linear 3-Manifolds . 45 2.3.1 Data Structure . 20 ix x 3.3 Data Structures . 46 4.3.2 Alternative Formulations . 99 3.3.1 Triangulation . 47 4.3.3 Alternative Algorithms . 103 3.3.2 Morse-Smale Complex . 48 4.3.4 Local Contributions . 108 3.3.3 Normal Structures . 50 4.3.5 Handling Degeneracies . 108 3.4 Algorithm . 52 4.4 Experiments . 111 3.4.1 Overview. 52 4.4.1 Synthetic Functions . 112 3.4.2 Descending Manifold Construction . 54 4.4.2 Testing Algebraic Properties . 112 3.4.3 Ascending manifold construction . 71 4.4.3 Comparative Visualization . 113 3.5 Experiments . 77 4.4.4 Robustness . 119 3.5.1 Datasets . 77 4.5 Discussion . 120 3.5.2 Visualization . 79 5 Conclusions 122 3.6 Discussion . 85 A Algebraic Topology Basics and Morse Theory 124 4 Scalar Function Comparison 90 A.1 Manifolds .
Recommended publications
  • Surface Topology and Reeb Graph
    Sub-Topics • Compute bounding box • Compute Euler Characteristic • Estimate surface curvature • Line description for conveying surface shape • Extract skeletal representation of shapes • Morse function and surface topology--Reeb graph • Scalar field topology--Morse-Smale complex Surface Topology – Reeb Graph What is Topology? • Topology studies the connectedness of spaces • For us: how shapes/surfaces are connected What is Topology • The study of property of a shape that does not change under deformation – Rules of deformation • 1-1 and onto • Bicontinuous (continuous both ways) • Cannot tear, join, poke or seal holes – A is homeomorphic to B Why is Topology Important? • What is the boundary of an object? • Are there holes in the object? • Is the object hollow? • If the object is transformed in some way, are the changes continuous or abrupt? • Is the object bounded , or does it extend infinitely far? Why is Topology Important? • Inherent and basic properties of a shape • We want to accurately represent and preserve these properties in different applications – Surface reconstruction – Morphing – Texturing – Simplification – Compression Image source: http://www.utdallas.edu/~xxg06 1000/physicsmorphing.htm Topology-Basic Concepts • n-manifold – Set of points – Each point has a neighborhood homeomorphic to an open set of – An n-manifold is a topological space that “locally looks like” the Euclidian space Topology-Basic Concepts • Holes/genus – Genus of a surface is the maximal number of nonintersecting simple closed curves that can be cut on the surface without disconnecting it. • Boundaries Topology-Basic Concepts • Euler’s characteristic function – • #vertices, #edges, #faces – is independent of the polygonization – Specifically, 2 2 • What are c, g, and h? χ = 2 χ = 0 Topology-Basic Concepts • Orientability – Any surface has a triangulation – Orient all triangles CW or CCW – Orientability : any two triangles sharing an edge have opposite directions on that edge.
    [Show full text]
  • Approximation of Metric Spaces by Reeb Graphs: Cycle Rank of A
    Filomat xx (yyyy), zzz–zzz Published by Faculty of Sciences and Mathematics, DOI (will be added later) University of Niˇs, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Approximation of Metric Spaces by Reeb Graphs: Cycle Rank of a Reeb Graph, the Co-rank of the Fundamental Group, and Large Components of Level Sets on Riemannian Manifolds Irina Gelbukh CIC, Instituto Polit´ecnico Nacional, 07738, Mexico City, Mexico Abstract. For a connected locally path-connected topological space X and a continuous function f on it such that its Reeb graph R f is a finite topological graph, we show that the cycle rank of R f , i.e., the first Betti number b1(R f ), in computational geometry called number of loops, is bounded from above by the co-rank of the fundamental group π1(X), the condition of local path-connectedness being important since generally b1(R f ) can even exceed b1(X). We give some practical methods for calculating the co-rank of π1(X) and a closely related value, the isotropy index. We apply our bound to improve upper bounds on the distortion of the Reeb quotient map, and thus on the Gromov-Hausdorff approximation of the space by Reeb graphs, for the distance function on a compact geodesic space and for a simple Morse function on a closed Riemannian manifold. This distortion is bounded from below by what we call the Reeb width b(M) of a metric space M, which guarantees that any real-valued continuous function on M has large enough contour (connected component of a level set).
    [Show full text]
  • The Reeb Graph Edit Distance Is Universal
    The Reeb Graph Edit Distance Is Universal Ulrich Bauer Department of Mathematics, Technical University of Munich (TUM), Germany [email protected] Claudia Landi Dipartimento di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena e Reggio Emilia, Reggio Emilia, Italy [email protected] Facundo Mémoli Department of Mathematics, The Ohio State University, Columbus, OH, USA [email protected] Abstract We consider the setting of Reeb graphs of piecewise linear functions and study distances between them that are stable, meaning that functions which are similar in the supremum norm ought to have similar Reeb graphs. We define an edit distance for Reeb graphs and prove that it is stable and universal, meaning that it provides an upper bound to any other stable distance. In contrast, via a specific construction, we show that the interleaving distance and the functional distortion distance on Reeb graphs are not universal. 2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics of computing → Algebraic topology Keywords and phrases Reeb graphs, topological descriptors, edit distance, interleaving distance Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.15 Funding This research has been partially supported by FAR 2014 (UniMORE), ARCES (University of Bologna), and the DFG Collaborative Research Center SFB/TRR 109 “Discretization in Geometry and Dynamics”. Acknowledgements We thank Barbara Di Fabio and Yusu Wang for valuable discussions. 1 Introduction The concept of a Reeb graph of a Morse function first appeared in [13] and has subsequently been applied to problems in shape analysis in [14, 10]. The literature on Reeb graphs in the computational geometry and computational topology is ever growing (see, e.g., [2, 3] for a discussion and references).
    [Show full text]
  • Realizable Piecewise Linear Paths of Persistence Diagrams with Reeb Graphs
    Realizable piecewise linear paths of persistence diagrams with Reeb graphs Rehab Alharbi1, Erin Wolf Chambers2, and Elizabeth Munch2 1Dept of Mathematics & Statistics, Saint Louis University 2Dept of Computer Science, Saint Louis University 3Dept of Computational Mathematics, Science & Engineering, Dept of Mathematics, Michigan State University Abstract Reeb graphs are widely used in a range of fields for the purposes of analyzing and com- paring complex spaces via a simpler combinatorial object. Further, they are closely related to extended persistence diagrams, which largely but not completely encode the information of the Reeb graph. In this paper, we investigate the effect on the persistence diagram of a particular continuous operation on Reeb graphs; namely the (truncated) smoothing operation. This con- struction arises in the context of the Reeb graph interleaving distance, but separately from that viewpoint provides a simplification of the Reeb graph which continuously shrinks small loops. We then use this characterization to initiate the study of inverse problems for Reeb graphs using smoothing by showing which paths in persistence diagram space (commonly known as vineyards) can be realized by a path in the space of Reeb graphs via these simple operations. This allows us to solve the inverse problem on a certain family of piecewise linear vineyards when fixing an initial Reeb graph. 1 Introduction Reeb graphs have become an important tool in topological data analysis for the purpose of visualiz- ing continuous functions on complex spaces, as they yield a simplified discrete structure. Originally developed in relation to Morse theory [29], these objects are used extensively for shape comparison, constructing skeletons of data sets, surface simplification, and visualization; for more details on arXiv:2107.04654v1 [cs.CG] 9 Jul 2021 these and more applications, we refer to recent surveys on the topic [5, 31].
    [Show full text]
  • Thermodynamic Tree: the Space of Admissible Paths † Alexander N
    SIAM J. APPLIED DYNAMICAL SYSTEMS c 2013 Society for Industrial and Applied Mathematics Vol. 12, No. 1, pp. 246–278 ∗ Thermodynamic Tree: The Space of Admissible Paths † Alexander N. Gorban Abstract. Is a spontaneous transition from a state x to a state y allowed by thermodynamics? Such a question arises often in chemical thermodynamics and kinetics. We ask the following more formal question: Is there a continuous path between these states, along which the conservation laws hold, the concentra- tions remain nonnegative, and the relevant thermodynamic potential G (Gibbs energy, for example) monotonically decreases? The obvious necessary condition, G(x) ≥ G(y), is not sufficient, and we construct the necessary and sufficient conditions. For example, it is impossible to overstep the equi- − librium in 1-dimensional (1D) systems (with n components and n 1 conservation laws). The system cannot come from a state x to a state y if they are on the opposite sides of the equilibrium even if G(x) >G(y). We find the general multidimensional analogue of this 1D rule and constructively solve the problem of the thermodynamically admissible transitions. We study dynamical systems, which are given in a positively invariant convex polyhedron D and have a convex Lyapunov function G. An admissible path is a continuous curve in D along which G does not increase. For x, y ∈ D, x y (x precedes y) if there exists an admissible path from x to y and x ∼ y if x y and y x. ThetreeofG in D is a quotient space D/ ∼ . We provide an algorithm for the construction of this tree.
    [Show full text]
  • Introduction to Topological Data Analysis Julien Tierny
    Introduction to Topological Data Analysis Julien Tierny To cite this version: Julien Tierny. Introduction to Topological Data Analysis. Doctoral. France. 2017. cel-01581941 HAL Id: cel-01581941 https://hal.archives-ouvertes.fr/cel-01581941 Submitted on 5 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Universités, UPMC Univ Paris 06 Laboratoire d’Informatique de Paris 6 Julien Tierny Introduction to Topological Data Analysis Sorbonne Universités, UPMC Univ Paris 06 Laboratoire d’Informatique de Paris 6 UMR UPMC/CNRS 7606 – Tour 26 4 Place Jussieu – 75252 Paris Cedex 05 – France Notations X Topological space ¶X Boundary of a topological space M Manifold Rd Euclidean space of dimension d s, t d-simplex, face of a d-simplex v, e, t, T Vertex, edge, triangle and tetrahedron Lk(s), St(s) Link and star of a simplex Lkd(s), Std(s) d-simplices of the link and the star of a simplex K Simplicial complex T Triangulation M Piecewise linear manifold bi i-th Betti number c Euler characteristic th ai i barycentric coordinates of a point p relatively
    [Show full text]
  • Time-Varying Reeb Graphs: a Topological Framework Supporting the Analysis of Continuous Time-Varying Data
    Time-varying Reeb Graphs: A Topological Framework Supporting the Analysis of Continuous Time-varying Data by Ajith Arthur Mascarenhas A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial ful¯llment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science. Chapel Hill 2006 Approved by: Jack Snoeyink, Advisor Herbert Edelsbrunner, Reader Valerio Pascucci, Reader Dinesh Manocha, Committee Member Leonard McMillan, Committee Member ii iii c 2006 Ajith Arthur Mascarenhas ALL RIGHTS RESERVED iv v ABSTRACT AJITH ARTHUR MASCARENHAS: Time-varying Reeb Graphs: A Topological Framework Supporting the Analysis of Continuous Time-varying Data. (Under the direction of Jack Snoeyink.) I present time-varying Reeb graphs as a topological framework to support the anal- ysis of continuous time-varying data. Such data is captured in many studies, including computational uid dynamics, oceanography, medical imaging, and climate modeling, by measuring physical processes over time, or by modeling and simulating them on a computer. Analysis tools are applied to these data sets by scientists and engineers who seek to understand the underlying physical processes. A popular tool for analyzing scienti¯c datasets is level sets, which are the points in space with a ¯xed data value s. Displaying level sets allows the user to study their geometry, their topological features such as connected components, handles, and voids, and to study the evolution of these features for varying s. For static data, the Reeb graph encodes the evolution of topological features and compactly represents topological information of all level sets.
    [Show full text]
  • Introduction to Reeb Graphs and Contour Trees
    Introduction to Reeb Graphs and Contour Trees Lecture 15 Scribed by: ABHISEK KUNDU Sometimes we are interested in the topology of smooth functions as a means to analyze and visualize intrinsic properties of geometric models and scientific data. Creation and destruction of components of the level set could be an important visual technique for this purpose. Reeb graphs are obtained by contracting the connected components of the level sets to points. They could be useful visual analytical tool because they express the connectivity of level sets. DEFINITION: ( Level Set ) A level set of a real-valued function f of n variables is a set of the form: { (X1,...,Xn) | f (X1,...,Xn) = c} where c is a constant. In other words, it is the set where the function takes on a given constant value. When the number of variables is two, this is a level curve or contour line, if it is three a level surface, and for higher values of n the level set is a level hypersurface. Sublevel set: of f is a set of the form { (X1,...,Xn) | f (X1,...,Xn) ≤ c} Contour: at a given value c, contour is the connected component of level set Xc [Figure 1] Equivalence of points: two points x and y are equivalent if they belong to the same contour of Xc for some given constant c. [Figure 1] Quotient topology and space: Let us denote ~ to be an equivalence relation defined on a topological space X. e be the set of equivalence classes and let ψ : map each point x to its equivalence class DEFINITION: Quotient topology of consists of all subsets U belonging t whose preimages, ψ -1 (U), are open in X.
    [Show full text]
  • Reeb Graphs: Approximation and Persistence
    Reeb Graphs: Approximation and Persistence Tamal K. Dey∗ Yusu Wang∗ Abstract Given a continuous function f : X → IR on a topological space X, its level set f −1(a) changes continuously as the real value a changes. Consequently, the connected components in the level sets appear, disappear, split and merge. The Reeb graph of f summarizes this information into a graph structure. Previous work on Reeb graph mainly focused on its efficient computation. In this paper, we initiate the study of two important aspects of the Reeb graph which can facilitate its broader applications in shape and data analysis. The first one is the approximation of the Reeb graph of a function on a smooth compact manifold M without boundary. The approximation is computed from a set of points P sampled from M. By leveraging a relation between the Reeb graph and the so-called vertical homology group, as well as between cycles in M and in a Rips complex constructed from P , we compute the H1-homology of the Reeb graph from P . It takes O(n log n) expected time, where n is the size of the 2-skeleton of the Rips complex. As a by-product, when M is an orientable 2-manifold, we also obtain an efficient near-linear time (expected) algorithm for computing the rank of H1(M) from point data. The best known previous algorithm for this problem takes O(n3) time for point data. The second aspect concerns the definition and computation of the persistent Reeb graph homology for a sequence of Reeb graphs defined on a filtered space.
    [Show full text]
  • Analyzing Data with 1D Non-Linear Shapes Using Topological Methods
    Analyzing data with 1D non-linear shapes using topological methods Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Suyi Wang, M.S. Graduate Program in Computer Science and Engineering The Ohio State University 2018 Dissertation Committee: Yusu Wang, Advisor Rephael Wenger Tamal K. Dey c Copyright by Suyi Wang 2018 Abstract Shape analysis has been applied in many applications across a broad range of domains. Among various different families of \complex" shapes, the ones with 1D non- linear topological structures (skeletons) are particularly interesting. These shapes are simple, as they can be decomposed into 1-d pieces, but still informative in representing the connectivity and other important information behind data. In this thesis, I focus on two objects from computational topology that have been useful for modeling the skeleton of data: the Reeb graph (and its variants) and the 1-(un)stable manifold from discrete Morse theory, and study their properties as well as applications to shape analysis. The two specific topological objects that I focus on have both already been widely used in practical applications. Further theoretical understanding and applications of these two objects in modeling and studying the skeleton of data will be provided. The first part of the dissertation work concerns the so-called Reeb graph and its loop-free variant, the contour tree, which can be used to provide a 1D tree summary of an input scalar field. It has been commonly used in computer graphics and visual- ization. I have investigated one problem regarding to the theoretical understanding of the contour tree, as well as developing a variant of the Reeb graph to address the issue of noise.
    [Show full text]
  • Time-Varying Reeb Graphs: a Topological Framework Supporting the Analysis of Continuous Time-Varying Data
    UCRL-TH-226559 Time-varying Reeb Graphs: A Topological Framework Supporting the Analysis of Continuous Time-varying Data A. Mascarenhas December 6, 2006 Disclaimer This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. UCRL-TH-226559 Time-varying Reeb Graphs: A Topological Framework Supporting the Analysis of Continuous Time-varying Data by Ajith Arthur Mascarenhas A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial ful¯llment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science. Chapel Hill 2006 Approved by: Jack Snoeyink, Advisor Herbert Edelsbrunner, Reader Valerio Pascucci, Reader Dinesh Manocha, Committee Member Leonard McMillan, Committee Member ii iii c 2006 Ajith Arthur Mascarenhas ALL RIGHTS RESERVED iv v ABSTRACT AJITH ARTHUR MASCARENHAS: Time-varying Reeb Graphs: A Topological Framework Supporting the Analysis of Continuous Time-varying Data.
    [Show full text]
  • Categorification of Reeb Graphs
    Categorification of Reeb Graphs Elizabeth Munch University of Minnesota :: Institute for Mathematics and Its Applications February 5, 2014 Liz Munch (IMA) Reeb Graphs - SAMSI February 5, 2014 1 / 46 What's the plan? Liz Munch (IMA) Reeb Graphs - SAMSI February 5, 2014 2 / 46 What's the plan? Liz Munch (IMA) Reeb Graphs - SAMSI February 5, 2014 2 / 46 What's the plan? Liz Munch (IMA) Reeb Graphs - SAMSI February 5, 2014 2 / 46 Original Reeb Graph construction Liz Munch (IMA) Reeb Graphs - SAMSI February 5, 2014 3 / 46 Original Reeb Graph construction Liz Munch (IMA) Reeb Graphs - SAMSI February 5, 2014 3 / 46 Original Reeb Graph Definition Definition Given topological space X with a function f : X ! R, say x ∼ y if x and y are in the same connected component of f −1(a). The Reeb graph of the function f is the space X= ∼ with the quotient topology. Liz Munch (IMA) Reeb Graphs - SAMSI February 5, 2014 4 / 46 Morse Function Setting Let f be Morse with distinct critical values. critical values , Nodes Index of critical values , Type of node I Min/max , Deg 1 vertex I Saddle , Deg 3 vertex Liz Munch (IMA) Reeb Graphs - SAMSI February 5, 2014 5 / 46 Applications Handle removal, from Wood 3D shape matching, from et al, 2002 Hilaga et.al, 2001 Basis for homology groups, Shape skeletonization, from Dey et. al, 2013 from Biasotti et.al, 2008 Liz Munch (IMA) Reeb Graphs - SAMSI February 5, 2014 6 / 46 Smoothing Liz Munch (IMA) Reeb Graphs - SAMSI February 5, 2014 7 / 46 Smoothing Liz Munch (IMA) Reeb Graphs - SAMSI February 5, 2014 7 / 46 Other work Functional distortion distance [Bauer Ge Wang 2013] Topological simplification [Doraiswamy Natarajan 2012], [Ge et at 2011], [Pascucci et al 2007] Smoothing Goals Give a metric to compare Reeb graphs.
    [Show full text]