Introduction to Topological Data Analysis Julien Tierny
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Surface Topology and Reeb Graph
Sub-Topics • Compute bounding box • Compute Euler Characteristic • Estimate surface curvature • Line description for conveying surface shape • Extract skeletal representation of shapes • Morse function and surface topology--Reeb graph • Scalar field topology--Morse-Smale complex Surface Topology – Reeb Graph What is Topology? • Topology studies the connectedness of spaces • For us: how shapes/surfaces are connected What is Topology • The study of property of a shape that does not change under deformation – Rules of deformation • 1-1 and onto • Bicontinuous (continuous both ways) • Cannot tear, join, poke or seal holes – A is homeomorphic to B Why is Topology Important? • What is the boundary of an object? • Are there holes in the object? • Is the object hollow? • If the object is transformed in some way, are the changes continuous or abrupt? • Is the object bounded , or does it extend infinitely far? Why is Topology Important? • Inherent and basic properties of a shape • We want to accurately represent and preserve these properties in different applications – Surface reconstruction – Morphing – Texturing – Simplification – Compression Image source: http://www.utdallas.edu/~xxg06 1000/physicsmorphing.htm Topology-Basic Concepts • n-manifold – Set of points – Each point has a neighborhood homeomorphic to an open set of – An n-manifold is a topological space that “locally looks like” the Euclidian space Topology-Basic Concepts • Holes/genus – Genus of a surface is the maximal number of nonintersecting simple closed curves that can be cut on the surface without disconnecting it. • Boundaries Topology-Basic Concepts • Euler’s characteristic function – • #vertices, #edges, #faces – is independent of the polygonization – Specifically, 2 2 • What are c, g, and h? χ = 2 χ = 0 Topology-Basic Concepts • Orientability – Any surface has a triangulation – Orient all triangles CW or CCW – Orientability : any two triangles sharing an edge have opposite directions on that edge. -
Approximation of Metric Spaces by Reeb Graphs: Cycle Rank of A
Filomat xx (yyyy), zzz–zzz Published by Faculty of Sciences and Mathematics, DOI (will be added later) University of Niˇs, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Approximation of Metric Spaces by Reeb Graphs: Cycle Rank of a Reeb Graph, the Co-rank of the Fundamental Group, and Large Components of Level Sets on Riemannian Manifolds Irina Gelbukh CIC, Instituto Polit´ecnico Nacional, 07738, Mexico City, Mexico Abstract. For a connected locally path-connected topological space X and a continuous function f on it such that its Reeb graph R f is a finite topological graph, we show that the cycle rank of R f , i.e., the first Betti number b1(R f ), in computational geometry called number of loops, is bounded from above by the co-rank of the fundamental group π1(X), the condition of local path-connectedness being important since generally b1(R f ) can even exceed b1(X). We give some practical methods for calculating the co-rank of π1(X) and a closely related value, the isotropy index. We apply our bound to improve upper bounds on the distortion of the Reeb quotient map, and thus on the Gromov-Hausdorff approximation of the space by Reeb graphs, for the distance function on a compact geodesic space and for a simple Morse function on a closed Riemannian manifold. This distortion is bounded from below by what we call the Reeb width b(M) of a metric space M, which guarantees that any real-valued continuous function on M has large enough contour (connected component of a level set). -
Persistent Homology of Unweighted Complex Networks Via Discrete
www.nature.com/scientificreports OPEN Persistent homology of unweighted complex networks via discrete Morse theory Received: 17 January 2019 Harish Kannan1, Emil Saucan2,3, Indrava Roy1 & Areejit Samal 1,4 Accepted: 6 September 2019 Topological data analysis can reveal higher-order structure beyond pairwise connections between Published: xx xx xxxx vertices in complex networks. We present a new method based on discrete Morse theory to study topological properties of unweighted and undirected networks using persistent homology. Leveraging on the features of discrete Morse theory, our method not only captures the topology of the clique complex of such graphs via the concept of critical simplices, but also achieves close to the theoretical minimum number of critical simplices in several analyzed model and real networks. This leads to a reduced fltration scheme based on the subsequence of the corresponding critical weights, thereby leading to a signifcant increase in computational efciency. We have employed our fltration scheme to explore the persistent homology of several model and real-world networks. In particular, we show that our method can detect diferences in the higher-order structure of networks, and the corresponding persistence diagrams can be used to distinguish between diferent model networks. In summary, our method based on discrete Morse theory further increases the applicability of persistent homology to investigate the global topology of complex networks. In recent years, the feld of topological data analysis (TDA) has rapidly grown to provide a set of powerful tools to analyze various important features of data1. In this context, persistent homology has played a key role in bring- ing TDA to the fore of modern data analysis. -
The Reeb Graph Edit Distance Is Universal
The Reeb Graph Edit Distance Is Universal Ulrich Bauer Department of Mathematics, Technical University of Munich (TUM), Germany [email protected] Claudia Landi Dipartimento di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena e Reggio Emilia, Reggio Emilia, Italy [email protected] Facundo Mémoli Department of Mathematics, The Ohio State University, Columbus, OH, USA [email protected] Abstract We consider the setting of Reeb graphs of piecewise linear functions and study distances between them that are stable, meaning that functions which are similar in the supremum norm ought to have similar Reeb graphs. We define an edit distance for Reeb graphs and prove that it is stable and universal, meaning that it provides an upper bound to any other stable distance. In contrast, via a specific construction, we show that the interleaving distance and the functional distortion distance on Reeb graphs are not universal. 2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics of computing → Algebraic topology Keywords and phrases Reeb graphs, topological descriptors, edit distance, interleaving distance Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.15 Funding This research has been partially supported by FAR 2014 (UniMORE), ARCES (University of Bologna), and the DFG Collaborative Research Center SFB/TRR 109 “Discretization in Geometry and Dynamics”. Acknowledgements We thank Barbara Di Fabio and Yusu Wang for valuable discussions. 1 Introduction The concept of a Reeb graph of a Morse function first appeared in [13] and has subsequently been applied to problems in shape analysis in [14, 10]. The literature on Reeb graphs in the computational geometry and computational topology is ever growing (see, e.g., [2, 3] for a discussion and references). -
Graph Reconstruction by Discrete Morse Theory Arxiv:1803.05093V2 [Cs.CG] 21 Mar 2018
Graph Reconstruction by Discrete Morse Theory Tamal K. Dey,∗ Jiayuan Wang,∗ Yusu Wang∗ Abstract Recovering hidden graph-like structures from potentially noisy data is a fundamental task in modern data analysis. Recently, a persistence-guided discrete Morse-based framework to extract a geometric graph from low-dimensional data has become popular. However, to date, there is very limited theoretical understanding of this framework in terms of graph reconstruction. This paper makes a first step towards closing this gap. Specifically, first, leveraging existing theoretical understanding of persistence-guided discrete Morse cancellation, we provide a simplified version of the existing discrete Morse-based graph reconstruction algorithm. We then introduce a simple and natural noise model and show that the aforementioned framework can correctly reconstruct a graph under this noise model, in the sense that it has the same loop structure as the hidden ground-truth graph, and is also geometrically close. We also provide some experimental results for our simplified graph-reconstruction algorithm. 1 Introduction Recovering hidden structures from potentially noisy data is a fundamental task in modern data analysis. A particular type of structure often of interest is the geometric graph-like structure. For example, given a collection of GPS trajectories, recovering the hidden road network can be modeled as reconstructing a geometric graph embedded in the plane. Given the simulated density field of dark matters in universe, finding the hidden filamentary structures is essentially a problem of geometric graph reconstruction. Different approaches have been developed for reconstructing a curve or a metric graph from input data. For example, in computer graphics, much work have been done in extracting arXiv:1803.05093v2 [cs.CG] 21 Mar 2018 1D skeleton of geometric models using the medial axis or Reeb graphs [10, 29, 20, 16, 22, 7]. -
Arxiv:2012.08669V1 [Math.CT] 15 Dec 2020 2 Preface
Sheaf Theory Through Examples (Abridged Version) Daniel Rosiak December 12, 2020 arXiv:2012.08669v1 [math.CT] 15 Dec 2020 2 Preface After circulating an earlier version of this work among colleagues back in 2018, with the initial aim of providing a gentle and example-heavy introduction to sheaves aimed at a less specialized audience than is typical, I was encouraged by the feedback of readers, many of whom found the manuscript (or portions thereof) helpful; this encouragement led me to continue to make various additions and modifications over the years. The project is now under contract with the MIT Press, which would publish it as an open access book in 2021 or early 2022. In the meantime, a number of readers have encouraged me to make available at least a portion of the book through arXiv. The present version represents a little more than two-thirds of what the professionally edited and published book would contain: the fifth chapter and a concluding chapter are missing from this version. The fifth chapter is dedicated to toposes, a number of more involved applications of sheaves (including to the \n- queens problem" in chess, Schreier graphs for self-similar groups, cellular automata, and more), and discussion of constructions and examples from cohesive toposes. Feedback or comments on the present work can be directed to the author's personal email, and would of course be appreciated. 3 4 Contents Introduction 7 0.1 An Invitation . .7 0.2 A First Pass at the Idea of a Sheaf . 11 0.3 Outline of Contents . 20 1 Categorical Fundamentals for Sheaves 23 1.1 Categorical Preliminaries . -
RGB Image-Based Data Analysis Via Discrete Morse Theory and Persistent Homology
RGB IMAGE-BASED DATA ANALYSIS 1 RGB image-based data analysis via discrete Morse theory and persistent homology Chuan Du*, Christopher Szul,* Adarsh Manawa, Nima Rasekh, Rosemary Guzman, and Ruth Davidson** Abstract—Understanding and comparing images for the pur- uses a combination of DMT for the partitioning and skeletoniz- poses of data analysis is currently a very computationally ing (in other words finding the underlying topological features demanding task. A group at Australian National University of) images using differences in grayscale values as the distance (ANU) recently developed open-source code that can detect function for DMT and PH calculations. fundamental topological features of a grayscale image in a The data analysis methods we have developed for analyzing computationally feasible manner. This is made possible by the spatial properties of the images could lead to image-based fact that computers store grayscale images as cubical cellular complexes. These complexes can be studied using the techniques predictive data analysis that bypass the computational require- of discrete Morse theory. We expand the functionality of the ments of machine learning, as well as lead to novel targets ANU code by introducing methods and software for analyzing for which key statistical properties of images should be under images encoded in red, green, and blue (RGB), because this study to boost traditional methods of predictive data analysis. image encoding is very popular for publicly available data. Our The methods in [10], [11] and the code released with them methods allow the extraction of key topological information from were developed to handle grayscale images. But publicly avail- RGB images via informative persistence diagrams by introducing able image-based data is usually presented in heat-map data novel methods for transforming RGB-to-grayscale. -
Realizable Piecewise Linear Paths of Persistence Diagrams with Reeb Graphs
Realizable piecewise linear paths of persistence diagrams with Reeb graphs Rehab Alharbi1, Erin Wolf Chambers2, and Elizabeth Munch2 1Dept of Mathematics & Statistics, Saint Louis University 2Dept of Computer Science, Saint Louis University 3Dept of Computational Mathematics, Science & Engineering, Dept of Mathematics, Michigan State University Abstract Reeb graphs are widely used in a range of fields for the purposes of analyzing and com- paring complex spaces via a simpler combinatorial object. Further, they are closely related to extended persistence diagrams, which largely but not completely encode the information of the Reeb graph. In this paper, we investigate the effect on the persistence diagram of a particular continuous operation on Reeb graphs; namely the (truncated) smoothing operation. This con- struction arises in the context of the Reeb graph interleaving distance, but separately from that viewpoint provides a simplification of the Reeb graph which continuously shrinks small loops. We then use this characterization to initiate the study of inverse problems for Reeb graphs using smoothing by showing which paths in persistence diagram space (commonly known as vineyards) can be realized by a path in the space of Reeb graphs via these simple operations. This allows us to solve the inverse problem on a certain family of piecewise linear vineyards when fixing an initial Reeb graph. 1 Introduction Reeb graphs have become an important tool in topological data analysis for the purpose of visualiz- ing continuous functions on complex spaces, as they yield a simplified discrete structure. Originally developed in relation to Morse theory [29], these objects are used extensively for shape comparison, constructing skeletons of data sets, surface simplification, and visualization; for more details on arXiv:2107.04654v1 [cs.CG] 9 Jul 2021 these and more applications, we refer to recent surveys on the topic [5, 31]. -
Thermodynamic Tree: the Space of Admissible Paths † Alexander N
SIAM J. APPLIED DYNAMICAL SYSTEMS c 2013 Society for Industrial and Applied Mathematics Vol. 12, No. 1, pp. 246–278 ∗ Thermodynamic Tree: The Space of Admissible Paths † Alexander N. Gorban Abstract. Is a spontaneous transition from a state x to a state y allowed by thermodynamics? Such a question arises often in chemical thermodynamics and kinetics. We ask the following more formal question: Is there a continuous path between these states, along which the conservation laws hold, the concentra- tions remain nonnegative, and the relevant thermodynamic potential G (Gibbs energy, for example) monotonically decreases? The obvious necessary condition, G(x) ≥ G(y), is not sufficient, and we construct the necessary and sufficient conditions. For example, it is impossible to overstep the equi- − librium in 1-dimensional (1D) systems (with n components and n 1 conservation laws). The system cannot come from a state x to a state y if they are on the opposite sides of the equilibrium even if G(x) >G(y). We find the general multidimensional analogue of this 1D rule and constructively solve the problem of the thermodynamically admissible transitions. We study dynamical systems, which are given in a positively invariant convex polyhedron D and have a convex Lyapunov function G. An admissible path is a continuous curve in D along which G does not increase. For x, y ∈ D, x y (x precedes y) if there exists an admissible path from x to y and x ∼ y if x y and y x. ThetreeofG in D is a quotient space D/ ∼ . We provide an algorithm for the construction of this tree. -
Persistence in Discrete Morse Theory
Persistence in discrete Morse theory Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades Doctor rerum naturalium der Georg-August-Universität Göttingen vorgelegt von Ulrich Bauer aus München Göttingen 2011 D7 Referent: Prof. Dr. Max Wardetzky Koreferent: Prof. Dr. Robert Schaback Weiterer Referent: Prof. Dr. Herbert Edelsbrunner Tag der mündlichen Prüfung: 12.5.2011 Contents 1 Introduction1 1.1 Overview................................. 1 1.2 Related work ............................... 7 1.3 Acknowledgements ........................... 8 2 Discrete Morse theory 11 2.1 CW complexes .............................. 11 2.2 Discrete vector fields .......................... 12 2.3 The Morse complex ........................... 15 2.4 Morse and pseudo-Morse functions . 17 2.5 Symbolic perturbation ......................... 20 2.6 Level and order subcomplexes .................... 23 2.7 Straight-line homotopies of discrete Morse functions . 28 2.8 PL functions and discrete Morse functions . 29 2.9 Morse theory for general CW complexes . 34 3 Persistent homology of discrete Morse functions 41 3.1 Birth, death, and persistence pairs . 42 3.2 Duality and persistence ........................ 44 3.3 Stability of persistence diagrams ................... 45 4 Optimal topological simplification of functions on surfaces 51 4.1 Topological denoising by simplification . 51 4.2 The persistence hierarchy ....................... 53 4.3 The plateau function .......................... 59 4.4 Checking the constraint ........................ 62 5 Efficient computation of topological simplifications 67 5.1 Defining a consistent total order .................... 68 iii Contents 5.2 Computing persistence pairs ..................... 68 5.3 Extracting the gradient vector field . 70 5.4 Constructing the simplified function . 70 5.5 Correctness of the algorithm ...................... 71 6 Discussion 75 6.1 Computational results ......................... 75 6.2 Relation to simplification of persistence diagrams . -
Calculating Persistent Homology Using Discrete Morse Theory
CALCULATING PERSISTENT HOMOLOGY USING DISCRETE MORSE THEORY NEHA LINGAREDDY ABSTRACT. In this expository paper, we explore how the fundamental shape of a high- dimensional data set can be studied mathematically. First, as an elementary example of recovering the topological features of a space using continuous functions, we introduce the field of Morse theory. Next, for use on simpler spaces called simplicial complexes, we describe a combinatorial variant of Morse theory - discrete Morse theory. Then, to understand how we derive simplicial complexes from a set of points, we describe the field of persistent homology and show how discrete Morse theory can be used to simplify cal- culations in persistent homology. We end the paper with explaining specific algorithms using discrete Morse theory that show increases in the efficiency of calculating persistent homology. Some familiarity with Topology and Linear Algebra is assumed. CONTENTS 1. Introduction 1 2. Morse theory basics 3 3. Simplicial complexes 5 4. Discrete Morse theory 7 4.1. Discrete Morse functions 7 4.2. Gradient vector fields 10 4.3. Morse matchings 13 5. Persistent homology 14 6. Persistent homology and discrete Morse theory 17 7. Computing optimal Morse matchings 18 8. Conclusion 18 9. Acknowledgments 19 10. Bibliography 19 References 19 1. INTRODUCTION A fundamental problem in topological data analysis (TDA) is how, when given a high- dimensional data set, one can gather the shape and features of the data. As a data set is often plagued with issues such as noise and non-uniform sampling, it is hard to quantify how discrete points in a data set can gather into a global structure. -
Time-Varying Reeb Graphs: a Topological Framework Supporting the Analysis of Continuous Time-Varying Data
Time-varying Reeb Graphs: A Topological Framework Supporting the Analysis of Continuous Time-varying Data by Ajith Arthur Mascarenhas A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial ful¯llment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science. Chapel Hill 2006 Approved by: Jack Snoeyink, Advisor Herbert Edelsbrunner, Reader Valerio Pascucci, Reader Dinesh Manocha, Committee Member Leonard McMillan, Committee Member ii iii c 2006 Ajith Arthur Mascarenhas ALL RIGHTS RESERVED iv v ABSTRACT AJITH ARTHUR MASCARENHAS: Time-varying Reeb Graphs: A Topological Framework Supporting the Analysis of Continuous Time-varying Data. (Under the direction of Jack Snoeyink.) I present time-varying Reeb graphs as a topological framework to support the anal- ysis of continuous time-varying data. Such data is captured in many studies, including computational uid dynamics, oceanography, medical imaging, and climate modeling, by measuring physical processes over time, or by modeling and simulating them on a computer. Analysis tools are applied to these data sets by scientists and engineers who seek to understand the underlying physical processes. A popular tool for analyzing scienti¯c datasets is level sets, which are the points in space with a ¯xed data value s. Displaying level sets allows the user to study their geometry, their topological features such as connected components, handles, and voids, and to study the evolution of these features for varying s. For static data, the Reeb graph encodes the evolution of topological features and compactly represents topological information of all level sets.