One Pot Synthesis, DNA Binding and Fragmentation in Vitro of New Fused Uracil Derivatives for Anticancer Properties

Total Page:16

File Type:pdf, Size:1020Kb

One Pot Synthesis, DNA Binding and Fragmentation in Vitro of New Fused Uracil Derivatives for Anticancer Properties One pot Synthesis, DNA binding and fragmentation in vitro of new fused uracil derivatives for anticancer properties Bothaina A. Mousaa, Ashraf H. Bayoumi*b, Makarem M. Korraaa, Mohamed G. Assyc, and Samar A. El-kalyoubid aDepartment of Organic Chemistry, Faculty of Pharmacy, Cairo University, Egypt bDepartment of Organic Chemistry, Faculty of Pharmacy (boys), Al-Azhar University, Egypt; cDepartment of Organic Chemistry, Faculty of Science, Zagazig University, Egypt; dDepartment of Organic Chemistry, Faculty of Pharmacy (girls), Al-Azhar University, Egypt Síntesis en un solo recipiente, combinación ADN y fragmentación in vitro de derivados condensados de uracilo con propiedades anticancerígenas Síntesi en un sol recipient, combinació ADN i fragmentació in vitro de derivats condensats d’uracil amb propietats anticancerígenes Recibido: 9 de junio de 2012; aceptado: 28 de junio de 2012 RESUMEN RESUM Se ha sintetizado una nueva serie de pirimidopirimidinas S’ha sintetitzat una nova sèrie de pirimidopirimidines partiendo de 6-amino-1-benzyl [o 1-(2-chlorobenzyl)] ura- partint de 6-amino-1-benzyl [o 1-(2-chlorobenzyl)] uracil cilo a través de la formación de un aducto de Michael no a través de la formació d’un aducte de Michael no aïllat aislado seguido de adición nucleofílica y aromatización fi- seguit d’addició nucleofílica i aromatització final. El ma- nal. El mismo material de partida puede ser utilizado para teix material de partida pot ser utilitzat per a la prepara- la preparación de algunas nuevas pirimidodipirimidinas ció d’algunes noves pirimidodipirimidines per reflux amb por reflujo con diferentes aldehídos en medio ligeramente diferents aldehids en medi lleugerament bàsic. Finalment básico. Finalmente se han sintetizado diferentes lumazinas s’han sintetitzat diferents lumazines via reacció de tipus 2 vía reacción de tipo SN entre clorhidrato de diaminouracilo SN2 entre clorhidrat de diaminouracil amb bromur de fe- con bromuro de fenacilo seguida de ciclodeshidratación nacil seguida de ciclodeshidratació intramolecular i aro- intramolecular y aromatización. Estos nuevos compuestos matització. Aquests nous compostos de síntesis van mos- de síntesis mostraron propiedades de combinación, que- trar propietats de combinació, quelació i fragmentació de lación y fragmentación del ácido nucleico ADN. l’àcid nucleic ADN. Palabras clave: 6-Amino-1-bencil [o 1-(2-clorobenzil)] Paraules clau: 6-Amino-1-bencil [o 1-(2-clorobenzil)] ura- uracilo, clorhidrato de diaminouracilo, pirimidopirimidinas, cil, clorhidrato de diaminouracil, pirimidopirimidines, piri- pirimidodipirimidinas y lumazinas. midodipirimidines i lumazines. SUMMARY INTRODUCTION A new series of pyrimidopyrimidines are synthesized start- Resistance of tumor cells to chemotherapeutic agents is ing from 6-amino-1-benzyl[or1-(2-chlorobenzyl)]uracil via a major problem in the treatment of human malignancy.1-3 the formation of nonisolable acyclic Michael type adduct The causes of drug resistance fall into two groups; firstly, followed by nucleophilic addition and finally aromatization. those leading to inadequate drug exposure and, secondly, The same starting material can be used for the preparation alterations in the cancer cell itself that affect drug sensitiv- of some new pyrimidodipyrimidines by refluxing with dif- ity.4 Differences in the metabolic and structural properties ferent aldehydes in slightly basic medium. Finally different of cells may lead to drug-resistant phenotypes.5 The anti- 2 lumazines are synthesized via SN type reaction of diami- metabolite group of drugs blocks the de novo synthesis of nouracil hydrochloride with phenacyl bromides followed the purines and pyrimidines required for DNA synthesis.5-7 by intramolecular cyclodehydration then aromatization. Resistance has been reported due to the increased ac- The newly synthesized compounds showed binding, che- tivities of the enzymes in alternative pathways for purine lation and fragmentation of the nucleic acid DNA. and pyrimidine biosynthesis, the salvage pathways.5,7,8 The inhibitory activity of an antimetabolite depends on its Keywords: 6-Amino-1-benzyl[or1-(2-chlorobenzyl)]uracil, successful competition with the corresponding metabolite diaminouracil hydrochloride, pyrimidopyrimidines, pyrimi- for the enzymes of which the metabolite is the natural sub- dodipyrimidines and lumazines. 224 AFINIDAD LXIX, 559, Julio - Septiembre 2012 strate or cofactor. A series of nonnucleoside drugs as fla- (DMSO-d6) δ 11.34 (bs, 1H, NH), 7.70 (bs, 2H, NH2), 7.51- vin analogues9-11 e.g. alloxazine9 have exhibited antitumor 7.48 (m, 2H, arom.), 7.34-7.25 (m, 4H, arom.), 7.06-7.04 activity against different tumor cell lines. 5-Fluorouracil12,13, (m, 2H, arom.), 5.35 (s, 2H, NCH2). MS: m/z 439 (M++2, methotrexate (MTX)14,15 is the oldest antifolate anticancer 0.9), 437 (M+, 1.73), 404 (38), 402 (100). Anal. Calcd for 16 drugs, which is widely used as chemotherapeutic drug. C21H13Cl2N5O2 (438.26), Calcd.: C, 57.55, H, 2.99, N, 15.98, It competes with the normal substrates, folic acid and di- Found: C, 57.25, H, 3.45, N, 15.79. hydrofolate, for the active site on the enzyme dihydrofolate 7-Amino-1-(2-chlorobenzyl)-5-(4-fluorophenyl)-6- reductase (DHFR).2,17,18 Mild reduction in reduced folates cyanopyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (2b) at low serum concentrations of MTX results in inhibition of Yield: A 81%, m.p.= 312-314° C. IR= 3311, 3226 (NH2& pyrimidine (i.e. thymidine) synthesis.19,20 Thus, by inhibit- NH), 3072 (CH arom.), 2923, 2844 (CH aliph), 2219 (CN), ing DHFR, methotrexate prevents DNA synthesis and kills 1701, 1665 (2 C = O), 1637 (C = N), 1560 (C = C), 803 cells by depleting thymidylic acid.21-23 We rationalized to (p-substituted phenyl), 754 (o-substituted phenyl). Anal. synthesize new series of bicyclic fused uracil of pyridopy- Calcd for C21H13ClFN5O2 (421.81), Calcd.: C, 59.80, H, rimidines and lumazines as well as tricyclic derivatives of 3.11, N, 16.60, Found: C, 59.37, H, 3.10, N, 16.51. pyridodipyrimidines. 7-Amino-1-(2-chlorobenzyl)-5-(2-methoxyphenyl)-6- cyanopyrido[2,3-d]pyrimidine-2,4(1H, 3H)-dione (2c) Yield: A 89%, m.p.= 316-318° C. IR= 3310, 3227 (NH2& Materials AND METHODS NH), 3074 (CH arom.), 2953, 2838 (CH aliph), 2217 (CN), 1702, 1665 (2 C = O), 1635 (C = N), 1557 (C = C), 755 1 Chemistry (o-substituted phenyl). H-NMR (DMSO-d6) δ 11.32 (s, 1H, All melting points were determined with an Electrothermal NH, exchangeable), 7.70 (bs, 2H, NH2, exchangeable), Mel.-Temp. II apparatus and were uncorrected. Element 7.51-7.48 (m, 2H, arom.), 7.48-7.40 (m, 2H, arom.), 7.40- analyses were performed at the Micro Analytical Unit, 6.98 (m, 4H, arom.), 5.43-5.29 (two d, 2H, NCH2), 3.72 (s, Chemistry Department, Mansoura University. The infra- 3H, OCH3). Anal. Calcd for C22H16ClN5O3 (433.84), Calcd.: red (IR) spectra were recorded using potassium bromide C, 60.91, H, 3.72, N, 16.14, Found: C, 61.22, H, 4.21, N, disc technique on Nikolet IR 200 FT IR at Pharmaceutical 15.87. Analytical Unit, Faculty of Pharmacy, Al-Azhar University. 7-Amino-1-(2-chlorobenzyl)-5-(4-hydroxyphenyl)-6- The proton nuclear magnetic resonance (1H-NMR) spectra cyanopyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (2d) were recorded on Varian Gemini 300 MHz Spectrometer Yield: A 63%, m.p.= 293-295° C. IR= 3441 (OH), 3336, using DMSO-d6 as a solvent and tetramethylsilane (TMS) 3227 (NH2& NH), 3070 (CH arom.), 2980 (CH aliph), 2224 as an internal standard (Chemical shift in δ, ppm), Faculty (CN), 1690-1641 (br, C = O), 1569 (C = C &/or C = N), 821 of Science, Chemistry Department, Cairo University. Mass (p-substituted phenyl), 754 (o-substituted phenyl). Anal. spectra were recorded on DI-50 unit of Shimadzu GC/ Calcd for C21H14ClN5O3 (419.82), Calcd.: C, 60.08, H, 3.36, MS-QP 5050A at the Regional Center for Mycology and N, 16.68, Found: C, 60.15, H, 3.81, N, 17.00. Biotechnology at Al-Azhar University. All reactions were 5-Aryl-1-benzyl[or 1-(2-chlorobenzyl)]pyrido[2,3-d] py- monitored by TLC using precoted plastic sheets silica gel rimidine-2,4,7(1H,3H,8H)-triones (3a-d) (Merck 60 F254) and spots were visualized by irradiation A mixture of the appropriate 6-amino-1-benzyluracil 1a or with UV light (254 nm). The used solvent system was chlo- b (1.2 mmol) and ethyl arylidenacetoacetate (1.2 mmol) in roform: methanol (9:1) & ethyl acetate:toluene (1:1). DMF (3 ml) in the presence of TEA (0.3 ml) was heated un- 7-Amino-5-aryl-1-(2-chlorobenzyl)-6-cyanopyrido[2,3- der reflux for 6-8 hours. The reaction mixture was evapo- d]pyrimidine-2,4(1H,3H)-diones (2a-d) rated under diminished pressure. The residue was treated with ethanol (10 ml), the formed precipitate was filtered, Two methods were used to synthesize the target com- washed with ethanol and crystallized from DMF/ethanol pounds: (3:1) to afford the target pyridopyrimidines 3a-d. A- A mixture of 6-amino-1-(2-chlorobenzyl)uracil (1b) 1-Benzyl-5-(4-chlorophenyl)pyrido[2,3-d]pyrimidine- (0.3 g, 1.2 mmol) and the appropriate benzylidene- 2,4,7(1H,3H,8H)-trione (3a) malononitrile (1.2 mmol) in DMF (3 ml) in the presence Yield: 58%, m.p.= 250-252 °C. IR= 3160 (NH), 3028 (CH of TEA (0.3 ml) was heated under reflux for 6-8 hours. arom.), 2920, 2848 (CH aliph.), 1693 (C = O), 1596 (C = C), 1 The reaction mixture was evaporated under reduced 829 (p-substituted phenyl). H-NMR (DMSO-d6) δ 11.79 pressure. The residue was treated with ethanol (10 (bs, 1H, NH), 8.40-8.37 (d, 1H, arom.), 8.11-8.08 (d, 2H, ml), the formed precipitate was filtered, washed with arom.), 7.87-7.85 (d, 1H, arom.), 7.56-7.53 (d, 2H, arom.), ethanol and crystallized from DMF/ethanol (2:1) to af- 7.38- 7.22 (m, 4H, arom.), 7.20 (bs, 1H, NH &/or OH), 5.45 + ford 2a-d.
Recommended publications
  • Synthesis and Antitumor Activity of Some Novel Thiophene, Pyrimidine, Coumarin, Pyrazole and Pyridine Derivatives
    Acta Pharm. 67 (2017) 15–33 Original research paper DOI: 10.1515/acph-2017-0004 Synthesis and antitumor activity of some novel thiophene, pyrimidine, coumarin, pyrazole and pyridine derivatives MOHAMMED ALBRATTY1 2-Cyano-N-(thiazol-2-yl) acetamide (2a) and 2-cyano-N-(oxazol- 1,2 KARAM AHMED EL-SHARKAWY * 2-yl) acetamide (2b) were obtained via the reaction of ethyl cya- SHAMSHER ALAM1 noacetate with either 2-aminothiazole (1a) or 2-aminooxazole 1 Department of Pharmaceutical (1b). The formed products were directed toward the reaction Chemistry, College of Pharmacy with cyclopentanone and elemental sulfur in the presence of Jazan University, P.O. Box 114 triethylamine to give cyclopenta[b]thiophene derivatives (3a,b). Jazan 45142, Saudi Arabia The latter products were reacted with either ethyl cyanoacetate or malononitrile to form compounds 4a,b and 5a,b, respectively. 2 Department of Organic Chemistry Compounds 4a,b were aimed at synthesizing some heterocyclic Faculty of Biotechnology compounds; thus internal cyclization reactions were intro- October University for Modern duced to form compounds 6a,b. Also, compounds 4a,b reacted Sciences and Arts (MSA) with salicylaldehyde, hydrazine derivatives and either urea or El-Wahat Road thiourea to produce coumarin derivatives (7a,b), pyrazole de- 6 October City, Egypt rivatives (8a-d) and pyrimidine derivatives (9a-d), respectively. Reaction of either benzaldehyde or benzene diazonium chlo- ride (11) with compounds 4a,b afforded compounds 10a,b and 12a,b, respectively. On the other hand, compounds 5a,b under- went internal cyclization to form pyrimidine derivatives 13a,b. Also, when compounds 5a,b reacted with either ethyl cyanoac- etate or malononitrile, they gave pyridine derivatives (15a-d) through the formation of intermediates (14a-d).
    [Show full text]
  • Synthesis of the Caffeine Metabolites 5-Acetylamino-6-Formylamino- 3-Methyluracil (AFMU) and 5-Acetylamino-6-Amino-3-Methyluracil (AAMU) on a Preparative Scale R
    Synthesis of the Caffeine Metabolites 5-Acetylamino-6-formylamino- 3-methyluracil (AFMU) and 5-Acetylamino-6-amino-3-methyluracil (AAMU) on a Preparative Scale R. Röhrkasten3, P. Raatz3, R. P. Kreher3*, M. Blaszkewiczb a Lehrstuhl für Organische Chemie II, Fachbereich Chemie, Universität Dortmund. D-44227 Dortmund b Institut für Arbeitsphysiologie an der Universität Dortmund, ZWE Analytische Chemie, Ardeystraße 67, D-44139 Dortmund Z. Naturforsch. 52b, 1526-1532 (1997); received April 7, 1995 Pyrimidine-diones, Caffeine Metabolites, Synthesis 5-Acetylamino-6-amino-3-methyluracil (AAMU) and 5-acetylamino-6-formylamino-3- methyluracil (AFMU) have been prepared by simple chemical transformations starting from thiourea and ethyl cyanoacetate. These compounds AAMU and AFMU are required as standard materials for qualitative identification and quantitative determination in connection with the metabolism of caffeine. Introduction procedures are applied to obtain weighable amounts. The first method consisted in the con­ The N-acetyltransferase plays an important role sumption of a caffeinated beverage and the extrac­ in the metabolism of many xenobiotics; the pro­ tion of the metabolites from the urine; but the duction of the enzyme is genetically controlled. In­ yields are low [10]. A very expensive synthetic dividuals differ in the amount of the acetylated procedure is based on a procedure of Khmelevskii metabolites and can be classified as slow or rapid et al. [3] modified by Tang et al. [10] using 1-MU acetylators. The acetylator status is connected with instead of uric acid. After acylation with formic some diseases such as diabetes mellitus and blad­ acid/acetic anhydride the yield was only 19% pro­ der cancer and the knowledge of it is for the bene­ ducing 2 mg of AFMU 9.
    [Show full text]
  • Synthesis of Biologically Important Pyrrole Derivatives in Any 13C and 15N Isotope Enriched Form by Prativa B
    Global Journal of Science Frontier Research Chemistry Volume 12 Issue 2 Version 1.0 February 2012 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Synthesis of Biologically Important Pyrrole Derivatives in Any 13C and 15N Isotope Enriched Form By Prativa B. S. Dawadi & Johan Lugtenburg Leiden University, Leiden Abstract - Recently the synthesis of [3-13C]-, [4-13C]-, and [11-13C]- porphobilinogen, [15N,13C4]-1H - pyrrole-2,3,5 - tricar - boxylic acid, [1-15N]-3-cyano-4-methyl-1H-pyrrole and [2-13C]- and [3-13C]-cyano-4- methyl-3-pyrrolin-2-one have been published. Incorporation of 13C and 15N in these systems at any position and combination of positions has become accessible. Also mild alkylations of active methylene compounds with α-halo carbonyl compounds open up many 3-pyrrolin-2- ones and pyrrole systems based on stable isotope building blocks that have been published. This gives the access to a whole new library of stable isotope enriched pyrroles in any stable isotope enriched form. This is also the case for biliverdin IXα which after enzymatic treatment has been converted into (2R)-phytochromobilin that reacts with its apoprotein to form intact active phytochrome. Keywords : [1-15N]-3-Cyano-4-methyl-1H-pyrrole, [3-13C], [4-13C]-, and [11-13C]-porphobilinogen, [ 15N, 13C4,] -1H-pyrrole-2,3,5-tricarboxylic acid and biliverdin IXα. GJSFR -B Classification: FOR Code: 030503, 040203, Synthesis Of Biologically Important Pyrrole Derivatives In Any 13C And 15N Isotope Enriched Form Strictly as per the compliance and regulations of: © 2012.
    [Show full text]
  • Route of Knoevenagel Reaction from Conventional Method to Greener Methods
    IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399.Volume 9, Issue 12 Ver. I (Dec. 2015), PP 52-55 www.iosrjournals.org Route of Knoevenagel Reaction from Conventional method to Greener methods Dr. Leena H. Sarkar Department of Chemistry, J.V.M’s Degree College, Airoli, Navi Mumbai 400 708, India. Abstract: In the past few years, classic methods of synthesis have been replaced by newer methods of synthesis involving principles of Green Chemistry given by Anastas and Warner leading to environmentally safer products and processes and reducing pollution and thus making the environment greener. In this review article I have compared old classical method of Knoevenagel reaction with greener methods for a more sustainable, pollution free future society. Key Words: Green chemistry, Knoevenagel reaction, solvent free reactions, sustainable chemistry, use of ultrasound radiations, catalysis, microwave chemistry and use of ionic liquids. I. Introduction The Knoevenagel [1] reaction is considered to be a modification of the aldol reaction [2]. It is named after Emil Knoevenagel. It is a condensation reaction of aldehydes or ketones 1 with active methylene compounds 2 in presence of base like ammonia or another amine or piperidine as a catalyst in organic solvents to yield α,β-unsaturated carbonyl compounds 3 (Fig. 1) which serve as intermediates in various reactions and compounds of medicinal interest [3-7]. Group attached to methylene group must be powerful enough to facilitate deprotonation to form enolate ion, even with a mild base. Fig. 1: Conventional method of Knoevenagel synthesis II.
    [Show full text]
  • Reactive Polymers Fundamentals and Applications
    Propery of Reed Elsevier 13 Cyanoacrylates Cyanoacrylates were commercially introduced in for polymerization. Instead of aqueous formaldehyde, 1950 by Tennesee Eastman Company. Cyanoacrylate paraformaldehyde was used with an organic solvent to adhesives are monomeric adhesives. They are gener- remove the water by azeotropic distillation. The sta- ally quick-setting materials which cure to clear, hard bility of the monomer can be enhanced by the redistil- glassy resins, useful as sealants, coatings, and par- lation of the crude monomer in the presence of small ticularly adhesives for bonding together a variety of quantities of acidic stabilizers, e.g., sulfur dioxide. substrates [1]. Polymers of alkyl 2-cyanoacrylates are Several other methods for cyanoacrylate monomer also known as superglues. production have been described, including the pyro- In addition to their use as adhesives, cyanoacrylates lysis of 3-alkoxy-2-cyanopropionates [8], transester- have been reported to have highly herbicidal prop- ification of ethyl cyanoacrylate [9], and displacement erties, as they disrupt photosynthetic electron trans- of cyanoacrylate monomer from its anthracene Diels- portation [2–4]. Alder adduct by treatment with maleic anhydride. This last method is used for the synthesis of monomers 13.1 Monomers that are not accessible or may be difficult to prepare by the retropolymerization route, for example difunc- 13.1.1 Synthesis tional cyanoacrylates [10], thiocyanoacrylates [11], and perfluorinated monomers. In 1895 von Auwers and Thorpe [5] attempted to synthesize diethyl-2,2-dicyanoglutarate (Figure 13.1) by base-catalyzed condensation of aqueous formalde- 13.1.2 Crosslinkers hyde and ethyl cyanoacetate. They isolated a mixture To improve the cohesive strength, difunctional mono- of oily oligomers and an amorphous polymer of higher meric crosslinking agents may be added to the mono- molecular weight.
    [Show full text]
  • Classical Antifolates: Synthesis of 5-Substituted, 6-Substituted and 7-Substituted Pyrrolo[2,3-D]Pyrimidines As Targeted Anticancer Therapies Yiqiang Wang
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations 2013 Classical Antifolates: Synthesis of 5-Substituted, 6-Substituted and 7-Substituted Pyrrolo[2,3-d]Pyrimidines as Targeted Anticancer Therapies Yiqiang Wang Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Wang, Y. (2013). Classical Antifolates: Synthesis of 5-Substituted, 6-Substituted and 7-Substituted Pyrrolo[2,3-d]Pyrimidines as Targeted Anticancer Therapies (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/1335 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. CLASSICAL ANTIFOLATES: SYNTHESIS OF 5-SUBSTITUTED, 6-SUBSTITUTED AND 7-SUBSTITUTED PYRROLO[2,3- d]PYRIMIDINES AS TARGETED ANTICANCER THERAPIES A Dissertation Submitted to the Graduate School of Pharmaceutical Sciences Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Yiqiang Wang May 2013 Copyright by Yiqiang Wang 2013 Name: Yiqiang Wang Dissertation: CLASSICAL ANTIFOLATES: SYNTHESIS OF 5-SUBSTITUTED, 6-SUBSTITUTED AND 7-SUBSTITUTED PYRROLO[2,3-d]PYRIMIDINES AS TARGETED ANTICANCER THERAPIES Degree: Doctor of Philosophy Date Feb 06, 2013 APPROVED & ACCEPTED Aleem Gangjee, Ph.D. (Committee Chair) Professor of Medicinal Chemistry Mylan School of Pharmacy Distinguished Professor Graduate School of Pharmaceutical Sciences Duquesne University, Pittsburgh, Pennsylvania APPROVED Marc W. Harrold, Ph.D. (Committee Member) Professor of Medicinal Chemistry Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania APPROVED Patrick T.
    [Show full text]
  • Download MSDS File
    Safety Data Sheet - Version 5.0 Preparation Date 3/26/2021 Latest Revision Date (If Revised) SDS Expiry Date 3/24/2024 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1 Product Identifier Chemical Name Ethyl Cyanoacetate Catalogue # E905555 1.2 Relevant Identified Uses of the Substance or Mixture and Uses Advised Against Product Uses To be used only for scientific research and development. Not for use in humans or animals. 1.3 Details of the Supplier of the Safety Data Sheet Company Toronto Research Chemicals 2 Brisbane Road Toronto, ON M3J 2J8 CANADA Telephone +14166659696 FAX +14166654439 Email [email protected] 1.4 Emergency Telephone Number Emergency# +1(416) 665-9696 between 0800-1700 (GMT-5) 2. HAZARDS IDENTIFICATION 2.1/2.2 Classification of the Substance or Mixture and Label Elements GHS Hazards Classification (According to EU Regulation 1272/2008 and US OSHA 1910.1200) Acute Toxicity, Oral (Category 4) Acute Toxicity, Inhalation (Category 4) Acute Toxicity, Dermal (Category 4) GHS Hazards Identification (According to EU Regulation 1272/2008 and US OSHA 1910.1200) Signal Word Warning GHS Hazard Statements H302 Harmful if swallowed. H332 Harmful if inhaled. H312 Harmful in contact with skin. GHS Precautionary Statements P261 Avoid breathing dust/fume/gas/mist/vapours/spray P264 Wash hands thoroughly after handling. P280 Wear protective gloves/protective clothing/eye protection/face protection. P301/P312 IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. P302/P352 IF ON SKIN: Wash with plenty of soap and water P305/P351/P338 IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • Ethyl Cynoacetate.Pdf
    Health 1 1 Fire 1 1 1 Reactivity 1 Personal E Protection Material Safety Data Sheet Ethyl cyanoacetate MSDS Section 1: Chemical Product and Company Identification Product Name: Ethyl cyanoacetate Contact Information: Catalog Codes: 10691 Finar Limited CAS#: 105-56-6 184-186/P, Chacharwadi Vasna, RTECS: AG4110000 Sarkhej-Bavla Highway, TSCA: Not available Ta.: Sanand, Dist.: Ahmedabad, Synonym: Cyanoacetic Acid Ethyl Ester Email: [email protected] Cyanoacetic Ester Web: www.finarchemicals.com Ethyl Cyanoethanoate Malonic Acid Ethyl Ester Nitrile Chemical Formula: C5H7NO2 Section 2: Composition and Information on Ingredients Composition: Name CAS #% Ethyl cyanoacetate 105-56-6 99% Section 3: Hazards Identification EMERGENCY OVERVIEW LACHRYMATOR IRRITANT Irritating to skin, eyes, and respiratory system. May have harmful effects if inhaled or swallowed. Avoid prolonged exposure. Do not breathe vapor. Potential Health Effects Skin contact may cause skin irritation with discomfort or rash. Skin absorption may occur in amounts capable of producing toxic effects. Eye contact may cause eye irritation with discomfort, tearing or blurring of vision. Inhalation may cause irritation of the nose and throat with sneezing, sore throat, runny nose, or shortness of breath. Other effects of exposure may include headache, nausea or vomiting. Section 4: First Aid Measures Eye Contact: Check for and remove any contact lenses. IMMEDIATELY flush eyes with running water for at least 15 minutes while keeping eyes open. COLD water may be used. Seek medical attention. Skin Contact: After contact with skin, wash with plenty of water. Gently and thoroughly wash the contaminated skin with running water and non-abrasive soap. COLD water may be used.
    [Show full text]
  • Fisher Scientific Chemical Stockroom Handbook
    Chemical Stockroom Essentials • Fisher Chemical • Fisher BioReagents • Acros Organics Chemical Storage Guidelines Chemical Stockroom Handbook Introduction As the stockroom manager, you are charged with the safe handling of hazardous chemicals every single day. Your responsibilities are far-reaching … extending beyond the storeroom walls to lab personnel, building staff, campus residents and the environment. Fisher Scientific offers this little- big-book of safety resources. Inside you’ll find storage recommendations, chemical compatibility charts, and recommended essential products to stock to accommodate various research applications undertaken by your customers. Table of Contents Introduction........................................................................................................... 2 Incompatibilities by Hazard Class ................................................................... 11 Periodic Table of the Elements .......................................................................... 2 Chemical Incompatibilities ............................................................................... 12 Fisher Chemical* Purity Chart............................................................................ 3 NFPA Hazard Code Ratings .............................................................................. 13 Fisher Chemical Stockroom Essentials .........................................................4-5 Understanding Chemical Labels...................................................................... 14 Fisher BioReagents*
    [Show full text]
  • Design, Synthesis, Molecular Docking and Anticonvulsant Evaluation of Novel 6-Iodo-2-Phenyl- 3-Substituted-Quinazolin-4(3H)-Ones
    Bulletin of Faculty of Pharmacy, Cairo University (2015) 53, 101–116 HOSTED BY Cairo University Bulletin of Faculty of Pharmacy, Cairo University www.elsevier.com/locate/bfopcu www.sciencedirect.com ORIGINAL ARTICLE Design, synthesis, molecular docking and anticonvulsant evaluation of novel 6-iodo-2-phenyl- 3-substituted-quinazolin-4(3H)-ones Mohamed-Kamal Ibrahim, Khaled El-Adl *, Ahmed A. Al-Karmalawy Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt Received 20 July 2014; accepted 11 May 2015 Available online 28 May 2015 KEYWORDS Abstract A new series of 6-iodo-2-phenyl-3-substituted-quinazolin-4(3H)-one (5–12a–b) derivatives Quinazolin-4(3H)-ones; were synthesized, evaluated for their anticonvulsant activity against pentylenetetrazole (PTZ)- 6-Iodoquinazoline induced seizures and maximal electroshock test and compared with the reference drugs phenobar- derivatives; bital sodium and methaqualone. The neurotoxicity was assessed using rotarod test. The molecular Anticonvulsant agents docking was performed for all the synthesized compounds to assess their binding affinities to GABA-A receptor in order to rationalize their anticonvulsant activities in a qualitative way. The data obtained from the molecular modeling were correlated with those obtained from the biological screening. Compounds 9a, 9b, 12a and 7a showed the highest anticonvulsant activities of this series with relatively low neurotoxicity and low toxicity in the median lethal dose test when compared with the reference drugs. The obtained results proved that the most active compounds could be a useful model for future design, adaptation and investigation to construct more active analogs. ª 2015 Production and hosting by Elsevier B.V.
    [Show full text]
  • Recent Synthetic Methodologies for Pyrimidine and Its Derivatives
    Turkish Journal of Chemistry Turk J Chem (2018) 42: 1421 – 1458 http://journals.tubitak.gov.tr/chem/ © TÜBİTAK Research Article doi:10.3906/kim-1806-8 Recent synthetic methodologies for pyrimidine and its derivatives Farhat IBRAHEEM1,, Furqan Ahmad SADDIQUE1,, Sana ASLAM2,, Asim MANSHA1,, Tahir FAROOQ3,, Matloob AHMAD1;∗, 1Department of Chemistry, Government College University, Faisalabad, Pakistan 2Department of Chemistry, Government College Women University, Faisalabad, Pakistan 3Department of Applied Chemistry, Government College University, Faisalabad, Pakistan Received: 04.06.2018 • Accepted/Published Online: 13.07.2018 • Final Version: 06.12.2018 Abstract: Pyrimidine derivatives are well known due to their remarkable pharmacological potential in various fields of science, and they are also present in some natural substances like DNA and RNA. These scaffolds manifest diversified biological activities such as antimicrobial, antiinflammatory, anti-HIV, antitubercular, antitumor, antineoplastic, and antimalarial. A pyrimidine ring is constructed when chalcones, amidines, guanidine, nitriles, isocyanates, urea, thiourea, and aminopyrazoles undergo condensation, coupling, or cyclization reactions. In this context, the present review illustrates a variety of novel and efficient synthetic approaches towards the synthesis of pyrimidine and its derivatives that were reported recently. Key words: Pyrimidine, synthesis, multicomponent, chalcones, guanidine, urea, thiourea 1. Introduction Pyrimidine 1 is a six-membered heterocyclic compound containing two nitrogen atoms. Its synthetic deriva- tives demonstrate an essential role in modern medicines such as quinazoline alkaloids, which exhibit hypnotic activity. 1 Many simple fused pyrimidines such as purines and pteridines are biologically active. Some have bronchodilatory potential and act as antagonists of the human A 2 A adenosine receptor and constitute some valuable naturally occurring substances such as nucleic acids.
    [Show full text]
  • Vapor Pressures of Pure Substances 2-61
    VAPOR PRESSURES OF PURE SUBSTANCES 2-61 TABLE 2-8 Vapor Pressures of Organic Compounds, up to 1 atm* Pressure, mm Hg Melting Compound 1 5 10 20 40 60 100 200 400 760 point, Name Formula Temperature, °C °C Acenaphthalene C 12 H10 114.8 131.2 148.7 168.2 181.2 197.5 222.1 250.0 277.5 95 Acetal C 6H14 O2 −23.0 −2.3 +8.0 19.6 31.9 39.8 50.1 66.3 84.0 102.2 Acetaldehyde C 2H4O −81.5 −65.1 −56.8 −47.8 −37.8 −31.4 −22.6 −10.0 +4.9 20.2 −123.5 Acetamide C 2H5NO 65.0 92.0 105.0 120.0 135.8 145.8 158.0 178.3 200.0 222.0 81 Acetanilide C 8H9NO 114.0 146.6 162.0 180.0 199.6 211.8 227.2 250.5 277.0 303.8 113.5 Acetic acid C 2H4O2 −17.2 +6.3 17.5 29.9 43.0 51.7 63.0 80.0 99.0 118.1 16.7 anhydride C 4H6O3 1.7 24.8 36.0 48.3 62.1 70.8 82.2 100.0 119.8 139.6 −73 Acetone C 3H6O −59.4 −40.5 −31.1 −20.8 −9.4 −2.0 +7.7 22.7 39.5 56.5 −94.6 Acetonitrile C 2H3N −47.0 −26.6 −16.3 −5.0 +7.7 15.9 27.0 43.7 62.5 81.8 −41 Acetophenone C 8H8O 37.1 64.0 78.0 92.4 109.4 119.8 133.6 154.2 178.0 202.4 20.5 Acetyl chloride C 2H3OCl −50.0 −35.0 −27.6 −19.6 −10.4 −4.5 +3.2 16.1 32.0 50.8 −112.0 Acetylene C 2H2 −142.9 −133.0 −128.2 −122.8 −116.7 −112.8 −107.9 −100.3 −92.0 −84.0 −81.5 Acridine C 13 H9N 129.4 165.8 184.0 203.5 224.2 238.7 256.0 284.0 314.3 346.0 110.5 Acrolein (2-propenal) C 3H4O −64.5 −46.0 −36.7 −26.3 −15.0 −7.5 +2.5 17.5 34.5 52.5 −87.7 Acrylic acid C 3H4O2 +3.5 27.3 39.0 52.0 66.2 75.0 86.1 103.3 122.0 141.0 14 Adipic acid C 6H10 O4 159.5 191.0 205.5 222.0 240.5 251.0 265.0 287.8 312.5 337.5 152 Allene (propadiene) C 3H4 −120.6 −108.0 −101.0 −93.4 −85.2
    [Show full text]