Throughput-Optimal Broadcast on Directed Acyclic Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Throughput-Optimal Broadcast on Directed Acyclic Graphs Throughput-Optimal Broadcast on Directed Acyclic Graphs Abhishek Sinha, Georgios Paschos, Chih-ping Li, and Eytan Modiano Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139 Email: fsinhaa, gpasxos, cpli, [email protected] Abstract—We study the problem of broadcasting packets in design optimal wireless broadcast algorithms without the use wireless networks. At each time slot, a network controller acti- of spanning trees. To the best of our knowledge, there exists vates non-interfering links and forwards packets to all nodes at a no capacity-achieving scheduling policy for wireless broadcast common rate; the maximum rate is referred to as the broadcast capacity of the wireless network. Existing policies achieve the without spanning trees. broadcast capacity by balancing traffic over a set of spanning We begin by considering a rich class of scheduling policies trees, which are difficult to maintain in a large and time-varying Π that perform arbitrary link activations and packet forward- wireless network. We propose a new dynamic algorithm that ing, and characterize the broadcast capacity over this policy achieves the broadcast capacity when the underlying network class Π. We impose two additional constraints that improve topology is a directed acyclic graph (DAG). This algorithm utilizes local queue-length information, does not use any global the understanding of the problem. First, we consider the in-order topological structures such as spanning trees, and uses the idea subclass of policies Π ⊂ Π that enforce the in-order of in-order packet delivery to all network nodes. Although the delivery of packets. Second, we focus on the subset of policies in-order packet delivery constraint leads to degraded throughput Π∗ ⊂ Πin-order that allows the reception of a packet by a node in cyclic graphs, we show that it is throughput optimal in only if all its incoming neighbors have received the packet. DAGs and can be exploited to simplify the design and analysis of optimal algorithms. Our simulation results show that the It is intuitively clear that the policies in the more structured ∗ proposed algorithm has superior delay performance as compared class Π are easier to describe and analyze, but may yield to tree-based approaches. degraded throughput performance. We show the surprising result that when the underlying network topology is a directed I. INTRODUCTION acyclic graph (DAG), there is a control policy π∗ 2 Π∗ that Broadcast refers to the fundamental network functionality achieves the broadcast capacity. In contrast, there exists a of delivering data from a source node to all other nodes. It uses cyclic network in which no control policy in Π∗ or Πin-order packet replication and appropriate forwarding to eliminate un- can achieve the broadcast capacity. necessary packet retransmissions. This is especially important To enable the design of the optimal broadcast policy, we in power-constrained wireless systems which suffer from inter- establish a queue-like dynamics for the system state, which is ference and collisions. Broadcast applications include mission- represented by relative packet deficit. This is non-trivial for critical military communications [1], live video streaming [2], the broadcast problem because explicit queueing structure is and data dissemination in sensor networks [3]. difficult to maintain in the network due to packet replication. The design of efficient wireless broadcast algorithms faces As a result, achieving the broadcast capacity reduces to finding several challenges. Wireless channels suffer from interference, a scheduling policy that stabilizes the system states using the and a broadcast policy needs to activate non-interfering links drift analysis [5], [6]. at any time. Wireless network topologies undergo frequent In this paper, our contributions include: arXiv:1411.6172v1 [cs.NI] 22 Nov 2014 changes, so that packet forwarding decisions must be made • We define the broadcast capacity of a wireless network in an adaptive fashion. Existing dynamic multicast algorithms and show that it is characterized by an edge-capacitated that balance traffic over spanning trees [4] may be used for graph Gb that arises from optimizing the time-averages broadcasting, since broadcast is a special case of multicast. of link activations. For integral-capacitated DAGs, the These algorithms, however, are not suitable for wireless net- broadcast capacity is determined by the minimum in- works because enumerating all spanning trees is computation- degree of the graph Gb, which is equal to the maximal ally complex and needs to be performed repeatedly when the number of edge-disjoint spanning trees. network topology changes. • We design a dynamic algorithm that utilizes local queue- In this paper, we study the fundamental performance of length information to achieve the broadcast capacity of broadcasting packets in wireless networks. We consider a time- a wireless DAG network. This algorithm does not rely slotted system. At every slot, a scheduler decides which wire- on spanning trees, has small computational complexity, less links to activate and which packets to forward on activated and is suitable for mobile networks with time-varying links, so that all nodes receive packets at a common rate. topology. The broadcast capacity is the maximum common reception • We demonstrate the superior delay performance of our al- rate of distinct packets over all scheduling policies. We then gorithm, as compared to centralized tree-based algorithm 2 [4], via numerical simulations. In the literature, a simple method for wireless broadcast is to r λ r use packet flooding [7]. The flooding approach, however, leads to redundant transmissions and collisions, known as broadcast a b storm [8]. In the wired domain, it has been shown that a b forwarding useful packets at random is optimal for broadcast [9]; this approach does not extend to the wireless setting due c to interference and the need for scheduling [10]. Broadcast on c wired networks can also be done using network coding [11], [12]. However, efficient link activation under network coding (a) a wireless network (b) activation vector s1 remains an open problem. The rest of the paper is organized as follows. Section r II introduces the wireless network model. In Section III, r we define the broadcast capacity of a wireless network and provide a useful upper bound from a fundamental cut-set bound. In Section IV, we propose a dynamic broadcast policy a b a b that achieves the broadcast capacity in a DAG. Simulation results are presented in Section V. c c II. THE WIRELESS NETWORK MODEL We consider a wireless network that is represented by a (c) activation vector s2 (d) activation vector s3 directed graph G = (V; E; c; S), where V is the set of Fig. 1: A wireless network and its three feasible link activa- nodes, E is the set of directed links, c = (cij) denotes the capacity of links (i; j) 2 E, S is the set of all feasible tions under the primary interference constraint. link-activation vectors, and s = (se; e 2 E) 2 S is a binary vector indicating that the links e with s = 1 can e received by node i 2 V from the beginning of time up to time be activated simultaneously. The structure of the activation t, under a policy π 2 Π. The time average lim Rπ(T )=T set S depends on the interference model. Under the primary T !1 i is the rate of distinct packets received at node i. interference constraint, the set S consists of all binary vectors corresponding to matchings of the underlying graph G [13], Definition 1. A policy π is called a “broadcast policy of rate see Fig. 1. In the case of a wired network, S is the set of λ” if all nodes receive distinct packets at rate λ, i.e., all binary vectors since there is no interference. In this paper, 1 π we allow an arbitrary link-activation set S, which captures lim Ri (T ) = λ, for all i 2 V; w. p. 1, (1) T !1 T different wireless interference models. Let r 2 V be the source 1 node at which the broadcast traffic is generated. We consider a where λ is the packet arrival rate at the source node r. time-slotted system. In slot t, the number of packets generated Definition 2. The broadcast capacity λ∗ of a wireless network at the node r is denoted by A(t), where A(t) is i.i.d. over slots is the supremum of all arrival rates λ for which there exists with mean λ. These packets need to be delivered to all nodes a broadcast policy π of rate λ, π 2 Π. in the wireless network. A. An upper bound on broadcast capacity λ∗ III. WIRELESS BROADCAST CAPACITY We characterize the broadcast capacity λ∗ of a wireless Intuitively, the network supports a broadcast rate λ if there network by providing a useful upper bound. This upper bound exists a scheduling policy under which all network nodes is understood as a necessary cut-set bound of an associated can receive distinct packets at rate λ. The broadcast capacity edge-capacitated graph that reflects the time-average behavior is the maximally supportable broadcast rate in the network. of the wireless network. We provide an intuitive explanation Formally, we consider a class Π of scheduling policies where of the bound that will be formalized in Theorem 1 as follows. π each policy π 2 Π is a sequence of actions fπtgt≥1 taken in Fix a policy π 2 Π. Let βe be the fraction of time link every slot t. Each action πt consists of two operations: (i) the e 2 E is activated under π; that is, we define the vector scheduler activates a subset of links by choosing a feasible T activation vector s 2 S; (ii) each node i forwards a subset of π π 1 X π β = (βe ; e 2 E) = lim s (t); (3) T !1 T packets (possibly empty) to node j over an activated link (i; j), t=1 subject to the link capacity constraint.
Recommended publications
  • Applications of DFS
    (b) acyclic (tree) iff a DFS yeilds no Back edges 2.A directed graph is acyclic iff a DFS yields no back edges, i.e., DAG (directed acyclic graph) , no back edges 3. Topological sort of a DAG { next 4. Connected components of a undirected graph (see Homework 6) 5. Strongly connected components of a drected graph (see Sec.22.5 of [CLRS,3rd ed.]) Applications of DFS 1. For a undirected graph, (a) a DFS produces only Tree and Back edges 1 / 7 2.A directed graph is acyclic iff a DFS yields no back edges, i.e., DAG (directed acyclic graph) , no back edges 3. Topological sort of a DAG { next 4. Connected components of a undirected graph (see Homework 6) 5. Strongly connected components of a drected graph (see Sec.22.5 of [CLRS,3rd ed.]) Applications of DFS 1. For a undirected graph, (a) a DFS produces only Tree and Back edges (b) acyclic (tree) iff a DFS yeilds no Back edges 1 / 7 3. Topological sort of a DAG { next 4. Connected components of a undirected graph (see Homework 6) 5. Strongly connected components of a drected graph (see Sec.22.5 of [CLRS,3rd ed.]) Applications of DFS 1. For a undirected graph, (a) a DFS produces only Tree and Back edges (b) acyclic (tree) iff a DFS yeilds no Back edges 2.A directed graph is acyclic iff a DFS yields no back edges, i.e., DAG (directed acyclic graph) , no back edges 1 / 7 4. Connected components of a undirected graph (see Homework 6) 5.
    [Show full text]
  • 9 the Graph Data Model
    CHAPTER 9 ✦ ✦ ✦ ✦ The Graph Data Model A graph is, in a sense, nothing more than a binary relation. However, it has a powerful visualization as a set of points (called nodes) connected by lines (called edges) or by arrows (called arcs). In this regard, the graph is a generalization of the tree data model that we studied in Chapter 5. Like trees, graphs come in several forms: directed/undirected, and labeled/unlabeled. Also like trees, graphs are useful in a wide spectrum of problems such as com- puting distances, finding circularities in relationships, and determining connectiv- ities. We have already seen graphs used to represent the structure of programs in Chapter 2. Graphs were used in Chapter 7 to represent binary relations and to illustrate certain properties of relations, like commutativity. We shall see graphs used to represent automata in Chapter 10 and to represent electronic circuits in Chapter 13. Several other important applications of graphs are discussed in this chapter. ✦ ✦ ✦ ✦ 9.1 What This Chapter Is About The main topics of this chapter are ✦ The definitions concerning directed and undirected graphs (Sections 9.2 and 9.10). ✦ The two principal data structures for representing graphs: adjacency lists and adjacency matrices (Section 9.3). ✦ An algorithm and data structure for finding the connected components of an undirected graph (Section 9.4). ✦ A technique for finding minimal spanning trees (Section 9.5). ✦ A useful technique for exploring graphs, called “depth-first search” (Section 9.6). 451 452 THE GRAPH DATA MODEL ✦ Applications of depth-first search to test whether a directed graph has a cycle, to find a topological order for acyclic graphs, and to determine whether there is a path from one node to another (Section 9.7).
    [Show full text]
  • A Low Complexity Topological Sorting Algorithm for Directed Acyclic Graph
    International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014 A Low Complexity Topological Sorting Algorithm for Directed Acyclic Graph Renkun Liu then return error (graph has at Abstract—In a Directed Acyclic Graph (DAG), vertex A and least one cycle) vertex B are connected by a directed edge AB which shows that else return L (a topologically A comes before B in the ordering. In this way, we can find a sorted order) sorting algorithm totally different from Kahn or DFS algorithms, the directed edge already tells us the order of the Because we need to check every vertex and every edge for nodes, so that it can simply be sorted by re-ordering the nodes the “start nodes”, then sorting will check everything over according to the edges from a Direction Matrix. No vertex is again, so the complexity is O(E+V). specifically chosen, which makes the complexity to be O*E. An alternative algorithm for topological sorting is based on Then we can get an algorithm that has much lower complexity than Kahn and DFS. At last, the implement of the algorithm by Depth-First Search (DFS) [2]. For this algorithm, edges point matlab script will be shown in the appendix part. in the opposite direction as the previous algorithm. The algorithm loops through each node of the graph, in an Index Terms—DAG, algorithm, complexity, matlab. arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort: I.
    [Show full text]
  • CS302 Final Exam, December 5, 2016 - James S
    CS302 Final Exam, December 5, 2016 - James S. Plank Question 1 For each of the following algorithms/activities, tell me its running time with big-O notation. Use the answer sheet, and simply circle the correct running time. If n is unspecified, assume the following: If a vector or string is involved, assume that n is the number of elements. If a graph is involved, assume that n is the number of nodes. If the number of edges is not specified, then assume that the graph has O(n2) edges. A: Sorting a vector of uniformly distributed random numbers with bucket sort. B: In a graph with exactly one cycle, determining if a given node is on the cycle, or not on the cycle. C: Determining the connected components of an undirected graph. D: Sorting a vector of uniformly distributed random numbers with insertion sort. E: Finding a minimum spanning tree of a graph using Prim's algorithm. F: Sorting a vector of uniformly distributed random numbers with quicksort (average case). G: Calculating Fib(n) using dynamic programming. H: Performing a topological sort on a directed acyclic graph. I: Finding a minimum spanning tree of a graph using Kruskal's algorithm. J: Finding the minimum cut of a graph, after you have found the network flow. K: Finding the first augmenting path in the Edmonds Karp implementation of network flow. L: Processing the residual graph in the Ford Fulkerson algorithm, once you have found an augmenting path. Question 2 Please answer the following statements as true or false. A: Kruskal's algorithm requires a starting node.
    [Show full text]
  • Merkle Trees and Directed Acyclic Graphs (DAG) As We've Discussed, the Decentralized Web Depends on Linked Data Structures
    Merkle trees and Directed Acyclic Graphs (DAG) As we've discussed, the decentralized web depends on linked data structures. Let's explore what those look like. Merkle trees A Merkle tree (or simple "hash tree") is a data structure in which every node is hashed. +--------+ | | +---------+ root +---------+ | | | | | +----+---+ | | | | +----v-----+ +-----v----+ +-----v----+ | | | | | | | node A | | node B | | node C | | | | | | | +----------+ +-----+----+ +-----+----+ | | +-----v----+ +-----v----+ | | | | | node D | | node E +-------+ | | | | | +----------+ +-----+----+ | | | +-----v----+ +----v-----+ | | | | | node F | | node G | | | | | +----------+ +----------+ In a Merkle tree, nodes point to other nodes by their content addresses (hashes). (Remember, when we run data through a cryptographic hash, we get back a "hash" or "content address" that we can think of as a link, so a Merkle tree is a collection of linked nodes.) As previously discussed, all content addresses are unique to the data they represent. In the graph above, node E contains a reference to the hash for node F and node G. This means that the content address (hash) of node E is unique to a node containing those addresses. Getting lost? Let's imagine this as a set of directories, or file folders. If we run directory E through our hashing algorithm while it contains subdirectories F and G, the content-derived hash we get back will include references to those two directories. If we remove directory G, it's like Grace removing that whisker from her kitten photo. Directory E doesn't have the same contents anymore, so it gets a new hash. As the tree above is built, the final content address (hash) of the root node is unique to a tree that contains every node all the way down this tree.
    [Show full text]
  • Graph Algorithms G
    Bipartiteness Graph G = (V,E) is bipartite iff it can be partitioned into two sets of nodes A and B such that each edge has one end in A and the other Introduction to Algorithms end in B Alternatively: Graph Algorithms • Graph G = (V,E) is bipartite iff all its cycles have even length • Graph G = (V,E) is bipartite iff nodes can be coloured using two colours CSE 680 Question: given a graph G, how to test if the graph is bipartite? Prof. Roger Crawfis Note: graphs without cycles (trees) are bipartite bipartite: non bipartite Testing bipartiteness Toppgological Sort Method: use BFS search tree Recall: BFS is a rooted spanning tree. Algorithm: Want to “sort” or linearize a directed acyygp()clic graph (DAG). • Run BFS search and colour all nodes in odd layers red, others blue • Go through all edges in adjacency list and check if each of them has two different colours at its ends - if so then G is bipartite, otherwise it is not A B D We use the following alternative definitions in the analysis: • Graph G = (V,E) is bipartite iff all its cycles have even length, or • Graph G = (V, E) is bipartite iff it has no odd cycle C E A B C D E bipartit e non bipartite Toppgological Sort Example z PerformedonaPerformed on a DAG. A B D z Linear ordering of the vertices of G such that if 1/ (u, v) ∈ E, then u appears before v. Topological-Sort (G) 1. call DFS(G) to compute finishing times f [v] for all v ∈ V 2.
    [Show full text]
  • 6.042J Chapter 6: Directed Graphs
    “mcs-ftl” — 2010/9/8 — 0:40 — page 189 — #195 6 Directed Graphs 6.1 Definitions So far, we have been working with graphs with undirected edges. A directed edge is an edge where the endpoints are distinguished—one is the head and one is the tail. In particular, a directed edge is specified as an ordered pair of vertices u, v and is denoted by .u; v/ or u v. In this case, u is the tail of the edge and v is the ! head. For example, see Figure 6.1. A graph with directed edges is called a directed graph or digraph. Definition 6.1.1. A directed graph G .V; E/ consists of a nonempty set of D nodes V and a set of directed edges E. Each edge e of E is specified by an ordered pair of vertices u; v V . A directed graph is simple if it has no loops (that is, edges 2 of the form u u) and no multiple edges. ! Since we will focus on the case of simple directed graphs in this chapter, we will generally omit the word simple when referring to them. Note that such a graph can contain an edge u v as well as the edge v u since these are different edges ! ! (for example, they have a different tail). Directed graphs arise in applications where the relationship represented by an edge is 1-way or asymmetric. Examples include: a 1-way street, one person likes another but the feeling is not necessarily reciprocated, a communication channel such as a cable modem that has more capacity for downloading than uploading, one entity is larger than another, and one job needs to be completed before another job can begin.
    [Show full text]
  • Graph Algorithms
    Graph Algorithms Graphs and Graph Repre- sentations Graph Graph Algorithms Traversals COMP4128 Programming Challenges Directed Graphs and Cycles Strongly Connected Components Example: School of Computer Science and Engineering 2SAT UNSW Australia Minimum Spanning Trees Table of Contents 2 Graph Algorithms 1 Graphs and Graph Representations Graphs and Graph Repre- sentations 2 Graph Graph Traversals Traversals Directed Graphs and 3 Directed Graphs and Cycles Cycles Strongly Connected 4 Strongly Connected Components Components Example: 2SAT 5 Example: 2SAT Minimum Spanning Trees 6 Minimum Spanning Trees Graphs 3 Graph Algorithms Graphs and Graph Repre- sentations A graph is a collection of vertices and edges connecting Graph pairs of vertices. Traversals Directed Generally, graphs can be thought of as abstract Graphs and Cycles representations of objects and connections between those Strongly objects, e.g. intersections and roads, people and Connected Components friendships, variables and equations. Example: Many unexpected problems can be solved with graph 2SAT techniques. Minimum Spanning Trees Graphs 4 Graph Algorithms Graphs and Graph Repre- sentations Graph Many different types of graphs Traversals Directed graphs Directed Graphs and Acyclic graphs, including trees Cycles Weighted graphs Strongly Connected Flow graphs Components Other labels for the vertices and edges Example: 2SAT Minimum Spanning Trees Graph Representations 5 Graph Algorithms Graphs and Graph Repre- sentations Graph You’ll usually want to either use an adjacency list or an Traversals adjacency matrix to store your graph. Directed Graphs and An adjacency matrix is just a table (usually implemented Cycles as an array) where the jth entry in the ith row represents Strongly Connected the edge from i to j, or lack thereof.
    [Show full text]
  • The Shortest Path Problem with Edge Information Reuse Is NP-Complete
    The Shortest Path Problem with Edge Information Reuse is NP-Complete Jesper Larsson Tr¨aff TU Wien Faculty of Informatics, Institute of Information Systems Research Group Parallel Computing Favoritenstrasse 16/184-5, 1040 Vienna, Austria email: [email protected] 15.9.2015, Revised 6.6.2016 Abstract We show that the following variation of the single-source shortest path problem is NP- complete. Let a weighted, directed, acyclic graph G = (V,E,w) with source and sink vertices s and t be given. Let in addition a mapping f on E be given that associates information with the edges (e.g., a pointer), such that f(e)= f(e′) means that edges e and e′ carry the same information; for such edges it is required that w(e)= w(e′). The length of a simple st path U is the sum of the weights of the edges on U but edges with f(e)= f(e′) are counted only once. The problem is to determine a shortest such st path. We call this problem the edge information reuse shortest path problem. It is NP-complete by reduction from 3SAT. 1 The Edge Information Reuse Shortest Path Problem A weighted, directed, acyclic graph G = (V, E, w) with source and sink vertices s,t ∈ V is given. Edges represent some possible substructures and a path from s to t determines how substructures are put together to form a desired superstructure. Edge weights reflect the cost of the associated substructures (e.g., memory consumption). An ordinary shortest path determines an ordered, tree-like representation of the superstructure of least cost: a single root with children given by the edges of the path.
    [Show full text]
  • 5 Directed Acyclic Graphs
    5 Directed acyclic graphs (5.1) Introduction In many statistical studies we have prior knowledge about a temporal or causal ordering of the variables. In this chapter we will use directed graphs to incorporate such knowledge into a graphical model for the variables. Let XV = (Xv)v∈V be a vector of real-valued random variables with probability distribution P and density p. Then the density p can always be decomposed into a product of conditional densities, d Q p(x) = p(xd|x1, . , xd−1)p(x1, . , xd−1) = ... = p(xv|x1, . , xv−1). (5.1) v=1 Note that this can be achieved for any ordering of the variables. Now suppose that the conditional density of some variable Xv does not depend on all its predecessors, namely X1,...,Xv−1, but only on a subset XUv , that is, Xv is conditionally inde- pendent of its predecessors given XUv . Substituting p(xv|xUv ) for p(xv|x1, . , xv−1) in the product (5.1), we obtain d Q p(x) = p(xv|xUv ). (5.2) v=1 This recursive dependence structure can be represented by a directed graph G by drawing an arrow from each vertex in Uv to v. As an immediate consequence of the recursive factorization, the resulting graph is acyclic, that is, it does not contain any loops. On the other hand, P factorizes with respect to the undirected graph Gm which is given by the class of complete subsets D = {{v} ∪ Uv|v ∈ V }. This graph can be obtained from the directed graph G by completing all sets {v} ∪ Uv and then converting all directed edges into undirected ones.
    [Show full text]
  • Single-Source Shortest Paths (Ch
    Single-Source Shortest Paths (Ch. 24) Single-Source Shortest Paths The single-source shortest path problem (SSSP) Weights in SSSP algorithms include distances, times, hops, input: a directed graph G = (V, E) with edge weights, and a cost, etc. Used in lots of routing applications. specific source node s. goal: find a minimum weight (shortest) path from s to every other Note: BFS finds the shortest paths for the special case when all node in V (sometimes we only want the cost of these paths) edge weights are 1. Running time = O(V + E) It turns out that, in the worst case, finding the shortest path between s and a single The result of a SSSP algorithm can be viewed as a tree node t is no easier than finding the shortest paths between s and all other nodes rooted at s, containing a shortest (wrt weight) path from s à g = ¥ s to all other nodes. s à b = 2 2 3 s à c = 5 s à h = 7 a b c 2 3 5 6 a b 6 c s à d = 6 S 5 3 d 1 e S 3 s à e = 5 2 d 1 e 2 s à f = 3 f 4 g 2 h f 4 g 2 h 2 Negative-weight cycles Single-Source Shortest Paths Some graphs may have negative-weight cycles and these are Question: Can a shortest path contain a cycle? a problem for SSSP algorithms. What is the shortest path from a to d? No. b 9 · path a-c-e-d = -12+3-2 = -11 2 8 6 Suppose we have a shortest path p = áv0, v1, ..., vkñ and S -12 3 c = áv , v , ..., v ñ is a positive-weight cycle on p so that v = v · path a-c-e-d-a-c-e-d = a c e i i+1 j i j -12+3-2+(10-12+3-2)= -13 6 4 and w(c) > 0.
    [Show full text]
  • Algorithms (Winter 2021) Ungraded Problem Set 5 Due: Not for Submission Topic: Graphs: Basics + DFS
    CS 31: Algorithms (Winter 2021) Ungraded Problem Set 5 Due: Not for submission Topic: Graphs: Basics + DFS Problem 1 (Some operations with graphs). For the parts below, describe your algorithm summary in English and also provide a clear pseudocode. You may assume the graph G = (V; E) is input as adjacency lists. a. In this part the graph G is directed. You need to return the reverse graph Grev where all edges have been reversed. Grev should also be represented as adjacency lists. What is the runtime of your algo- rithm? K b. Recall the definition of a walk from vertex u to vertex v and a path from vertex u to v. Design an algorithm which takes input a walk from u to v, and returns a path from u to v. K Problem 2 (DFS firsts and lasts). For each of the following assertions, prove or give a counterexample. The graph G, unless mentioned, is directed. When you give a counter-example, you should explain why it is a counter-example. (a) If G contains a path from u to v and if first[u] < first[v] in a depth-first search of G, then last[v] < last[u]. K (b) If (u=v1; v2; : : : ; vk =v) is a path from u to v in G such that last[vi] < last[v] for all 1 ≤ i < k, then first[v] < first[vi] for all 1 ≤ i < k. K (c) If we run depth-first search on G in an arbitrary order to obtain first’s and last’s, and let σ be the increasing order of last[v]’s.
    [Show full text]