Sofi-Brochure.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Sofi-Brochure.Pdf A Brighter Future The new Solar Fuels Institute (SOFI) An international team of leading scientists has chosen Evanston, Illinois and Telluride, Colorado to host a revolutionary new Solar Fuels Institute (SOFI). The SOFI team, led by internationally-recognized Northwestern The ambitious goal of SOFI is to be a major and University Professor Michael R. Wasielewski, will transform the essential contributor to solving the world's energy fundamental science of artificial photosynthesis into the crisis within a decade. This brochure explains how technology that runs our households, agriculture, and industry. this will be done. The solar fuels developed will use existing infrastructure requiring minimal change in industry and consumer behavior. By mimicking one of nature's most fundamental processes – photosynthesis – SOFI scientists aim to Global energy needs are expected to double over the next 40 fuel the planet sustainably using the ultimate years. Initiatives focused on finding cost-effective, carbon- energy source, the sun. Plants sustain their energy neutral energy sources are critically important for meeting those needs by capturing sunlight and turning it into needs and sustaining earth's balance. nutrients. SOFI scientists aim to convert the sun's energy into clean fuels by following nature's photo- However, excess carbon dioxide (CO ) generated by burning synthetic blueprint. 2 conventional fossil fuels is still in the atmosphere. The technologies SOFI scientists create will turn that CO2 back into clean fuels, thus mitigating the effects of CO2 on climate change. Recycling at its best. How will this change the world? Imagine your children and grandchildren building on the legacy of a sustainable energy solution. Future generations will refine and enhance the capabilities of this new technology. Imagine not passing down What are our global the energy crisis. energy needs? Currently, the world’s total Imagine the news without energy related disaster energy demand is about 15 stories. Recent catastrophic events highlight the trillion watts, or 15 terawatts need for a new approach to meeting the world's (TW). This is projected to energy needs: the meltdown of the Fukushima increase to 30 TW by 2050 nuclear reactor in Japan after the massive tsunami and 45 TW by 2100 as the and earthquake; contaminated water tables and world’s population continues to inadvertent earthquakes caused by natural gas grow and the economies of fracking; and destructive off-shore oil spills. These China, India, Brazil, and the events remind us that business as usual is developing world expand. If the not working. world meets these demands by burning fossil fuels, atmo- In a world fueled by solar energy, extractive spheric CO2 will be ten times technologies of oil, coal, and natural gas are old higher in 2100 than it is today. fashioned and outdated. Nuclear power becomes Such concentrations have not obsolete. Energy waste-product toxins no longer existed for hundreds of millions contaminate rivers and oceans. Planet earth rejuve- of years and coincide with nates. Quality of life improves. periods of mass extinction. What’s more, the cost of extracting energy from fossil fuels is expected to increase throughout the remainder of the 21st century as resources become scarce. Implicit in the expanded use of fossil fuels is the assumption that this can be done without disrupting global economic growth. To ensure worldwide economic stability, environmental sustain- ability, and human prosperity during the next few decades and beyond, drastic changes in our energy supply and infrastructure systems will be necessary. Why is solar energy better? Five sustainable sources of carbon-neutral energy are currently being discussed and investigated to meet the anticipated global need of 30-45 TW. Researchers have calculated how much energy could be produced if current existing technologies were fully implemented around the globe. EARTH: If the geothermic potential of all hot springs, geysers, and other natural heat sources were tapped for energy, less than 12 TW would be generated; a much smaller fraction is actually realistic. The Earth's usable heat is not sufficient to provide the world's energy demands. WIND: If all the surface winds on the face of the Earth could be utilized, only about 12 TW could be tapped; realistically, only 2.5 TW could be generated. BIOMASS: If sugarcane or some other high yield crop were planted on all cultivatable land across the world, only 6 TW would be produced and that would leave no land to grow food crops. Why are solar fuels better than WATER: If all the potential hydroelectric energy available from all the water flowing downhill in all the solar power? rivers, lakes, and oceans on Earth is used, only 4-5 While solar energy is clearly TW could be produced; 1.5 TW might be the way forward, it is not practically possible. perfect. Since the sun does not shine everywhere all the time, solar energy must either be stored for use later or transported from where it is available to where it is needed. Current solar energy technol- ogy, solar power, converts SUN: The sun is a giant nuclear fusion reactor at a sunlight into electricity using safe distance of about 93,000,000 miles from our photovoltaics, i.e. solar cells. planet. The energy of the sunlight that hits the Electricity storage in batteries is surface of the Earth in one hour is equal to the inefficient and expensive, and current worldwide energy demand for an entire year: electricity transmission requires 15 TW in 60 minutes. infrastructure not available in developing countries where the SUMMARY: Developing the infrastructure to harvest energy demand will be energy practically from all hydroelectric, geothermal, highest. Hence, current solar wind, and biomass sources would yield only 12-14 energy technology is difficult TW — only half of what is needed by 2050. and expensive for use on a Conversely, implementing solar energy technologies global scale. alone on a modest global scale would meet our needs through 2100 and beyond. The solar energy of the future converts sunlight into solar fuels using artificial photosynthesis. Solar fuels are liquid hydrocarbon fuels similar to petroleum that can be stored in tanks and transported in vehicles powered by the fuels themselves. What is photosynthesis? Photosynthesis is evolution’s answer to a key biological problem: how to take the energy from light and store it in chemical bonds. Plants and some microorganisms do this well, providing What is artificial nutrients for all their life processes. The photosyn- photosynthesis? thetic process converts energy from a form that is Artificial photosynthesis adapts abundant, but transient, to a form that is storable the principles of natural and metabolically useful. Without it, plants and photosynthesis to create animals could not exist. systems for solar fuels produc- tion that are simpler, more Photosynthesis uses the energy in photons to robust, and more efficient than synthesize carbohydrates, using CO2 as a source of the natural system. Like the carbon and water as a source of hydrogen and natural process, it uses a oxygen. The process requires two catalysts: one to solar-powered catalyst to split split water into its constituent atoms, and the other water and produce hydrogen. to drive the synthesis that uses CO2. Both catalysts This hydrogen can either be are powered by light from the sun. used directly to power hydro- gen fuel cells, or it can be combined with CO2 via another photocatalyst to yield conven- tional liquid hydrocarbon fuels similar to petroleum. Various catalysts capable of splitting water or synthesizing hydrocarbons exist today. However, most of them require an external electric current to function. The challenge is to discover or engineer catalysts that derive energy directly from photons. Direct solar fuels production that bypasses intermediate energy carriers, such as biomass or electricity, has the potential to be more efficient, cost-effective, and environmentally benign than existing technologies. As it exists in nature, photosynthesis is very inefficient. Only a fraction of a percent of the energy in light incident on a plant’s leaves ultimately ends up in long-term storage. Much of the light is not absorbed by the right components, and much of the converted energy is used immediately for cellular metabolism and growth. Removing these limitations could yield much greater efficiencies of at least ten percent. Where are the knowledge gaps? Artificial photosynthesis is a promising technology poised to revolutionize the availability and use of carbon-neutral, geopolitically favorable fuels. However, no comprehensive, cost-effective artificial Why hasn't this photosynthetic system exists today. Currently this happened yet? Why technology remains in the research and develop- can it happen now? ment stages, relying heavily on the discovery of new Achieving SOFI goals requires a materials and catalysts. sustained, integrated, focused, and managed global and Advances in basic research have already increased cross-disciplinary, effort that has understanding of the fundamental principles that been lacking until now. SOFI will govern solar energy conversion. integrate and leverage 25-30 international labs already researching artificial photosynthe- sis, uniting them into an efficient coordinated research team dedicated to developing solar fuels and supported by sufficient long-term funding to enable the needed 10-year initiative. However, current technologies cannot
Recommended publications
  • Parabolic Trough Solar Collectors: a General Overview of Technology, Industrial Applications, Energy Market, Modeling, and Standards
    Green Processing and Synthesis 2020; 9: 595–649 Review Article Pablo D. Tagle-Salazar, Krishna D.P. Nigam, and Carlos I. Rivera-Solorio* Parabolic trough solar collectors: A general overview of technology, industrial applications, energy market, modeling, and standards https://doi.org/10.1515/gps-2020-0059 received May 28, 2020; accepted September 28, 2020 Nomenclature Abstract: Many innovative technologies have been devel- oped around the world to meet its energy demands using Acronyms renewable and nonrenewable resources. Solar energy is one of the most important emerging renewable energy resources in recent times. This study aims to present AOP advanced oxidation process fl the state-of-the-art of parabolic trough solar collector ARC antire ective coating technology with a focus on different thermal performance CAPEX capital expenditure fl analysis methods and components used in the fabrication CFD computational uid dynamics ffi of collector together with different construction materials COP coe cient of performance and their properties. Further, its industrial applications CPC compound parabolic collector (such as heating, cooling, or concentrating photovoltaics), CPV concentrating photovoltaics solar energy conversion processes, and technological ad- CSP concentrating solar power vancements in these areas are discussed. Guidelines on DNI direct normal irradiation fi - ff commercial software tools used for performance analysis FDA nite di erence analysis fi - of parabolic trough collectors, and international standards FEA nite element analysis related to performance analysis, quality of materials, and FO forward osmosis fi durability of parabolic trough collectors are compiled. FVA nite volume analysis Finally, a market overview is presented to show the im- GHG greenhouse gasses portance and feasibility of this technology.
    [Show full text]
  • Solar Energy Conversion and Its Utilization
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072 SOLAR ENERGY CONVERSION AND ITS UTILIZATION Nayna P. Lokhande1, Nilima G. Maraskolhe2, Shubham S. Lokhande3, Prof. Bhushan S. Rakhonde4 1 BE, Electrical Engineering Department, DES’sCOET, Maharashtra, India 2 BE, Electrical Engineering Department, DES’sCOET, Maharashtra, India 3 BE, Electrical Engineering Department, DES’sCOET, Maharashtra, India 4Assistant Professor, Electrical Engineering Department, DES’sCOET, Maharashtra, India ---------------------------------------------------------------------***------------------------------------------------------------------- Solar photovoltaic (SPV) systems convert sunlight Abstract - Solar energy is a clean renewable resource with directly into electricity. A small power system enables zero emission, has got tremendous potential of energy which homeowners to generate some or all of their daily electrical can be harnessed using a variety of devices. With recent energy demand on their own roof top, exchanging daytime developments, solar energy systems are easily available for excess power for its energy needs in nights using SPV industrial and domestic use with the added advantage of generation, if it is supported by the battery back-up. A SPV minimum maintenance. The electricity requirements of the power system can be used to generate electric energy as a world including India are increasing at alarming rate and the way of distributed generation (DG) for rural areas. Several power demand has been running ahead of supply. It is also approaches have been proposed to improve efficiency of SPV now widely recognized that fossil fuels (i.e., coal, petroleum system and to provide the proper ac voltage required by and natural gas) and other conventional resources, presently residential customers.
    [Show full text]
  • Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power
    polymers Review Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power SK Manirul Haque 1, Jorge Alfredo Ardila-Rey 2, Yunusa Umar 1 ID , Habibur Rahman 3, Abdullahi Abubakar Mas’ud 4,*, Firdaus Muhammad-Sukki 5 ID and Ricardo Albarracín 6 ID 1 Department of Chemical and Process Engineering Technology, Jubail Industrial College, P.O. Box 10099, Jubail 31961, Saudi Arabia; [email protected] (S.M.H.); [email protected] (Y.U.) 2 Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile 8940000, Chile; [email protected] 3 Department of General Studies, Jubail Industrial College, P.O. Box 10099, Jubail 31961, Saudi Arabia; [email protected] 4 Department of Electrical and Electronics Engineering, Jubail Industrial College, P.O. Box 10099, Jubail 319261, Saudi Arabia 5 School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, Scotland, UK; [email protected] 6 Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +966-53-813-8814 Received: 10 February 2018; Accepted: 6 March 2018; Published: 12 March 2018 Abstract: Solar photoelectric energy converted into electricity requires large surface areas with incident light and flexible materials to capture these light emissions. Currently, sunlight rays are converted to electrical energy using silicon polymeric material with efficiency up to 22%. The majority of the energy is lost during conversion due to an energy gap between sunlight photons and polymer energy transformation.
    [Show full text]
  • Artificial Photosynthesis
    May 2018 Position Paper Artificial Photosynthesis State of Research, Scientific-Technological Challenges and Perspectives German National Academy of Sciences Leopoldina | www.leopoldina.org acatech – National Academy of Science and Engineering | www.acatech.de Union of the German Academies of Sciences and Humanities | www.akademienunion.de Imprint Publishers acatech – National Academy of Science and Engineering (lead institution) acatech Office: Karolinenplatz 4, 80333 München German National Academy of Sciences Leopoldina Jägerberg 1, 06108 Halle (Saale) Union of the German Academies of Sciences and Humanities Geschwister-Scholl-Straße 2, 55131 Mainz Editor PD Dr. Marc-Denis Weitze, acatech Translators Paul Clarke (FITI) & Charlotte Couchman (FITI), Lodestar Translations Design and typesetting unicommunication.de, Berlin ISBN: 978-3-8047-3645-0 Bibliographic information of the German National Library The German National Library lists this publication in the German National Bibliography. Detailed bibliographic data is available online at http://dnb.d-nb.de. Recommended citation: acatech – National Academy of Science and Engineering, German National Academy of Sciences Leopoldina, Union of the German Academies of Sciences and Humanities (Eds.) (2018): Artificial Photosynthesis. Munich, 74 pages. Artificial Photosynthesis State of Research, Scientific-Technological Challenges and Perspectives 2 Contents Contents Abstract and summary of recommendations ....................................................4 1. Introduction .............................................................................................
    [Show full text]
  • Solar Energy Conversion Technologies and Research Opportunities
    STANFORD UNIVERSITY Global Climate & Energy Project Technical Assessment Report An Assessment of Solar Energy Conversion Technologies and Research Opportunities GCEP Energy Assessment Analysis Summer 2006 Abstract The solar energy flux reaching the Earth’s surface represents a few thousand times the current use of primary energy by humans. The potential of this resource is enormous and makes solar energy a crucial component of a renewable energy portfolio aimed at reducing the global emissions of greenhouse gasses into the atmosphere. Nevertheless, the current use of this energy resource represents less than 1% of the total electricity production from renewable sources. Even though the deployment of photovoltaic systems has been increasing steadily for the last 20 years, solar technologies still suffer from some drawbacks that make them poorly competitive on an energy market dominated by fossil fuels: high capital cost, modest conversion efficiency, and intermittency. From a scientific and technical viewpoint, the development of new technologies with higher conversion efficiencies and low production costs is a key requirement for enabling the deployment of solar energy at a large scale. This report summarizes the state of the research in some mature and emerging solar technologies with high potential for large- scale energy production, and identifies fundamental research topics that are crucial for improving their performance, reliability, and competitiveness. Issued by the Global Climate and Energy Project http://gcep.stanford.edu Table
    [Show full text]
  • Artificial Photosynthesis: Beyond Mimicking Nature
    BNL-114802-2017-JA Artificial Photosynthesis: Beyond Mimicking Nature H. Dau, E . Fujita Submitted to ChemSusChem November 2017 Chemistry Department Brookhaven National Laboratory U.S. Department of Energy USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE- SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid- up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]
  • Semi-Biological Approaches to Solar-To-Chemical Conversion Cite This: Chem
    Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Semi-biological approaches to solar-to-chemical conversion Cite this: Chem. Soc. Rev., 2020, 49,4926 Xin Fang, Shafeer Kalathil and Erwin Reisner * This review presents a comprehensive summary of the recent development in semi-artificial photosynthesis, a biological-material hybrid approach to solar-to-chemical conversion that provides new concepts to shape a sustainable future fuelled by solar energy. We begin with a brief introduction to natural and artificial photosynthesis, followed by a discussion of the motivation and rationale behind semi-artificial photosynthesis. Then, we summarise how various enzymes can be combined with synthetic materials for light-driven water oxidation, H2 evolution, Received 28th October 2019 CO2 reduction, and chemical synthesis more broadly. In the following section, we discuss the strategies to DOI: 10.1039/c9cs00496c incorporate microorganisms in photocatalytic and (photo)electrochemical systems to produce fuels and chemicals with renewable sources. Finally, we outline emerging analytical techniques to study the bio-material hybrid rsc.li/chem-soc-rev systems and propose unexplored research opportunities in the field of semi-artificial photosynthesis. Creative Commons Attribution 3.0 Unported Licence. 1 Introduction catalysts still encounter challenges in solar-to-chemical conversion, nature provides evolutionarily-optimised biocatalysts. This review The consequences of anthropogenic carbon emissions call for summarises how this biological machinery can be leveraged to innovative strategies to develop renewable energy technologies. catalyse light-driven reactions by an emerging technology termed Photovoltaics (PV) is the leading technology for solar energy ‘‘semi-artificial photosynthesis’’, in which biocatalysts in the form of conversion,1,2 butitshowsdisadvantagesinintermittencyand enzymes or microorganisms are incorporated with particles or long-distance electricity transmission.
    [Show full text]
  • Increasing Solar Energy Conversion Efficiency in Hydrogenated Amorphous Silicon Photovoltaic Devices with Plasmonic Perfect Meta – Absorbers
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2016 INCREASING SOLAR ENERGY CONVERSION EFFICIENCY IN HYDROGENATED AMORPHOUS SILICON PHOTOVOLTAIC DEVICES WITH PLASMONIC PERFECT META – ABSORBERS Jephias Gwamuri Michigan Technological University, [email protected] Copyright 2016 Jephias Gwamuri Recommended Citation Gwamuri, Jephias, "INCREASING SOLAR ENERGY CONVERSION EFFICIENCY IN HYDROGENATED AMORPHOUS SILICON PHOTOVOLTAIC DEVICES WITH PLASMONIC PERFECT META – ABSORBERS", Open Access Dissertation, Michigan Technological University, 2016. https://doi.org/10.37099/mtu.dc.etdr/170 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Semiconductor and Optical Materials Commons INCREASING SOLAR ENERGY CONVERSION EFFICIENCY IN HYDROGENATED AMORPHOUS SILICON PHOTOVOLTAIC DEVICES WITH PLASMONIC PERFECT META – ABSORBERS By Jephias Gwamuri A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Materials Science and Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2016 © 2016 Jephias Gwamuri This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Materials Science and Engineering. Department of Materials Science and Engineering Dissertation Advisor: Dr. Joshua A. Pearce Committee Member: Dr. Miguel Levy Committee Member: Dr. Durdu Guney Committee Member: Dr. Paul Bergstrom Department Chair: Dr. Stephen L. Kampe Table of Contents List
    [Show full text]
  • Nanotechnology for Catalysis and Solar Energy Conversion
    Nanotechnology Nanotechnology 32 (2021) 042003 (28pp) https://doi.org/10.1088/1361-6528/abbce8 Roadmap Nanotechnology for catalysis and solar energy conversion U Banin1 , N Waiskopf1, L Hammarström2 , G Boschloo2, M Freitag2, E M J Johansson2,JSá2 , H Tian2 , M B Johnston3 , L M Herz3 , R L Milot4, M G Kanatzidis5 ,WKe5, I Spanopoulos5, K L Kohlstedt5 , G C Schatz5 , N Lewis6 , T Meyer7 , A J Nozik8,9 , M C Beard8 , F Armstrong10 , C F Megarity10, C A Schmuttenmaer11,12 , V S Batista11,13 and G W Brudvig11,13 1 The Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 2 Department of Chemistry—Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden 3 Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom 4 Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom 5 Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America 6 Division of Chemistry and Chemical Engineering, and Beckman Institute, 210 Noyes Laboratory, 127-72 California Institute of Technology, Pasadena, CA 91125, United States of America 7 University of North Carolina at Chapel Hill, Department of Chemistry, United States of America 8 National Renewable Energy Laboratory, United States of America 9 University of Colorado, Boulder, CO, Department of Chemistry, 80309, United States of America 10 Department of Chemistry, University of Oxford, Oxford, United Kingdom 11 Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, 06520-8107, United States of America E-mail: [email protected], [email protected], [email protected], m- [email protected], [email protected], [email protected], nslewis@its.
    [Show full text]
  • Organic Electronic Devices for Solar Energy Conversion and Storage
    Linköping Studies in Science and Technology Dissertation No. 2081 Yingzhi Jin FACULTY OF SCIENCE AND ENGINEERING Linköping Studies in Science and Technology, Dissertation No. 2081, 2020 Department of Physics, Chemistry and Biology (IFM) Organic Electronic Linköping University SE-581 83 Linköping, Sweden Organic Electronic Devices for Solar Energy Conversion and Storage Energy Conversion Solar Devices for Electronic Organic Devices for Solar www.liu.se Energy Conversion and Storage Yingzhi Jin 2020 Linköping Studies in Science and Technology No. 2081 Organic electronic devices for solar energy conversion and storage Yingzhi Jin Biomolecular and Organic Electronics Department of Physics, Chemistry and Biology (IFM) Linköping University, SE-581 83 Linköping, Sweden Linköping 2020 During the course of research underlying this thesis, Yingzhi Jin was enrolled in Agora Materiae, a multidisciplinary doctoral program at Linköping University, Sweden. Copyright © Yingzhi Jin, 2020 Organic electronic devices for solar energy conversion and storage Printed by Liu-Tryck, Linköping, Sweden, 2020 ISSN 0345-7524 ISBN 978-91-7929-825-8 Abstract This thesis focuses on two types of organic electronic devices: organic photovoltaic (OPV) devices for solar energy conversion, and photo-capacitors for energy storage. OPVs have been under the focus of research for decades as an effective technique to convert solar energy to electricity. So far, the efficiency of bulk heterojunction OPV consisting donor and acceptor materials is approaching to 18% with non-fullerene acceptor (NFA), which make it close to commercialization. The process of charge generation and recombination are two competing processes in OPVs, since their requirements for the active layer morphology are contradictory. Large donor/acceptor interfaces facilitate charge generation but hinder the transporting pathways for charge transportation.
    [Show full text]
  • Solar Energy Utilization
    On the Cover: One route to harvesting the energy of the sun involves learning to mimic natural photosynthesis. Here, sunlight falls on a porphyrin, one member of a family of molecules that includes the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green plants. Efficient light-harvesting of the solar spectrum by porphyrins and related molecules can be used to power synthetic molecular assemblies and solid- state devices — applying the principles of photosynthesis to the produc- tion of hydrogen, methane, ethanol, and methanol from sunlight, water, and atmospheric carbon dioxide. BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION Report on the Basic Energy Sciences Workshop on Solar Energy Utilization Chair: Nathan S. Lewis, California Institute of Technology Co-chair: George Crabtree, Argonne National Laboratory Panel Chairs: Solar Electric Arthur J. Nozik, National Renewable Energy Laboratory Solar Fuels Michael R. Wasielewski, Northwestern University Cross-cutting Paul Alivisatos, Lawrence Berkeley National Laboratory Office of Basic Energy Sciences Contact: Harriet Kung, Basic Energy Sciences, U.S. Department of Energy Special Assistance Technical: Jeffrey Tsao, Sandia National Laboratories Elaine Chandler, Lawrence Berkeley National Laboratory Wladek Walukiewicz, Lawrence Berkeley National Laboratory Mark Spitler, National Renewable Energy Laboratory Randy Ellingson, National Renewable Energy Laboratory Ralph Overend, National Renewable Energy Laboratory Jeffrey Mazer, Solar Energy Technologies, U.S. Department of Energy Mary Gress, Basic Energy Sciences, U.S. Department of Energy James Horwitz, Basic Energy Sciences, U.S. Department of Energy Administrative: Christie Ashton, Basic Energy Sciences, U.S. Department of Energy Brian Herndon, Oak Ridge Institute for Science and Education Leslie Shapard, Oak Ridge Institute for Science and Education Publication: Renée M.
    [Show full text]
  • Renewable Energy Technologies CHAPTER 7
    renewable energy technologies CHAPTER 7 Wim C. Turkenburg (Netherlands) LEAD AUTHORS: Jos Beurskens (Netherlands), André Faaij (Netherlands), Peter Fraenkel (United Kingdom), Ingvar Fridleifsson (Iceland), Erik Lysen (Netherlands), David Mills (Australia), Jose Roberto Moreira (Brazil), Lars J. Nilsson (Sweden), Anton Schaap (Netherlands), and Wim C. Sinke (Netherlands) CONTRIBUTING AUTHORS: Per Dannemand Andersen (Denmark), Sheila Bailey (United States), Jakob Björnsson (Iceland), Teun Bokhoven (Netherlands), Lex Bosselaar (Netherlands), Suani Teixeira Coelho (Brazil), Baldur Eliasson (Switzerland), Brian Erb (Canada), David Hall (United Kingdom), Peter Helby (Sweden), Stephen Karekezi (Kenya), Eric Larson (United States), Joachim Luther (Germany), Birger Madson (Denmark), E.V.R. Sastry (India), Yohji Uchiyama (Japan), and Richard van den Broek (Netherlands) ABSTRACT In 1998 renewable energy sources supplied 56 ± 10 exajoules, or about 14 percent of world primary energy consumption. The supply was dominated by traditional biomass (38 ± 10 exajoules a year). Other major contributions came from large hydropower (9 exajoules a year) and from modern biomass (7 exajoules). The contribution of all other renewables—small hydropower, geothermal, wind, solar, and marine energy—was about 2 exajoules. That means that the energy supply from new renewables was about 9 exajoules (about 2 percent of world consumption). The commercial primary energy supply from renewable sources was 27 ± 6 exajoules (nearly 7 percent of world consumption), with 16 ± 6 exajoules from biomass. Renewable energy sources can meet many times the present world energy demand, so their potential is enormous. They can enhance diversity in energy supply markets, secure long-term sustainable energy supplies, and reduce local and global atmospheric emissions. They can also provide commercially attractive options to meet specific needs for energy services (particularly in developing countries and rural areas), create new employment opportunities, and offer possibilities for local manufacturing of equipment.
    [Show full text]