Solar Energy Conversion George W

Total Page:16

File Type:pdf, Size:1020Kb

Solar Energy Conversion George W Solar energy conversion George W. Crabtree and Nathan S. Lewis If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to con- vert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. George Crabtree is a senior scientist at Argonne National Laboratory in Argonne, Illinois, and director of its materials science division. Nathan Lewis is a professor of chemistry at the California Institute of Technology in Pasadena, California, and director of the molecu- lar materials research center at Caltech’s Beckman Institute. The Sun provides Earth with a staggering amount of Sun continuously delivers to Earth, 1.2 × 105 terawatts, energy—enough to power the great oceanic and atmospheric dwarfs every other energy source, renewable or nonrenew- currents, the cycle of evaporation and condensation that able. It dramatically exceeds the rate at which human civi- brings fresh water inland and drives river flow, and the ty- lization produces and uses energy, currently about 13 TW. phoons, hurricanes, and tornadoes that so easily destroy the The impressive supply of solar energy is complemented natural and built landscape. The San Francisco earthquake of by its versatility, as illustrated in figure 1. Sunlight can be con- 1906, with magnitude 7.8, released an estimated 1017 joules of verted into electricity by exciting electrons in a solar cell. It energy, the amount the Sun delivers to Earth in one second. can yield chemical fuel via natural photosynthesis in green Earth’s ultimate recoverable resource of oil, estimated at plants or artificial photosynthesis in human-engineered sys- 3 trillion barrels, contains 1.7 × 1022 joules of energy, which tems. Concentrated or unconcentrated sunlight can produce the Sun supplies to Earth in 1.5 days. The amount of energy heat for direct use or further conversion to electricity.1 humans use annually, about 4.6 × 1020 joules, is delivered to Despite the abundance and versatility of solar energy, we Earth by the Sun in one hour. The enormous power that the use very little of it to directly power human activities. Solar HO2 HO2 O2 Electrons O2 CO2 H H NN CO2 NN Holes H,CH24, Sugar CH3 OH O H NC 400–3000 °C Natural 50–200 °C Heat engines, photosynthesis Artificial Space, water electricity generation, (biomass) photosynthesis heating industrial processes Solar electric Solar fuel Solar thermal Figure 1. Solar photons convert naturally into three forms of energy—electricity, chemical fuel, and heat—that link seam- lessly with existing energy chains. Despite the enormous energy flux supplied by the Sun, the three conversion routes supply only a tiny fraction of our current and future energy needs. Solar electricity, at between 5 and 10 times the cost of electricity from fossil fuels, supplies just 0.015% of the world’s electricity demand. Solar fuel, in the form of biomass, accounts for approximately 11% of world fuel use, but the majority of that is harvested unsustainably. Solar heat provides 0.3% of the energy used for heating space and water. It is anticipated that by the year 2030 the world demand for electricity will double and the demands for fuel and heat will increase by 60%. The utilization gap between solar energy’s potential and our use of it can be overcome by raising the efficiency of the conversion processes, which are all well below their theoretical limits. © 2007 American Institute of Physics, S-0031-9228-0703-010-4 March 2007 Physics Today 37 electricity accounts for a minuscule 0.015% of world electric- ity production, and solar heat for 0.3% of global heating of Photovoltaic conversion efficiencies space and water. Biomass produced by natural photosynthe- Laboratory Thermodynamic sis is by far the largest use of solar energy; its combustion or best* limit gasification accounts for about 11% of human energy needs. Single junction 31% However, more than two-thirds of that is gathered unsus- tainably—that is, with no replacement plan—and burned in Silicon (crystalline) 25% small, inefficient stoves where combustion is incomplete and Silicon (nanocrystalline) 10% the resulting pollutants are uncontrolled. Between 80% and 85% of our energy comes from fossil Gallium arsenide 25% fuels, a product of ancient biomass stored beneath Earth’s surface for up to 200 million years. Fossil-fuel resources are Dye sensitized 10% of finite extent and are distributed unevenly beneath Earth’s Organic 3% surface. When fossil fuels are turned into useful energy though combustion, they produce greenhouse gases and Multijunction 32% 66% other harmful environmental pollutants. In contrast, solar Concentrated sunlight photons are effectively inexhaustible and unrestricted by (single junction) 28% 41% geopolitical boundaries. Their direct use for energy produc- tion does not threaten health or climate. The solar resource’s Carrier multiplication 42% magnitude, wide availability, versatility, and benign effect on *As verified by the National Renewable Energy Laboratory. the environment and climate make it an appealing energy Organic cell efficiencies of up to 5% have been reported in source. the literature. Raising efficiency The enormous gap between the potential of solar energy and junction interface drives electrons in one direction and holes our use of it is due to cost and conversion capacity. Fossil fuels in the other, which creates at the external electrodes a po- meet our energy demands much more cheaply than solar al- tential difference equal to the bandgap, as sketched in the ternatives, in part because fossil-fuel deposits are concen- left panel of figure 1. The concept and configuration are sim- trated sources of energy, whereas the Sun distributes photons ilar to those of a semiconductor diode, except that electrons fairly uniformly over Earth at a more modest energy density. and holes are introduced into the junction by photon excita- The use of biomass as fuel is limited by the production ca- tion and are removed at the electrodes. pacity of the available land and water. The cost and capacity With their 1961 analysis of thermodynamic efficiency, limitations on solar energy use are most effectively addressed William Shockley and Hans Queisser established a milestone by a single research objective: cost effectively raising conver- reference point for the performance of solar cells.2 The analy- sion efficiency. sis is based on four assumptions: a single p–n junction, one The best commercial solar cells based on single-crystal electron–hole pair excited per incoming photon, thermal re- silicon are about 18% efficient. Laboratory solar cells based laxation of the electron–hole pair energy in excess of the on cheaper dye sensitization of oxide semiconductors are bandgap, and illumination with unconcentrated sunlight. typically less than 10% efficient, and those based on even Achieving the efficiency limit of 31% that they established for cheaper organic materials are 2–5% efficient. Green plants those conditions remains a research goal. The best single- convert sunlight into biomass with a typical yearly averaged crystal Si cells have achieved 25% efficiency in the laboratory efficiency of less than 0.3%. The cheapest solar electricity and about 18% in commercial practice. Cheaper solar cells comes not from photovoltaics but from conventional induc- can be made from other materials,3 but they operate at sig- tion generators powered by steam engines driven by solar nificantly lower efficiency, as shown in the table above. Thin- heat, with efficiencies of 20% on average and 30% for the best film cells offer advantages beyond cost, including pliability, systems. Those efficiencies are far below their theoretical lim- as in figure 2, and potential integration with preexisting its. Increasing efficiency reduces cost and increases capacity, buildings and infrastructure. Achieving high efficiency from which raises solar energy to a new level of competitiveness. inexpensive materials with so-called third-generation cells, Dramatic cost-effective increases in the efficiency of indicated in figure 3, is the grand research challenge for mak- solar energy conversion are enabled by our growing ability ing solar electricity dramatically more affordable. to understand and control the fundamental nanoscale phe- The Shockley–Queisser limit can be exceeded by violat- nomena that govern the conversion of photons into other ing one or more of its premises. Concentrating sunlight al- forms of energy. Such phenomena have, until recently, been lows for a greater contribution from multi-photon processes; beyond the reach of our best structural and spectroscopic that contribution increases the theoretical efficiency limit to probes. The rise of nanoscience is yielding new fabrication 41% for a single-junction cell with thermal relaxation. A cell techniques based on self-assembly, incisive new probes of with a single p–n junction captures only a fraction of the solar structure and dynamics at ever-smaller length and time spectrum: photons with energies less than the bandgap are scales, and the new theoretical capability to simulate assem- not captured, and photons with energies greater than the blies of thousands of atoms. Those advances promise the ca- bandgap have their excess energy lost to thermal relaxation. pability to understand and control the underlying structures Stacked cells with different bandgaps capture a greater frac- and dynamics of photon conversion processes. tion of the solar spectrum; the efficiency limit is 43% for two junctions illuminated with unconcentrated sunlight, 49% for Electricity three junctions, and 66% for infinitely many junctions. Solar cells capture photons by exciting electrons across the The most dramatic and surprising potential increase in bandgap of a semiconductor, which creates electron–hole efficiency comes from carrier multiplication,4 a quantum-dot pairs that are then charge separated, typically by p–n junc- phenomenon that results in multiple electron–hole pairs tions introduced by doping.
Recommended publications
  • Parabolic Trough Solar Collectors: a General Overview of Technology, Industrial Applications, Energy Market, Modeling, and Standards
    Green Processing and Synthesis 2020; 9: 595–649 Review Article Pablo D. Tagle-Salazar, Krishna D.P. Nigam, and Carlos I. Rivera-Solorio* Parabolic trough solar collectors: A general overview of technology, industrial applications, energy market, modeling, and standards https://doi.org/10.1515/gps-2020-0059 received May 28, 2020; accepted September 28, 2020 Nomenclature Abstract: Many innovative technologies have been devel- oped around the world to meet its energy demands using Acronyms renewable and nonrenewable resources. Solar energy is one of the most important emerging renewable energy resources in recent times. This study aims to present AOP advanced oxidation process fl the state-of-the-art of parabolic trough solar collector ARC antire ective coating technology with a focus on different thermal performance CAPEX capital expenditure fl analysis methods and components used in the fabrication CFD computational uid dynamics ffi of collector together with different construction materials COP coe cient of performance and their properties. Further, its industrial applications CPC compound parabolic collector (such as heating, cooling, or concentrating photovoltaics), CPV concentrating photovoltaics solar energy conversion processes, and technological ad- CSP concentrating solar power vancements in these areas are discussed. Guidelines on DNI direct normal irradiation fi - ff commercial software tools used for performance analysis FDA nite di erence analysis fi - of parabolic trough collectors, and international standards FEA nite element analysis related to performance analysis, quality of materials, and FO forward osmosis fi durability of parabolic trough collectors are compiled. FVA nite volume analysis Finally, a market overview is presented to show the im- GHG greenhouse gasses portance and feasibility of this technology.
    [Show full text]
  • Solar Energy Conversion and Its Utilization
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072 SOLAR ENERGY CONVERSION AND ITS UTILIZATION Nayna P. Lokhande1, Nilima G. Maraskolhe2, Shubham S. Lokhande3, Prof. Bhushan S. Rakhonde4 1 BE, Electrical Engineering Department, DES’sCOET, Maharashtra, India 2 BE, Electrical Engineering Department, DES’sCOET, Maharashtra, India 3 BE, Electrical Engineering Department, DES’sCOET, Maharashtra, India 4Assistant Professor, Electrical Engineering Department, DES’sCOET, Maharashtra, India ---------------------------------------------------------------------***------------------------------------------------------------------- Solar photovoltaic (SPV) systems convert sunlight Abstract - Solar energy is a clean renewable resource with directly into electricity. A small power system enables zero emission, has got tremendous potential of energy which homeowners to generate some or all of their daily electrical can be harnessed using a variety of devices. With recent energy demand on their own roof top, exchanging daytime developments, solar energy systems are easily available for excess power for its energy needs in nights using SPV industrial and domestic use with the added advantage of generation, if it is supported by the battery back-up. A SPV minimum maintenance. The electricity requirements of the power system can be used to generate electric energy as a world including India are increasing at alarming rate and the way of distributed generation (DG) for rural areas. Several power demand has been running ahead of supply. It is also approaches have been proposed to improve efficiency of SPV now widely recognized that fossil fuels (i.e., coal, petroleum system and to provide the proper ac voltage required by and natural gas) and other conventional resources, presently residential customers.
    [Show full text]
  • Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power
    polymers Review Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power SK Manirul Haque 1, Jorge Alfredo Ardila-Rey 2, Yunusa Umar 1 ID , Habibur Rahman 3, Abdullahi Abubakar Mas’ud 4,*, Firdaus Muhammad-Sukki 5 ID and Ricardo Albarracín 6 ID 1 Department of Chemical and Process Engineering Technology, Jubail Industrial College, P.O. Box 10099, Jubail 31961, Saudi Arabia; [email protected] (S.M.H.); [email protected] (Y.U.) 2 Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago de Chile 8940000, Chile; [email protected] 3 Department of General Studies, Jubail Industrial College, P.O. Box 10099, Jubail 31961, Saudi Arabia; [email protected] 4 Department of Electrical and Electronics Engineering, Jubail Industrial College, P.O. Box 10099, Jubail 319261, Saudi Arabia 5 School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, Scotland, UK; [email protected] 6 Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +966-53-813-8814 Received: 10 February 2018; Accepted: 6 March 2018; Published: 12 March 2018 Abstract: Solar photoelectric energy converted into electricity requires large surface areas with incident light and flexible materials to capture these light emissions. Currently, sunlight rays are converted to electrical energy using silicon polymeric material with efficiency up to 22%. The majority of the energy is lost during conversion due to an energy gap between sunlight photons and polymer energy transformation.
    [Show full text]
  • Artificial Photosynthesis
    May 2018 Position Paper Artificial Photosynthesis State of Research, Scientific-Technological Challenges and Perspectives German National Academy of Sciences Leopoldina | www.leopoldina.org acatech – National Academy of Science and Engineering | www.acatech.de Union of the German Academies of Sciences and Humanities | www.akademienunion.de Imprint Publishers acatech – National Academy of Science and Engineering (lead institution) acatech Office: Karolinenplatz 4, 80333 München German National Academy of Sciences Leopoldina Jägerberg 1, 06108 Halle (Saale) Union of the German Academies of Sciences and Humanities Geschwister-Scholl-Straße 2, 55131 Mainz Editor PD Dr. Marc-Denis Weitze, acatech Translators Paul Clarke (FITI) & Charlotte Couchman (FITI), Lodestar Translations Design and typesetting unicommunication.de, Berlin ISBN: 978-3-8047-3645-0 Bibliographic information of the German National Library The German National Library lists this publication in the German National Bibliography. Detailed bibliographic data is available online at http://dnb.d-nb.de. Recommended citation: acatech – National Academy of Science and Engineering, German National Academy of Sciences Leopoldina, Union of the German Academies of Sciences and Humanities (Eds.) (2018): Artificial Photosynthesis. Munich, 74 pages. Artificial Photosynthesis State of Research, Scientific-Technological Challenges and Perspectives 2 Contents Contents Abstract and summary of recommendations ....................................................4 1. Introduction .............................................................................................
    [Show full text]
  • Solar Energy Conversion Technologies and Research Opportunities
    STANFORD UNIVERSITY Global Climate & Energy Project Technical Assessment Report An Assessment of Solar Energy Conversion Technologies and Research Opportunities GCEP Energy Assessment Analysis Summer 2006 Abstract The solar energy flux reaching the Earth’s surface represents a few thousand times the current use of primary energy by humans. The potential of this resource is enormous and makes solar energy a crucial component of a renewable energy portfolio aimed at reducing the global emissions of greenhouse gasses into the atmosphere. Nevertheless, the current use of this energy resource represents less than 1% of the total electricity production from renewable sources. Even though the deployment of photovoltaic systems has been increasing steadily for the last 20 years, solar technologies still suffer from some drawbacks that make them poorly competitive on an energy market dominated by fossil fuels: high capital cost, modest conversion efficiency, and intermittency. From a scientific and technical viewpoint, the development of new technologies with higher conversion efficiencies and low production costs is a key requirement for enabling the deployment of solar energy at a large scale. This report summarizes the state of the research in some mature and emerging solar technologies with high potential for large- scale energy production, and identifies fundamental research topics that are crucial for improving their performance, reliability, and competitiveness. Issued by the Global Climate and Energy Project http://gcep.stanford.edu Table
    [Show full text]
  • Artificial Photosynthesis: Beyond Mimicking Nature
    BNL-114802-2017-JA Artificial Photosynthesis: Beyond Mimicking Nature H. Dau, E . Fujita Submitted to ChemSusChem November 2017 Chemistry Department Brookhaven National Laboratory U.S. Department of Energy USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE- SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid- up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]
  • Semi-Biological Approaches to Solar-To-Chemical Conversion Cite This: Chem
    Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Semi-biological approaches to solar-to-chemical conversion Cite this: Chem. Soc. Rev., 2020, 49,4926 Xin Fang, Shafeer Kalathil and Erwin Reisner * This review presents a comprehensive summary of the recent development in semi-artificial photosynthesis, a biological-material hybrid approach to solar-to-chemical conversion that provides new concepts to shape a sustainable future fuelled by solar energy. We begin with a brief introduction to natural and artificial photosynthesis, followed by a discussion of the motivation and rationale behind semi-artificial photosynthesis. Then, we summarise how various enzymes can be combined with synthetic materials for light-driven water oxidation, H2 evolution, Received 28th October 2019 CO2 reduction, and chemical synthesis more broadly. In the following section, we discuss the strategies to DOI: 10.1039/c9cs00496c incorporate microorganisms in photocatalytic and (photo)electrochemical systems to produce fuels and chemicals with renewable sources. Finally, we outline emerging analytical techniques to study the bio-material hybrid rsc.li/chem-soc-rev systems and propose unexplored research opportunities in the field of semi-artificial photosynthesis. Creative Commons Attribution 3.0 Unported Licence. 1 Introduction catalysts still encounter challenges in solar-to-chemical conversion, nature provides evolutionarily-optimised biocatalysts. This review The consequences of anthropogenic carbon emissions call for summarises how this biological machinery can be leveraged to innovative strategies to develop renewable energy technologies. catalyse light-driven reactions by an emerging technology termed Photovoltaics (PV) is the leading technology for solar energy ‘‘semi-artificial photosynthesis’’, in which biocatalysts in the form of conversion,1,2 butitshowsdisadvantagesinintermittencyand enzymes or microorganisms are incorporated with particles or long-distance electricity transmission.
    [Show full text]
  • Increasing Solar Energy Conversion Efficiency in Hydrogenated Amorphous Silicon Photovoltaic Devices with Plasmonic Perfect Meta – Absorbers
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2016 INCREASING SOLAR ENERGY CONVERSION EFFICIENCY IN HYDROGENATED AMORPHOUS SILICON PHOTOVOLTAIC DEVICES WITH PLASMONIC PERFECT META – ABSORBERS Jephias Gwamuri Michigan Technological University, [email protected] Copyright 2016 Jephias Gwamuri Recommended Citation Gwamuri, Jephias, "INCREASING SOLAR ENERGY CONVERSION EFFICIENCY IN HYDROGENATED AMORPHOUS SILICON PHOTOVOLTAIC DEVICES WITH PLASMONIC PERFECT META – ABSORBERS", Open Access Dissertation, Michigan Technological University, 2016. https://doi.org/10.37099/mtu.dc.etdr/170 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Semiconductor and Optical Materials Commons INCREASING SOLAR ENERGY CONVERSION EFFICIENCY IN HYDROGENATED AMORPHOUS SILICON PHOTOVOLTAIC DEVICES WITH PLASMONIC PERFECT META – ABSORBERS By Jephias Gwamuri A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Materials Science and Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2016 © 2016 Jephias Gwamuri This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Materials Science and Engineering. Department of Materials Science and Engineering Dissertation Advisor: Dr. Joshua A. Pearce Committee Member: Dr. Miguel Levy Committee Member: Dr. Durdu Guney Committee Member: Dr. Paul Bergstrom Department Chair: Dr. Stephen L. Kampe Table of Contents List
    [Show full text]
  • Nanotechnology for Catalysis and Solar Energy Conversion
    Nanotechnology Nanotechnology 32 (2021) 042003 (28pp) https://doi.org/10.1088/1361-6528/abbce8 Roadmap Nanotechnology for catalysis and solar energy conversion U Banin1 , N Waiskopf1, L Hammarström2 , G Boschloo2, M Freitag2, E M J Johansson2,JSá2 , H Tian2 , M B Johnston3 , L M Herz3 , R L Milot4, M G Kanatzidis5 ,WKe5, I Spanopoulos5, K L Kohlstedt5 , G C Schatz5 , N Lewis6 , T Meyer7 , A J Nozik8,9 , M C Beard8 , F Armstrong10 , C F Megarity10, C A Schmuttenmaer11,12 , V S Batista11,13 and G W Brudvig11,13 1 The Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 2 Department of Chemistry—Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden 3 Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom 4 Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom 5 Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America 6 Division of Chemistry and Chemical Engineering, and Beckman Institute, 210 Noyes Laboratory, 127-72 California Institute of Technology, Pasadena, CA 91125, United States of America 7 University of North Carolina at Chapel Hill, Department of Chemistry, United States of America 8 National Renewable Energy Laboratory, United States of America 9 University of Colorado, Boulder, CO, Department of Chemistry, 80309, United States of America 10 Department of Chemistry, University of Oxford, Oxford, United Kingdom 11 Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, 06520-8107, United States of America E-mail: [email protected], [email protected], [email protected], m- [email protected], [email protected], [email protected], nslewis@its.
    [Show full text]
  • Organic Electronic Devices for Solar Energy Conversion and Storage
    Linköping Studies in Science and Technology Dissertation No. 2081 Yingzhi Jin FACULTY OF SCIENCE AND ENGINEERING Linköping Studies in Science and Technology, Dissertation No. 2081, 2020 Department of Physics, Chemistry and Biology (IFM) Organic Electronic Linköping University SE-581 83 Linköping, Sweden Organic Electronic Devices for Solar Energy Conversion and Storage Energy Conversion Solar Devices for Electronic Organic Devices for Solar www.liu.se Energy Conversion and Storage Yingzhi Jin 2020 Linköping Studies in Science and Technology No. 2081 Organic electronic devices for solar energy conversion and storage Yingzhi Jin Biomolecular and Organic Electronics Department of Physics, Chemistry and Biology (IFM) Linköping University, SE-581 83 Linköping, Sweden Linköping 2020 During the course of research underlying this thesis, Yingzhi Jin was enrolled in Agora Materiae, a multidisciplinary doctoral program at Linköping University, Sweden. Copyright © Yingzhi Jin, 2020 Organic electronic devices for solar energy conversion and storage Printed by Liu-Tryck, Linköping, Sweden, 2020 ISSN 0345-7524 ISBN 978-91-7929-825-8 Abstract This thesis focuses on two types of organic electronic devices: organic photovoltaic (OPV) devices for solar energy conversion, and photo-capacitors for energy storage. OPVs have been under the focus of research for decades as an effective technique to convert solar energy to electricity. So far, the efficiency of bulk heterojunction OPV consisting donor and acceptor materials is approaching to 18% with non-fullerene acceptor (NFA), which make it close to commercialization. The process of charge generation and recombination are two competing processes in OPVs, since their requirements for the active layer morphology are contradictory. Large donor/acceptor interfaces facilitate charge generation but hinder the transporting pathways for charge transportation.
    [Show full text]
  • Solar Energy Utilization
    On the Cover: One route to harvesting the energy of the sun involves learning to mimic natural photosynthesis. Here, sunlight falls on a porphyrin, one member of a family of molecules that includes the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green plants. Efficient light-harvesting of the solar spectrum by porphyrins and related molecules can be used to power synthetic molecular assemblies and solid- state devices — applying the principles of photosynthesis to the produc- tion of hydrogen, methane, ethanol, and methanol from sunlight, water, and atmospheric carbon dioxide. BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION Report on the Basic Energy Sciences Workshop on Solar Energy Utilization Chair: Nathan S. Lewis, California Institute of Technology Co-chair: George Crabtree, Argonne National Laboratory Panel Chairs: Solar Electric Arthur J. Nozik, National Renewable Energy Laboratory Solar Fuels Michael R. Wasielewski, Northwestern University Cross-cutting Paul Alivisatos, Lawrence Berkeley National Laboratory Office of Basic Energy Sciences Contact: Harriet Kung, Basic Energy Sciences, U.S. Department of Energy Special Assistance Technical: Jeffrey Tsao, Sandia National Laboratories Elaine Chandler, Lawrence Berkeley National Laboratory Wladek Walukiewicz, Lawrence Berkeley National Laboratory Mark Spitler, National Renewable Energy Laboratory Randy Ellingson, National Renewable Energy Laboratory Ralph Overend, National Renewable Energy Laboratory Jeffrey Mazer, Solar Energy Technologies, U.S. Department of Energy Mary Gress, Basic Energy Sciences, U.S. Department of Energy James Horwitz, Basic Energy Sciences, U.S. Department of Energy Administrative: Christie Ashton, Basic Energy Sciences, U.S. Department of Energy Brian Herndon, Oak Ridge Institute for Science and Education Leslie Shapard, Oak Ridge Institute for Science and Education Publication: Renée M.
    [Show full text]
  • Renewable Energy Technologies CHAPTER 7
    renewable energy technologies CHAPTER 7 Wim C. Turkenburg (Netherlands) LEAD AUTHORS: Jos Beurskens (Netherlands), André Faaij (Netherlands), Peter Fraenkel (United Kingdom), Ingvar Fridleifsson (Iceland), Erik Lysen (Netherlands), David Mills (Australia), Jose Roberto Moreira (Brazil), Lars J. Nilsson (Sweden), Anton Schaap (Netherlands), and Wim C. Sinke (Netherlands) CONTRIBUTING AUTHORS: Per Dannemand Andersen (Denmark), Sheila Bailey (United States), Jakob Björnsson (Iceland), Teun Bokhoven (Netherlands), Lex Bosselaar (Netherlands), Suani Teixeira Coelho (Brazil), Baldur Eliasson (Switzerland), Brian Erb (Canada), David Hall (United Kingdom), Peter Helby (Sweden), Stephen Karekezi (Kenya), Eric Larson (United States), Joachim Luther (Germany), Birger Madson (Denmark), E.V.R. Sastry (India), Yohji Uchiyama (Japan), and Richard van den Broek (Netherlands) ABSTRACT In 1998 renewable energy sources supplied 56 ± 10 exajoules, or about 14 percent of world primary energy consumption. The supply was dominated by traditional biomass (38 ± 10 exajoules a year). Other major contributions came from large hydropower (9 exajoules a year) and from modern biomass (7 exajoules). The contribution of all other renewables—small hydropower, geothermal, wind, solar, and marine energy—was about 2 exajoules. That means that the energy supply from new renewables was about 9 exajoules (about 2 percent of world consumption). The commercial primary energy supply from renewable sources was 27 ± 6 exajoules (nearly 7 percent of world consumption), with 16 ± 6 exajoules from biomass. Renewable energy sources can meet many times the present world energy demand, so their potential is enormous. They can enhance diversity in energy supply markets, secure long-term sustainable energy supplies, and reduce local and global atmospheric emissions. They can also provide commercially attractive options to meet specific needs for energy services (particularly in developing countries and rural areas), create new employment opportunities, and offer possibilities for local manufacturing of equipment.
    [Show full text]