Christopher Elliott
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Christopher Elliott
Christopher Elliott Contact Details Full Name Christopher James Elliott Date of Birth 20th Sep, 1987 Nationality British Contact Address University of Massachusetts Department of Mathematics and Statistics 710 N Pleasant St Amherst, MA 01003 USA E-mail Address [email protected] Work Experience 2019– Visiting Assistant Professor, University of Massachusetts, Amherst 2016–2019 Postdoctoral Fellow, Institut des Hautes Etudes´ Scientifiques Education 2010–2016 PhD, Northwestern University Advisors: Kevin Costello and David Nadler Thesis Title: Gauge Theoretic Aspects of the Geometric Langlands Correspondence. 2009–2010 MMath (Mathematics Tripos: Part III), University of Cambridge, With Distinction. Part III Essay: D-Modules and Hodge Theory 2006–2009 BA (hons) (Mathematics), University of Cambridge, 1st Class. Research Visits 2014–2018 Perimeter Institute (7 visits, each 1-3 weeks) Oct–Nov 2017 MPIM, Bonn Oct 2017 Hausdorff Institute, Bonn Nov 2016 MPIM, Bonn Research Interests I’m interested in mathematical aspects and applications of quantum field theory. In particular • The construction and classification of (not necessarily topological) twists of classical and quantum field theories, especially using techniques of derived algebraic geometry and homotopical algebra. • The connection between structures appearing in various versions of the geometric Langlands correspon- dence and twists of four-, five- and six-dimensional supersymmetric gauge theories. • The theory of factorization algebras as a model for perturbative quantum field theory, possibly with bound- ary conditions and defects. Publications and Preprints 1. Quantum Geometric Langlands Categories from N = 4 Super Yang–Mills Theory (joint with Philsang Yoo), arXiv:2008.10988 2. Spontaneous Symmetry Breaking: a View from Derived Geometry (joint with Owen Gwilliam), Journal of Geometry and Physics, Vol 162, 2021, arXiv:2008.02302 1 3. -
Doing Physics with Math ...And Vice Versa
Doing physics with math ...and vice versa Alexander Tabler Thessaloniki, December 19, 2019 Thessaloniki, December 19, 2019 0 / 14 Outline 1 Physics vs. Mathematics 2 Case study: a question about shapes 3 Enter physics & quantum field theory 4 Summary Thessaloniki, December 19, 2019 1 / 14 1. Physics vs. Mathematics Thessaloniki, December 19, 2019 1 / 14 Common origins, divergent futures At some point, Mathematics and Physics were the same discipline: Natural philosophy. Calculus: mathematics or physics? \Isaac Newton" - Godfrey Kneller - commons.curid=37337 Thessaloniki, December 19, 2019 2 / 14 Today, Math=Physics6 Mathematics: - Definition. Theorem. Proof. (Bourbaki-style mathematics) - Logical rigor, \waterproof" - \Proof"-driven (Theoretical) Physics: - Less rigor - Computation-oriented (\shut up and calculate") - Experiment-driven ...in principle Thessaloniki, December 19, 2019 3 / 14 An early 20th century divorce Freeman Dyson, 1972: \The marriage between mathematics and physics has recently ended in divorce"1 F. Dyson - by ioerror - commons.curid=71877726 1 Dyson - \Missed Opportunities", Bull. Amer. Math. Soc., Volume 78, Number 5 (1972), 635-652. Thessaloniki, December 19, 2019 4 / 14 A fruitful relation However, strong bonds still remain: - Modern theoretical physics uses more abstract mathematics - There is a deep relationship between advances in both fields - This relationship is mutually beneficial https://www.ias.edu/ideas/power-mirror-symmetry Thessaloniki, December 19, 2019 5 / 14 2. Case study: a question about shapes Thessaloniki, -
String Theory for Pedestrians
String Theory for Pedestrians Johanna Knapp ITP, TU Wien Atominstitut, March 4, 2016 Outline Fundamental Interactions What is String Theory? Modern String Theory String Phenomenology Gauge/Gravity Duality Physical Mathematics Conclusions Fundamental Interactions What is String Theory? Modern String Theory Conclusions Fundamental Interactions • Four fundamental forces of nature • Electromagnetic Interactions: Photons • Strong Interactions: Gluons • Weak Interactions: W- and Z-bosons • Gravity: Graviton (?) • Successful theoretical models • Quantum Field Theory • Einstein Gravity • Tested by high-precision experiments Fundamental Interactions What is String Theory? Modern String Theory Conclusions Gravity • General Relativity 1 R − g R = 8πGT µν 2 µν µν • Matter $ Curvature of spacetime • No Quantum Theory of Gravity! • Black Holes • Big Bang Fundamental Interactions What is String Theory? Modern String Theory Conclusions Particle Interactions • Strong, weak and electromagnetic interactions can be described by the Standard Model of Particle Physics • Quantum Field Theory • Gauge Theory Fundamental Interactions What is String Theory? Modern String Theory Conclusions Unification of Forces • Can we find a unified quantum theory of all fundamental interactions? • Reconciliation of two different theoretical frameworks • Quantum Theory of Gravity • Why is unification a good idea? • It worked before: electromagnetism, electroweak interactions • Evidence of unification of gauge couplings • Open problems of fundamental physics should be solved. Fundamental Interactions What is String Theory? Modern String Theory Conclusions History of the Universe • Physics of the early universe Fundamental Interactions What is String Theory? Modern String Theory Conclusions Energy Budget of the Universe • Only about 5% of the matter in the universe is understood. • What is dark matter? Extra particles? Fundamental Interactions What is String Theory? Modern String Theory Conclusions String Theory Fact Sheet • String theory is a quantum theory that unifies the fundamental forces of nature. -
Renormalization and Effective Field Theory
Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM http://dx.doi.org/10.1090/surv/170 Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. -
Some Comments on Physical Mathematics
Preprint typeset in JHEP style - HYPER VERSION Some Comments on Physical Mathematics Gregory W. Moore Abstract: These are some thoughts that accompany a talk delivered at the APS Savannah meeting, April 5, 2014. I have serious doubts about whether I deserve to be awarded the 2014 Heineman Prize. Nevertheless, I thank the APS and the selection committee for their recognition of the work I have been involved in, as well as the Heineman Foundation for its continued support of Mathematical Physics. Above all, I thank my many excellent collaborators and teachers for making possible my participation in some very rewarding scientific research. 1 I have been asked to give a talk in this prize session, and so I will use the occasion to say a few words about Mathematical Physics, and its relation to the sub-discipline of Physical Mathematics. I will also comment on how some of the work mentioned in the citation illuminates this emergent field. I will begin by framing the remarks in a much broader historical and philosophical context. I hasten to add that I am neither a historian nor a philosopher of science, as will become immediately obvious to any expert, but my impression is that if we look back to the modern era of science then major figures such as Galileo, Kepler, Leibniz, and New- ton were neither physicists nor mathematicans. Rather they were Natural Philosophers. Even around the turn of the 19th century the same could still be said of Bernoulli, Euler, Lagrange, and Hamilton. But a real divide between Mathematics and Physics began to open up in the 19th century. -
Inside the Perimeter Is Published by Perimeter Institute for Theoretical Physics
the Perimeter fall/winter 2014 Skateboarding Physicist Seeks a Unified Theory of Self The Black Hole that Birthed the Big Bang The Beauty of Truth: A Chat with Savas Dimopoulos Subir Sachdev's Superconductivity Puzzles Editor Natasha Waxman [email protected] Contributing Authors Graphic Design Niayesh Afshordi Gabriela Secara Erin Bow Mike Brown Photographers & Artists Phil Froklage Tibra Ali Colin Hunter Justin Bishop Robert B. Mann Amanda Ferneyhough Razieh Pourhasan Liz Goheen Natasha Waxman Alioscia Hamma Jim McDonnell Copy Editors Gabriela Secara Tenille Bonoguore Tegan Sitler Erin Bow Mike Brown Colin Hunter Inside the Perimeter is published by Perimeter Institute for Theoretical Physics. www.perimeterinstitute.ca To subscribe, email us at [email protected]. 31 Caroline Street North, Waterloo, Ontario, Canada p: 519.569.7600 f: 519.569.7611 02 IN THIS ISSUE 04/ Young at Heart, Neil Turok 06/ Skateboarding Physicist Seeks a Unified Theory of Self,Colin Hunter 10/ Inspired by the Beauty of Math: A Chat with Kevin Costello, Colin Hunter 12/ The Black Hole that Birthed the Big Bang, Niayesh Afshordi, Robert B. Mann, and Razieh Pourhasan 14/ Is the Universe a Bubble?, Colin Hunter 15/ Probing Nature’s Building Blocks, Phil Froklage 16/ The Beauty of Truth: A Chat with Savas Dimopoulos, Colin Hunter 18/ Conference Reports 22/ Back to the Classroom, Erin Bow 24/ Finding the Door, Erin Bow 26/ "Bright Minds in Their Life’s Prime", Colin Hunter 28/ Anthology: The Portraits of Alioscia Hamma, Natasha Waxman 34/ Superconductivity Puzzles, Colin Hunter 36/ Particles 39/ Donor Profile: Amy Doofenbaker, Colin Hunter 40/ From the Black Hole Bistro, Erin Bow 42/ PI Kids are Asking, Erin Bow 03 neil’s notes Young at Heart n the cover of this issue, on the initial singularity from which everything the lip of a halfpipe, teeters emerged. -
A View from the Bridge Natalie Paquette
INFERENCE / Vol. 3, No. 4 A View from the Bridge Natalie Paquette tring theory is a quantum theory of gravity.1 Albert example, supersymmetric theories require particles to Einstein’s theory of general relativity emerges natu- come in pairs. For every bosonic particle there is a fermi- rally from its equations.2 The result is consistent in onic superpartner. Sthe sense that its calculations do not diverge to infinity. Supersymmetric field theory has a disheartening String theory may well be the only consistent quantum impediment. Suppose that a supersymmetric quantum theory of gravity. If true, this would be a considerable field theory is defined on a generic curved manifold. The virtue. Whether it is true or not, string theory is indis- Euclidean metric of Newtonian physics and the Lorentz putably the source of profound ideas in mathematics.3 metric of special relativity are replaced by the manifold’s This is distinctly odd. A line of influence has always run own metric. Supercharges correspond to conserved Killing from mathematics to physics. When Einstein struggled spinors. Solutions to the Killing spinor equations are plen- to express general relativity, he found the tools that he tiful in a flat space, but the equations become extremely needed had been created sixty years before by Bernhard restrictive on curved manifolds. They are so restrictive Riemann. The example is typical. Mathematicians discov- that they have, in general, no solutions. Promoting a flat ered group theory long before physicists began using it. In supersymmetric field theory to a generic curved mani- the case of string theory, it is often the other way around. -
Mathematisches Forschungsinstitut Oberwolfach Topologie
Mathematisches Forschungsinstitut Oberwolfach Report No. 42/2014 DOI: 10.4171/OWR/2014/42 Topologie Organised by Thomas Schick, G¨ottingen Peter Teichner, Bonn Nathalie Wahl, Copenhagen Michael Weiss, M¨unster 14 September – 20 September 2014 Abstract. The Oberwolfach conference “Topologie” is one of only a few opportunities for researchers from many different areas in algebraic and geo- metric topology to meet and exchange ideas. The program covered new de- velopments in fields such as automorphisms of manifolds, applications of alge- braic topology to differential geometry, quantum field theories, combinatorial methods in low-dimensional topology, abstract and applied homotopy theory and applications of L2-cohomology. We heard about new results describ- ing the cohomology of the automorphism spaces of some smooth manifolds, progress on spaces of positive scalar curvature metrics, a variant of the Segal conjecture without completion, advances in classifying topological quantum field theories, and a new undecidability result in combinatorial group theory, to mention some examples. As a special attraction, the conference featured a series of three talks by Dani Wise on the combinatorics of CAT(0)-cube complexes and applications to 3-manifold topology. Mathematics Subject Classification (2010): 55-xx, 57-xx, 18Axx, 18Bxx. Introduction by the Organisers This conference was the third topology conference in Oberwolfach organized by Thomas Schick, Peter Teichner, Nathalie Wahl and Michael Weiss. About 50 mathematicians participated, working in many different areas of algebraic and geometric topology. 2354 Oberwolfach Report 42/2014 The talks were of three types. There were 14 regular one-hour talks, 3 one-hour talks by keynote speaker Dani Wise and a “gong show” where 12 young speak- ers had the opportunity to present their research in 10 minutes each, including question time. -
Utility of Quaternions in Physics, by Alexander Mcaulay
Project Gutenberg’s Utility of Quaternions in Physics, by Alexander McAulay This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: Utility of Quaternions in Physics Author: Alexander McAulay Release Date: August 11, 2008 [EBook #26262] Language: English Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK UTILITY OF QUATERNIONS IN PHYSICS *** UTILITY QUATERNIONS IN PHYSICS. UTILITY QUATERNIONS IN PHYSICS. A. McAULAY, M.A., LECTURER IN MATHEMATICS AND PHYSICS IN THE UNIVERSITY OF TASMANIA. London: MACMILLAN AND CO. AND NEW YORK. 1893 [All Rights reserved.] Produced by Joshua Hutchinson, Andrew D. Hwang, Carolyn Bottomley and the Online Distributed Proofreading Team at http://www.pgdp.net (This ebook was produced from images from the Cornell University Library: Historical Mathematics Monographs collection.) Transcriber’s Notes. Table of contents entries, section references, and equation numbers are internal hyperlinks. This PDF file is formatted for printing, but may be easily recompiled for screen viewing. Please see the preamble of the LATEX source file for instructions. Cambridge: PRINTED BY C. J. CLAY, M.A., AND SONS, AT THE UNIVERSITY PRESS. P. The present publication is an essay that was sent in (December, 1887) to com- pete for the Smith’s Prizes at Cambridge. To the onlooker it is always a mournful thing to see what he considers splendid abilities or opportunities wasted for lack of knowledge of some paltry common- place truth. -
On Cohomological Algebras in Supersymmetric Quantum Field Theories
On Cohomological Algebras in Supersymmetric Quantum Field Theories by Nafiz Ishtiaque A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Physics Waterloo, Ontario, Canada, 2019 c Nafiz Ishtiaque 2019 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner: Erich Poppitz Professor, Dept. of Physics, University of Toronto Supervisor: Jaume Gomis Faculty, Perimeter Institute for Theoretical Physics Adjunct Professor, Dept. of Physics and Astronomy, University of Waterloo Internal Member: Davide Gaiotto Faculty, Perimeter Institute for Theoretical Physics Adjunct Professor, Dept. of Physics and Astronomy, University of Waterloo Internal Member: Niayesh Afshordi Associate Faculty, Perimeter Institute for Theoretical Physics Associate Professor, Dept. of Physics and Astronomy, University of Waterloo Internal-External Member: Ruxandra Moraru Associate Professor, Dept. of Pure Mathematics, University of Waterloo ii Author's Declaration This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Statement of Contributions This thesis is based on the following papers: 1. Jaume Gomis and Nafiz Ishtiaque. K¨ahlerpotential and ambiguities in 4d N = 2 SCFTs. JHEP, 04:169, 2015, 1409.5325. 2. Efrat Gerchkovitz, Jaume Gomis, Nafiz Ishtiaque, Avner Karasik, Zohar Komar- godski, and Silviu S. Pufu. Correlation Functions of Coulomb Branch Operators. -
Factorization Algebras in Quantum Field Theory Volume 2 (28 April 2016)
Factorization algebras in quantum field theory Volume 2 (28 April 2016) Kevin Costello and Owen Gwilliam Contents Chapter 1. Overview1 1.1. Classical field theory and factorization algebras1 1.2. Quantum field theory and factorization algebras2 1.3. The quantization theorem3 1.4. The rigid quantization conjecture4 Chapter 2. Structured factorization algebras and quantization7 2.1. Structured factorization algebras7 2.2. Commutative factorization algebras9 2.3. The P0 operad9 2.4. The Beilinson-Drinfeld operad 13 Part 1. Classical field theory 17 Chapter 3. Introduction to classical field theory 19 3.1. The Euler-Lagrange equations 19 3.2. Observables 20 3.3. The symplectic structure 20 3.4. The P0 structure 21 Chapter 4. Elliptic moduli problems 23 4.1. Formal moduli problems and Lie algebras 24 4.2. Examples of elliptic moduli problems related to scalar field theories 28 4.3. Examples of elliptic moduli problems related to gauge theories 30 4.4. Cochains of a local L¥ algebra 34 4.5. D-modules and local L¥ algebras 36 Chapter 5. The classical Batalin-Vilkovisky formalism 45 5.1. The classical BV formalism in finite dimensions 45 5.2. The classical BV formalism in infinite dimensions 47 5.3. The derived critical locus of an action functional 50 5.4. A succinct definition of a classical field theory 55 5.5. Examples of field theories from action functionals 57 5.6. Cotangent field theories 58 Chapter 6. The observables of a classical field theory 63 iii iv CONTENTS 6.1. The factorization algebra of classical observables 63 6.2. -
2014 Eisenbud Prize for Mathematics and Physics
2014 Eisenbud Prize for Mathematics and Physics Gregory W. Moore was awarded Biographical Sketch the 2014 Leonard Eisenbud Prize Gregory W. Moore received his A.B. in physics from for Mathematics and Physics at the Princeton University in 1982 and his Ph.D. in phys- 120th Annual Meeting of the AMS in ics from Harvard University in 1985. He then joined Baltimore, Maryland, in January 2014. the Harvard Society of Fellows and in 1987 became a five-year member at the Institute for Advanced Citation Study (IAS) in Princeton. In 1989 he joined the The 2014 Leonard Eisenbud Prize for faculty at Yale University. He moved to the Depart- Mathematics and Physics is awarded ment of Physics and Astronomy at Rutgers Univer- to Gregory W. Moore for his group sity in 2000. He has held visiting professorships of works on the structure of four- at the Kalvi Institute for Theoretical Physics (KITP) Gregory W. Moore dimensional supersymmetric theories in Santa Barbara, California, and at the IAS. The with extended supersymmetry. His Inspire HEP database lists 170 papers coauthored works on supersymmetric solitons in a variety by Professor Moore on physical mathematics, with of contexts—including black holes in supergrav- an emphasis on geometrical structures in physics. ity, branes in string theory, and monopoles in Most notably he has worked on rational conformal gauge theory—have led to an explanation of the field theories (with applications to condensed mat- wall-crossing phenomena in the BPS spectrum. ter physics), two-dimensional quantum gravity and Moore’s research has injected new physical ideas matrix models, topological field theories, string and created new constructions in the mathematical dualities and D-branes, applications of K-theory to fields of cluster algebras, integrable systems, and string theory, connections between number theory hyperkähler geometry.