Renormalization and Effective Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2011 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 161514131211 Contents Chapter 1. Introduction 1 1. Overview 1 2. Functional integrals in quantum field theory 4 3. Wilsonian low energy theories 6 4. A Wilsonian definition of a quantum field theory 13 5. Locality 13 6. The main theorem 16 7. Renormalizability 19 8. Renormalizable scalar field theories 21 9. Gauge theories 22 10. Observables and correlation functions 27 11. Other approaches to perturbative quantum field theory 27 Acknowledgements 28 Chapter 2. Theories, Lagrangians and counterterms 31 1. Introduction 31 2. The effective interaction and background field functional integrals 32 3. Generalities on Feynman graphs 34 4. Sharp and smooth cut-offs 42 5. Singularities in Feynman graphs 44 6. The geometric interpretation of Feynman graphs 47 7. A definition of a quantum field theory 53 8. An alternative definition 55 9. Extracting the singular part of the weights of Feynman graphs 57 10. Constructing local counterterms 61 11. Proof of the main theorem 67 12. Proof of the parametrix formulation of the main theorem 69 13. Vector-bundle valued field theories 71 14. Field theories on non-compact manifolds 80 Chapter 3. Field theories on Rn 91 1. Some functional analysis 92 2. The main theorem on Rn 99 3. Vector-bundle valued field theories on Rn 104 4. Holomorphic aspects of theories on Rn 107 Chapter 4. Renormalizability 113 v vi CONTENTS 1. The local renormalization group flow 113 2. The Kadanoff-Wilson picture and asymptotic freedom 122 3. Universality 125 4. Calculations in φ4 theory 126 5. Proofs of the main theorems 131 6. Generalizations of the main theorems 135 Chapter 5. Gauge symmetry and the Batalin-Vilkovisky formalism 139 1. Introduction 139 2. A crash course in the Batalin-Vilkovisky formalism 141 3. The classical BV formalism in infinite dimensions 155 4. Example: Chern-Simons theory 160 5. Example : Yang-Mills theory 162 6. D-modules and the classical BV formalism 164 7. BV theories on a compact manifold 170 8. Effective actions 173 9. The quantum master equation 175 10. Homotopies between theories 178 11. Obstruction theory 186 12. BV theories on Rn 189 13. The sheaf of BV theories on a manifold 196 14. Quantizing Chern-Simons theory 203 Chapter 6. Renormalizability of Yang-Mills theory 207 1. Introduction 207 2. First-order Yang-Mills theory 207 3. Equivalence of first-order and second-order formulations 210 4. Gauge fixing 213 5. Renormalizability 214 6. Universality 217 7. Cohomology calculations 218 Appendix 1: Asymptotics of graph integrals 227 1. Generalized Laplacians 227 2. Polydifferential operators 229 3. Periods 229 4. Integrals attached to graphs 230 5. Proof of Theorem 4.0.2 233 Appendix 2 : Nuclear spaces 243 1. Basic definitions 243 2. Examples 244 3. Subcategories 245 4. Tensor products of nuclear spaces from geometry 247 5. Algebras of formal power series on nuclear Fr´echet spaces 247 CONTENTS vii Bibliography 249 CHAPTER 1 Introduction 1. Overview Quantum field theory has been wildly successful as a framework for the study of high-energy particle physics. In addition, the ideas and techniques of quantum field theory have had a profound influence on the development of mathematics. There is no broad consensus in the mathematics community, however, as to what quantum field theory actually is. This book develops another point of view on perturbative quantum field theory, based on a novel axiomatic formulation. Most axiomatic formulations of quantum field theory in the literature start from the Hamiltonian formulation of field theory. Thus, the Segal (Seg99) axioms for field theory propose that one assigns a Hilbert space of states to a closed Riemannian manifold of dimension d − 1, and a unitary operator between Hilbert spaces to a d-dimensional manifold with boundary. In the case when the d- dimensional manifold is of the form M × [0,t], we should view the corresponding operator as time evolution. The Haag-Kastler (Haa92) axioms also start from the Hamiltonian for- mulation, but in a slightly different way. They take as the primary object not the Hilbert space, but rather a C algebra, which will act on a vacuum Hilbert space. I believe that the Lagrangian formulation of quantum field theory, using Feynman’s sum over histories, is more fundamental. The axiomatic frame- work developed in this book is based on the Lagrangian formalism, and on the ideas of low-energy effective field theory developed by Kadanoff (Kad66), Wilson (Wil71), Polchinski (Pol84) and others. 1.1. The idea of the definition of quantum field theory I use is very simple. Let us assume that we are limited, by the power of our detectors, to studying physical phenomena that occur below a certain energy, say Λ. The part of physics that is visible to a detector of resolution Λ we will call the low-energy effective field theory. This low-energy effective field theory is succinctly encoded by the energy Λ version of the Lagrangian, which is called the low-energy effective action Seff [Λ]. The notorious infinities of quantum field theory only occur if we con- sider phenomena of arbitrarily high energy. Thus, if we restrict attention to 1 2 1. INTRODUCTION phenomena occurring at energies less than Λ, we can compute any quantity we would like in terms of the effective action Seff [Λ]. If Λ < Λ, then the energy Λ effective field theory can be deduced from knowledge of the energy Λ effective field theory. This leads to an equation expressing the scale Λ effective action Seff [Λ]intermsofthe scale Λ effective action Seff [Λ]. This equation is called the renormalization group equation. If we do have a continuum quantum field theory (whatever that is!) we should, in particular, have a low-energy effective field theory for every energy. This leads to our definition : a continuum quantum field theory is a sequence of low-energy effective actions Seff [Λ], for all Λ < ∞, which are related by the renormalization group flow. In addition, we require that the Seff [Λ] satisfy a locality axiom, which says that the effective actions Seff [Λ] become more and more local as Λ →∞. This definition aims to be as parsimonious as possible. The only as- sumptions I am making about the nature of quantum field theory are the following: (1) The action principle: physics at every energy scale is described by a Lagrangian, according to Feynman’s sum-over-histories philosophy. (2) Locality: in the limit as energy scales go to infinity, interactions between fields occur at points. 1.2. In this book, I develop complete foundations for perturbative quan- tum field theory in Riemannian signature, on any manifold, using this defi- nition. The first significant theorem I prove is an existence result: there are as many quantum field theories, using this definition, as there are Lagrangians. Let me state this theorem more precisely. Throughout the book, I will treat as a formal parameter; all quantities will be formal power series in . Setting to zero amounts to passing to the classical limit. Let us fix a classical action functional Scl on some space of fields E , which is assumed to be the space of global sections of a vector bundle on a manifold M 1.LetT (n)(E ,Scl) be the space of quantizations of the classical theory that are defined modulo n+1. Then, Theorem 1.2.1. T (n+1)(E ,Scl) → T (n)(E ,Scl) is a torsor for the abelian group of Lagrangians under addition (modulo those Lagrangians which are a total derivative). Thus, any quantization defined to order n in can be lifted to a quan- tization defined to order n +1in, but there is no canonical lift; any two lifts differ by the addition of a Lagrangian.
Recommended publications
  • Riemann Surfaces, Conformal Fields and Strings I. FIELD THEORY and RIEMANN SURFACES the Space-Time on Which the Particl Physicis
    Riemann Surfaces, Conformal Fields and Strings I he ru k uf Rtc m:rnn s url acc~ in modern pa rticle r h y~ i cs I\ discussed. M<i thc111at- 1r :1!1 \. q11 :1111urn ri cld th eories c:1 11 he tlclinccl 011 the" : mani fo lds if the <1rc co11 - lmm11lll' in ari 11 n1. I hysic•tll y. Ri 1:t11 nnn surl:i tcs provide n 111 od1: I for th • wqrlJ , h~ c l ~ 'vc p t out IJ n prop:1gating rcla1i vistk stri ng. Thuh Ricmu nn surl uccs nrc th e natural se ll ing for confom1al fiel d theory. and. both these co n cc pl ~ together pruvidc .1 1i1r11tul .1 t1 011 of smng theory. I\~\ Words: string theory, conformal symmetry , 11•orld sh eets, Riemann surfaces I. FIELD THEORY AND RIEMANN SURFACES The space- tim e on whi ch th e particl ph ysici st writes a Lagrnngian field theory and deduces equations ol moiion, c b ss i c~ d solutions anJ quantum scaucring amplitud s is usually taken to be a Ri e­ nian111a11 manifold . 1 T he. ii.l ea is cent rn l l ' ge neral relati vi ty and grav1tat1 n.2 and has becom · mor imporlanl in pnrticlc phys ics w11h increasi ng cmphasi on unified th eo ries o f all for es including grav itation . R1cmannian gcomotr is usually incorpo.ratctl as a se ri es of pre­ Knpti ons. starting with the introduction of a i..:c ond -r:rnk ~y m ­ mctril: tcn·or fi ' ld, the metri c g1.,,(x).
    [Show full text]
  • Conformal Field Theories of Stochastic Loewner Evolutions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Conformal Field Theories of Stochastic Loewner Evolutions. [ CFTs of SLEs ] Michel Bauer1 and Denis Bernard2 Service de Physique Th´eorique de Saclay CEA/DSM/SPhT, Unit´e de recherche associ´ee au CNRS CEA-Saclay, 91191 Gif-sur-Yvette, France Abstract Stochastic Loewner evolutions (SLEκ) are random growth pro- cesses of sets, called hulls, embedded in the two dimensional upper half plane. We elaborate and develop a relation between SLEκ evo- lutions and conformal field theories (CFT) which is based on a group theoretical formulation of SLEκ processes and on the identification of the proper hull boundary states. This allows us to define an in- finite set of SLEκ zero modes, or martingales, whose existence is a consequence of the existence of a null vector in the appropriate Vira- soro modules. This identification leads, for instance, to linear systems for generalized crossing probabilities whose coefficients are multipoint CFT correlation functions. It provides a direct link between confor- mal correlation functions and probabilities of stopping time events in SLEκ evolutions. We point out a relation between SLEκ processes and two dimensional gravity and conjecture a reconstruction proce- dure of conformal field theories from SLEκ data. 1Email: [email protected] 2Member of the CNRS; email: [email protected] 1 1 Introduction. Two dimensional conformal field theories [2] have produced an enormous amount of exact results for multifractal properties of conformally invariant critical clusters. See eg. refs.[15, 5, 9] and references therein.
    [Show full text]
  • Second Kind Integral Equations for the Classical Potential Theory on Open Surfaces I: Analytical Apparatus
    Journal of Computational Physics 191 (2003) 40–74 www.elsevier.com/locate/jcp Second kind integral equations for the classical potential theory on open surfaces I: analytical apparatus Shidong Jiang *,1, Vladimir Rokhlin Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA Received 6 February 2003; accepted 21 May 2003 Abstract A stable second kind integral equation formulation has been developed for the Dirichlet problem for the Laplace equation in two dimensions, with the boundary conditions specified on a collection of open curves. The performance of the obtained apparatus is illustrated with several numerical examples. Ó 2003 Elsevier Science B.V. All rights reserved. AMS: 65R10; 77C05 Keywords: Open surface problems; Laplace equation; Finite Hilbert transform; Second kind integral equation; Dirichlet problem 1. Introduction Integral equations have been one of principal tools for the numerical solution of scattering problems for more than 30 years, both in the Helmholtz and Maxwell environments. Historically, most of the equations used have been of the first kind, since numerical instabilities associated with such equations have not been critically important for the relatively small-scale problems that could be handled at the time. The combination of improved hardware with the recent progress in the design of ‘‘fast’’ algorithms has changed the situation dramatically. Condition numbers of systems of linear algebraic equations resulting from the discretization of integral equations of potential theory have become critical, and the simplest way to limit such condition numbers is by starting with second kind integral equations. Hence, interest has increased in reducing scattering problems to systems of second kind integral equations on the boundaries of the scatterers.
    [Show full text]
  • Renormalization and Effective Field Theory
    Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM http://dx.doi.org/10.1090/surv/170 Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA.
    [Show full text]
  • Hep-Th/0101032V1 5 Jan 2001 Uhawyta H Eutn Trpoutcntuto Ol No Would Construction Star-Product O Resulting So field) the (Tensor Coordinates
    WICK TYPE DEFORMATION QUANTIZATION OF FEDOSOV MANIFOLDS V. A. DOLGUSHEV, S. L. LYAKHOVICH, AND A. A. SHARAPOV Abstract. A coordinate-free definition for Wick-type symbols is given for symplectic manifolds by means of the Fedosov procedure. The main ingredient of this approach is a bilinear symmetric form defined on the complexified tangent bundle of the symplectic manifold and subject to some set of algebraic and differential conditions. It is precisely the structure which describes a deviation of the Wick-type star-product from the Weyl one in the first order in the deformation parameter. The geometry of the symplectic manifolds equipped by such a bilinear form is explored and a cer- tain analogue of the Newlander-Nirenberg theorem is presented. The 2-form is explicitly identified which cohomological class coincides with the Fedosov class of the Wick-type star-product. For the particular case of K¨ahler manifold this class is shown to be proportional to the Chern class of a complex manifold. We also show that the symbol construction admits canonical superexten- sion, which can be thought of as the Wick-type deformation of the exterior algebra of differential forms on the base (even) manifold. Possible applications of the deformed superalgebra to the noncommutative field theory and strings are discussed. 1. Introduction The deformation quantization as it was originally defined in [1], [2] has now been well established for every symplectic manifold through the combined efforts of many authors (for review see [3]). The question of existence of the formal associative deformation for the commutative algebra of smooth functions, so-called star product, has been solved by De Wilde and Lecomte [4].
    [Show full text]
  • Inside the Perimeter Is Published by Perimeter Institute for Theoretical Physics
    the Perimeter fall/winter 2014 Skateboarding Physicist Seeks a Unified Theory of Self The Black Hole that Birthed the Big Bang The Beauty of Truth: A Chat with Savas Dimopoulos Subir Sachdev's Superconductivity Puzzles Editor Natasha Waxman [email protected] Contributing Authors Graphic Design Niayesh Afshordi Gabriela Secara Erin Bow Mike Brown Photographers & Artists Phil Froklage Tibra Ali Colin Hunter Justin Bishop Robert B. Mann Amanda Ferneyhough Razieh Pourhasan Liz Goheen Natasha Waxman Alioscia Hamma Jim McDonnell Copy Editors Gabriela Secara Tenille Bonoguore Tegan Sitler Erin Bow Mike Brown Colin Hunter Inside the Perimeter is published by Perimeter Institute for Theoretical Physics. www.perimeterinstitute.ca To subscribe, email us at [email protected]. 31 Caroline Street North, Waterloo, Ontario, Canada p: 519.569.7600 f: 519.569.7611 02 IN THIS ISSUE 04/ Young at Heart, Neil Turok 06/ Skateboarding Physicist Seeks a Unified Theory of Self,Colin Hunter 10/ Inspired by the Beauty of Math: A Chat with Kevin Costello, Colin Hunter 12/ The Black Hole that Birthed the Big Bang, Niayesh Afshordi, Robert B. Mann, and Razieh Pourhasan 14/ Is the Universe a Bubble?, Colin Hunter 15/ Probing Nature’s Building Blocks, Phil Froklage 16/ The Beauty of Truth: A Chat with Savas Dimopoulos, Colin Hunter 18/ Conference Reports 22/ Back to the Classroom, Erin Bow 24/ Finding the Door, Erin Bow 26/ "Bright Minds in Their Life’s Prime", Colin Hunter 28/ Anthology: The Portraits of Alioscia Hamma, Natasha Waxman 34/ Superconductivity Puzzles, Colin Hunter 36/ Particles 39/ Donor Profile: Amy Doofenbaker, Colin Hunter 40/ From the Black Hole Bistro, Erin Bow 42/ PI Kids are Asking, Erin Bow 03 neil’s notes Young at Heart n the cover of this issue, on the initial singularity from which everything the lip of a halfpipe, teeters emerged.
    [Show full text]
  • Potential Theory of Schr~Dingew Operator
    PROBABILITY. AND MATHEMAT[CAL STATISTICS POTENTIAL THEORY OF SCHR~DINGEWOPERATOR - BASED -ONFRACTIONAL LABLACIAN 5 BY - Abstract. We develop potential theory of Schrdinger operators based on fractional Laplacian on Euclidean spaces of arbitrary dimen- sion. We focus on questions related to gaugeability and existence of q-harmonic functions. Results are obtained by analyzing properties of a symmetric a-stable Gvy process on Rd, including the recurrent case. We provide some relevant techniques and apply them to give explicit examples of gauge functions for a general class of domains. 1W1 Mathematics Subject Claasificadon: Primary 31B25,60J50. Key words and phrases: symmetric a-stable Gvy process, Feyn- man-Kac semigroup, Schrodinger operator, q-harmonic functions, Kel- vin transform, conditional gauge theorem. 1. INTRODUCTION The paper deals with Schrodinger type operators corresponding to sym- metric a-stable Lbvy processes X,on Rd equipped with a multiplicative func- tional e,(t) = exp (lb q (X.)ds), where q is a given function (in a Kato class). We study the existence and properties of q-harmonic functions. In particular, we address ourselves to problems related to gaugeability. - - Many potential-theoretic properties of X, for aE(0, 2) are dramatically different from those of Brownian motion yet they may be regarded as typical for a general class of LCvy processes on Rd. This motivates a thorough study of the Feynman-Kac semigroups related to the symmetric stable Lbvy processes, especially that the explicit calculations are very often feasible in this particular case, which stimulates and enriches the general theory. Results of this paper complement the earlier ones contained in [6].Results of [6] were basically restricted to bounded Lipschitz domains and were based * Institute of Mathematics, Wroclaw University of Technology.
    [Show full text]
  • Introduction to Heat Potential Theory
    Mathematical Surveys and Monographs Volume 182 Introduction to Heat Potential Theory Neil A. Watson American Mathematical Society http://dx.doi.org/10.1090/surv/182 Mathematical Surveys and Monographs Volume 182 Introduction to Heat Potential Theory Neil A. Watson American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair Benjamin Sudakov MichaelA.Singer MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 31-02, 31B05, 31B20, 31B25, 31C05, 31C15, 35-02, 35K05, 31B15. For additional information and updates on this book, visit www.ams.org/bookpages/surv-182 Library of Congress Cataloging-in-Publication Data Watson, N. A., 1948– Introduction to heat potential theory / Neil A. Watson. p. cm. – (Mathematical surveys and monographs ; v. 182) Includes bibliographical references and index. ISBN 978-0-8218-4998-9 (alk. paper) 1. Potential theory (Mathematics) I. Title. QA404.7.W38 2012 515.96–dc23 2012004904 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2012 by the American Mathematical Society.
    [Show full text]
  • Boundary and Defect CFT: Open Problems and Applications
    Boundary and Defect CFT: Open Problems and rspa.royalsocietypublishing.org Applications Research N. Andrei1, A. Bissi2, M. Buican3, J. Cardy4;5, P. Dorey6, N. Drukker7, Article submitted to journal J. Erdmenger8, D. Friedan1;9, D. Fursaev10, A. Konechny11;12, C. Kristjansen13, Subject Areas: Theoretical Physics, Mathematical I. Makabe7, Y. Nakayama14, A. O’Bannon15, Physics R. Parini16, B. Robinson15, S. Ryu17, Keywords: C. Schmidt-Colinet18, V. Schomerus19, Conformal Field Theory, Boundaries and Defects, Non-Perturbative C. Schweigert20, and G.M.T. Watts7 Effects, Holographic Duality, 1 Supersymmetry Dept. of Phys., Rutgers Univ., Piscataway, NJ, USA. 2Dept. of Phys. and Astro., Uppsala Univ., SE 3 Author for correspondence: CRST and SPA, Queen Mary Univ. of London, UK B. Robinson 4Dept. of Phys., Univ. of California, Berkeley, CA, USA e-mail: [email protected] 5All Souls College, Oxford, UK 6Dept. of Math. Sci., Durham Univ., UK 7Dept. of Maths, King’s College London, UK 8Julius-Maximilians-Univ. Würzburg, DE 9 Natural Science Inst., Univ. of Iceland, IS 10Dubna State Univ., Dubna, RU 11Dept. of Maths, Heriot-Watt Univ., Edinburgh, UK 12Maxwell Inst. for Math. Sci., Edinburgh, UK 13Niels Bohr Inst., Copenhagen Univ., , DK 14Dept. of Phys., Rikkyo Univ., Tokyo, JP 15STAG Research Centre, Univ. of Southampton, UK 16Department of Mathematics, University of York, UK 17J. Franck Inst. & KCTP., Univ. of Chicago, IL, USA 18Arnold Sommerfeld Center, Univ. München, DE arXiv:1810.05697v1 [hep-th] 12 Oct 2018 19DESY Theory Group, DESY Hamburg, Hamburg, DE 20Fachbereich Math., Univ. Hamburg, Hamburg, DE Proceedings of the workshop “Boundary and Defect Conformal Field Theory: Open Problems and Applications,” Chicheley Hall, Buckinghamshire, UK, 7-8 Sept.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Topologie
    Mathematisches Forschungsinstitut Oberwolfach Report No. 42/2014 DOI: 10.4171/OWR/2014/42 Topologie Organised by Thomas Schick, G¨ottingen Peter Teichner, Bonn Nathalie Wahl, Copenhagen Michael Weiss, M¨unster 14 September – 20 September 2014 Abstract. The Oberwolfach conference “Topologie” is one of only a few opportunities for researchers from many different areas in algebraic and geo- metric topology to meet and exchange ideas. The program covered new de- velopments in fields such as automorphisms of manifolds, applications of alge- braic topology to differential geometry, quantum field theories, combinatorial methods in low-dimensional topology, abstract and applied homotopy theory and applications of L2-cohomology. We heard about new results describ- ing the cohomology of the automorphism spaces of some smooth manifolds, progress on spaces of positive scalar curvature metrics, a variant of the Segal conjecture without completion, advances in classifying topological quantum field theories, and a new undecidability result in combinatorial group theory, to mention some examples. As a special attraction, the conference featured a series of three talks by Dani Wise on the combinatorics of CAT(0)-cube complexes and applications to 3-manifold topology. Mathematics Subject Classification (2010): 55-xx, 57-xx, 18Axx, 18Bxx. Introduction by the Organisers This conference was the third topology conference in Oberwolfach organized by Thomas Schick, Peter Teichner, Nathalie Wahl and Michael Weiss. About 50 mathematicians participated, working in many different areas of algebraic and geometric topology. 2354 Oberwolfach Report 42/2014 The talks were of three types. There were 14 regular one-hour talks, 3 one-hour talks by keynote speaker Dani Wise and a “gong show” where 12 young speak- ers had the opportunity to present their research in 10 minutes each, including question time.
    [Show full text]
  • Combinatorics Meets Potential Theory
    Combinatorics meets potential theory Philippe D'Arco Valentina Lacivita Institut des Sciences de la Terre de Paris Institut du Calcul et de la Simulation Universit´ePierre et Marie Curie Institut des Sciences de la Terre de Paris Paris, France Universit´ePierre et Marie Curie Paris, France Sami Mustapha Centre de Math´ematiquesde Jussieu Universit´ePierre et Marie Curie Paris, France [email protected] Submitted: Jan 18, 2016; Accepted: Apr 23, 2016; Published: May 13, 2016 Mathematics Subject Classifications: 05A16,60G50 Abstract Using potential theoretic techniques, we show how it is possible to determine the dominant asymptotics for the number of walks of length n, restricted to the positive quadrant and taking unit steps in a \balanced" set Γ. The approach is illustrated through an example of inhomogeneous space walk. This walk takes its steps in f ; "; !; #g or f.; ; -; "; %; !; &; #g, depending on the parity of the n coordinatesp of its positions. The exponential growth of our model is (4φ) , where 1+ 5 φ = 2 denotes the Golden ratio, while the subexponential growth is like 1=n. As an application of our approach we prove the non-D-finiteness in two dimensions of the length generating functions corresponding to nonsingular small step sets with an infinite group and zero-drift. Keywords: Lattice path enumeration, analytic combinatorics in several variables, discrete potential theory, discrete harmonic functions. 1 Introduction Counting lattice walks in a fixed region R ⊂ Z2 is one of the most fundamental topics in enumerative combinatorics. In recent years, the case of walks confined to the first quadrant Q = f(x; y) 2 Z2; x > 0; y > 0g has been a subject of several important works (see [3,4,5, 10, 11, 12, 17, 26, 27, 32, 33, 34]).
    [Show full text]
  • Clifford Algebras and Maxwell's Equations in Lipschitz Domains *
    Cli ord algebras and Maxwell's equations in Lipschitz domains Alan McIntosh and Marius Mitrea April, 1998 Abstract We present a simple, Cli ord algebra based approach to several key results in the theory of Maxwell's equations in non-smo oth sub domains m of R . Among other things, wegive new pro ofs to the b oundary energy estimates of Rellichtyp e for Maxwell's equations in Lipschitz domains from [20] and [10], discuss radiation conditions and the case of variable wavenumb er. 1 Intro duction. It has b een long recognized that there are fundamental connections b etween electromagnetism and Cli ord algebras. Indeed, understanding Maxwell's equations was part of Cli ord's original motivation. A more recent trend concerns the treatmentofsuch PDE's in domains with irregular b oundaries. See [11] for an excellent survey of the state of the art in this eld up to early 1990's and [13], [18] for the role of Cli ord algebras in this context. Following work in the context of smo oth domains ([24], [2], [4], [23]), the three-dimensional Maxwell system 8 3 > curl E ik H =0 inR n ; < 3 curl H + ik E =0 inR n ; (M ) 3 > : 2 n E = f 2 L (@ ); 1991 Mathematics Subject Classi cation. Primary 42B20, 30G35; Secondary 78A25. Key words and phrases. Cli ord algebras, Maxwell's equations, Rellichidentities, radiation conditions, Hardy spaces, Lipschitz domains. 1 (plus appropriate radiation conditions at in nity) in the complementofa b ounded Lipschitz domain R has b een solved in [20], while the higher dimensional version (involving di erential forms) 8 m > dE ik H =0 inR n ; < (M ) H + ik E = 0 in R n ; m > : 2 n ^ E = f 2 L (@ ); m (plus suitable radiation conditions) for arbitrary Lipschitz domains R , has b een solved in [10] (precise de nitions will b e given shortly).
    [Show full text]