Palaeoecology of the South Wellesley Archipelago. a History of Human Occupation and Environmental Change

Total Page:16

File Type:pdf, Size:1020Kb

Palaeoecology of the South Wellesley Archipelago. a History of Human Occupation and Environmental Change Palaeoecology of the South Wellesley Archipelago. A history of human occupation and environmental change. Lydia Lattin Mackenzie Hons., Geographical Science, The University of Queensland, 2010 B.Sc., Ecology, The University of Queensland, 2008 A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2016 The School of Geography, Planning and Environmental Management Abstract A wealth of palaeoecological studies from the Australasian region identify periods of significant environmental change during the Holocene. However, relatively few studies have focused on the coastal lowlands of tropical northern Australia, limiting our ability to accurately reconstruct this vast bioregion’s history. This study addresses the gap in spatially distributed paleoenvironmental research in northern Australia by producing the first reconstructions from the South Wellesley Islands in the Southern Gulf of Carpentaria. Radioisotope analysis of lead (210Pb), plutonium (239/240Pu) and radiocarbon (14C) provide robust geochronologies. Chronologies are combined with loss on ignition, particle size and micro X-ray fluorescence analyses to identify site formation and development through time. Pollen and macroscopic and microscopic charcoal records were used to examine vegetation change and fire regimes throughout the late Holocene. This research shows coastal wetlands developed during the late Holocene in the South Wellesley Islands. Combined multi-proxy results indicate environmental change initially drove vegetation succession, but that human occupation and abandonment of the islands significantly affected vegetation composition and fire regimes. Radioisotope and geochemical analyses were conducted in collaboration with the Australian Nuclear Science and Technology Organisation. 210Pb alpha spectrometry analysis of 18 samples provide sedimentation rates and a chronology of the last 150 years across three key sites. This period is significant as traditional owners were removed in 1948, leaving the South Wellesley Islands unoccupied for the first time in 2,000 years. This research attempted to calibrate 210Pb results using the anthropogenic radioisotope plutonium by analysing 10 samples using accelerator mass spectrometry (AMS). Results of 239/240Pu isotope analysis found the site’s stratigraphy was insufficiently laminated to accurately pick peaks in fallout. However, levels of 239/240Pu indicate fallout occurred across far northern Australia and the technique has the potential to validate 210Pb results in appropriate sedimentary settings. Geochronologies combined 210Pb dates and bulk sediment 14C AMS dates. This research examined seven sediment profiles using micro X-ray fluorescence geochemical data and particle size analysis. 210Pb and 14C dates provide age-depth chronologies, identifying local and island-wide trends. Elemental analysis of coastal wetlands through time identified key phases of development including open coastal environments, mangrove establishment, hypersaline mudflat expansion and brackish/freshwater wetland development. An open coastal environment was present 1,250 cal. yr BP on the southeast coast of Bentinck Island, with fluvial deposition of detrital ii elements from the eroding lateritic bedrock. A prograding shoreline, dune development and tributary diversion created a series of swales parallel to the coast by 800 cal. yr BP, forming the extensive Marralda Wetlands. Saline mudflats developed at sites on the north and west coast at 500 and 450 cal. yr BP, respectively. Geochemical and grain size analyses provide evidence that wetlands formed as accreting supratidal environments or coastal swales intercepting groundwater. The timing of coastal environments transitioning to saline mudflats and eventual wetland development indicates localised late Holocene sea-level regression, stabilisation and coastal plain development in the southern Gulf of Carpentaria. Elemental data identified phases of wetland development across Bentinck Island, highlighting the value of geochemical analysis as a proxy of past environments in tropical northern Australia. Palynological and charcoal analysis of four key wetlands across Bentinck Island were used to reconstruct vegetation succession and fire regimes in the late Holocene. This thesis conducted the first comprehensive floristic surveys and modern pollen profiles of the islands, supporting the interpretation of fossil pollen assemblages. An initial study of the Marralda Swamp wetlands found a protected coastal setting from 2,400-500 cal. yr BP, transitioning to a supratidal environment dominated by a mixed mangrove community. Mangroves declined and transitioned to freshwater swamp taxa only in the last 60 years. Analysis of a site 1km inland of the preliminary study found a diverse mangrove community was present between 1,250 and 850 cal. yr BP, with particle size analysis indicating a high-energy environment associated with a tributary. These results are further supported by the geochemical data. Palynological results suggest that mangrove species declined, woodland and savanna species increased and freshwater aquatic taxa increased by 800 cal. yr BP indicating a brackish/freshwater wetland developed. Further freshwater expansion occurred on the southeast coast by 400 cal. yr BP, reaching its maximum extent in the last 200 years. Palynological investigations from the north and west coast of Bentinck Island span the last 550 cal. yr. On the west coast an open savanna landscape was replaced by a mixed woodland and aquatic taxa significantly increased suggesting wetland expansion in the last 200 years. On the north coast the salt-tolerant Chenopodiaceae dominated, suggesting a hypersaline mudflat developed at 450 cal. yr BP. The increasing presence of Pandanus and the appearance of aquatic taxa suggest this site remained an ephemeral source of freshwater during the monsoon season, with the water table below the surface for the majority of the year. This research reconstructed vegetation and fire regimes during periods of human occupation and abandonment, separating anthropogenic and natural drivers of change during the Holocene. iii Macroscopic charcoal results analysed using CharAnalysis show that interpolated charcoal accumulation increased between 350-200 cal. yr BP on the southeast and west coast of Bentinck Island. Charcoal results correlated well with archaeological evidence of population increase on Bentinck Island in the late Holocene. Peak charcoal and magnitude significantly increased across all sites after AD 1950. Results indicate that the removal of Kaiadilt people in AD 1948 interrupted traditional burning practices and caused the area burned and severity of fire events to increase. iv Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis. v Publications during candidature Peer reviewed papers: Mackenzie L, Heijnis H, Gadd P, Moss P, Shulmeister J. (accepted). Geochemical investigations of the South Wellesley Island wetlands: insight into wetland development during the Holocene in tropical northern Australia. The Holocene. Moss P, Mackenzie L, Ulm S, Sloss C, Rosendahl D, Petherick L, Steinberger L, Wallis L, Heijnis H, Petchey F, Jacobsen G. 2015. Environmental context for late Holocene human occupation of the South Wellesley Archipelago, Gulf of Carpentaria, northern Australia. Quaternary International 385: 136-144. Conference abstracts: Mackenzie L, Moss P, Ulm S, Sloss C, Rosendahl D, Petherick L. 2015. A multi proxy approach to understanding late Holocene wetland development in tropical northern Australia. XIX INQUA-Congress, P19-03, 2015, Nagoya, Japan. Mackenzie L, Moss P, Ulm S, Sloss C, Heijnis H, Jacobsen G. 2016. Fire regimes and vegetation change in tropical northern Australia during the late Holocene. Geophysical Research Abstracts Vol. 18, EGU2016-11049, 2016, Vienna, Austria. Mackenzie L, Moss P, Sloss C, Ulm S, Rosendahl D, Wallis L. 2014. Late Holocene swamp development and human occupation across the Wellesley Archipelago, Gulf of Carpentaria,
Recommended publications
  • Floristic Patterns in Coastal Rainforest of Shoalwater Bay, Central Queensland
    362 Cunninghamia 8(3): 2004 McCarthy et al., Floristic patterns in coastal rainforest of Shoalwater Bay Floristic patterns in coastal rainforest of Shoalwater Bay, Central Queensland Peter McCarthy1, Peter Clarke2 and Jeremy Bruhl3 113 Knox St., Clovelly NSW 2031; 2Botany, School of Environmental Sciences and Natual Resources Management, University of New England, Armidale, NSW 2351, AUSTRALIA; 3Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney NSW 2000, AUSTRALIA. Abstract: A study was undertaken of the floristic patterns in coastal rainforest (low closed forest) of Shoalwater Bay, central Queensland. The site encompasses 60 km of coastline, extending from latitude 22° 08’ 30’’ to 22° 30’ 0” and longitude 150° 02’ 00” to 150° 24’ 30”. The rainforest grows on coastal Holocene sand dunes, swales and sand flats, distributed as a series of 27 discrete patches greater than one hectare along 60 kilometres of coastline. Mean patch size was 10.7 hectares (maximum 150 hectares). The flora was predominantly woody, and lacked the complex growth forms of Webb (1968). Floristic links with central and north Queensland were strong, with some species distributions extending into Malesia and the Pacific. Three physical strata, emergent (composed of trees), canopy (composed of trees, vines and epiphytes) and sub-canopy (trees, vines and herbs) were recognised. The herb layer was very poorly developed. Eighty-one species were recorded, representing 42 families and 72 genera. Sixty three quadrats were sampled across the rainforest patches to measure abundance of all vascular taxa using frequency score. Five floristic groups were defined from agglomerative classification analysis, one representing mixed forest, two representing low microphyll vine forest (LMVF) and two representing microphyll vine thicket (MVT).
    [Show full text]
  • Checklist of Vascular Plants Recorded for Cattana Wetlands Class Family Code Taxon Common Name
    Checklist of Vascular Plants Recorded for Cattana Wetlands Class Family Code Taxon Common Name FERNS & ALLIES Aspleniaceae Asplenium nidus Birds Nest Fern Blechnaceae Stenochlaena palustris Climbing Swamp Fern Dryopteridaceae Coveniella poecilophlebia Marsileaceae Marsilea mutica Smooth Nardoo Polypodiaceae Colysis ampla Platycerium hillii Northern Elkhorn Fern Pteridaceae Acrostichum speciosum Mangrove Fern Schizaeaceae Lygodium microphyllum Climbing Maidenhair Fern Lygodium reticulatum GYMNOSPERMS Araucariaceae Agathis robusta Queensland Kauri Pine Podocarpaceae Podocarpus grayae Weeping Brown Pine FLOWERING PLANTS-DICOTYLEDONS Acanthaceae * Asystasia gangetica subsp. gangetica Chinese Violet Pseuderanthemum variabile Pastel Flower * Sanchezia parvibracteata Sanchezia Amaranthaceae * Alternanthera brasiliana Brasilian Joyweed * Gomphrena celosioides Gomphrena Weed; Soft Khaki Weed Anacardiaceae Blepharocarya involucrigera Rose Butternut * Mangifera indica Mango Tuesday, 31 August 2010 Checklist of Plants for Cattana Wetlands RLJ Page 1 of 12 Class Family Code Taxon Common Name Semecarpus australiensis Tar Tree Annonaceae Cananga odorata Woolly Pine Melodorum leichhardtii Acid Drop Vine Melodorum uhrii Miliusa brahei Raspberry Jelly Tree Polyalthia nitidissima Canary Beech Uvaria concava Calabao Xylopia maccreae Orange Jacket Apocynaceae Alstonia scholaris Milky Pine Alyxia ruscifolia Chain Fruit Hoya pottsii Native Hoya Ichnocarpus frutescens Melodinus acutiflorus Yappa Yappa Tylophora benthamii Wrightia laevis subsp. millgar Millgar
    [Show full text]
  • Introduction: the Tiliaceae and Genustilia
    Cambridge University Press 978-0-521-84054-5 — Lime-trees and Basswoods Donald Pigott Excerpt More Information Introduction: the 1 Tiliaceae and genus Tilia Tilia is the type genus of the family name Tiliaceae Juss. (1789), The ovary is syncarpous with five or more carpels but only and T. × europaea L.thetypeofthegenericname(Jarviset al. one style and a stigma with a lobe above each carpel. In Tili- 1993). Members of Tiliaceae have many morphological char- aceae, the ovules are anatropous. In Malvaceae, filaments of acters in common with those of Malvaceae Juss. (1789) and the stamens are fused into a tube but have separate apices that both families were placed in the order Malvales by Engler each bear a unilocular anther. Staminodes are absent. Each of (1912). In Engler’s treatment, Tiliaceae consisted mainly of five or more carpels supports a separate style, which together trees and shrubs belonging to several genera, including a pass through the staminal tube so that the stigmas are exposed few herbaceous genera, almost all occurring in the warmer above the anthers. The ovules may be either anatropous or regions. campylotropous. This treatment was revised by Engler and Diels (1936). The Molecular studies comprising sequence analysis of DNA of family was retained by Cronquist (1981) and consisted of about two plastid genes (Bayer et al. 1999) show that, in general, the 50 genera and 700 species distributed in the tropics and warmer inclusion of most genera, including Tilia, traditionally placed parts of the temperate zones in Asia, Africa, southern Europe in Malvales is correct. There is, however, clear evidence that and America.
    [Show full text]
  • Niiwalarra Islands and Lesueur Island
    Niiwalarra Islands (Sir Graham Moore Islands) National Park and Lesueur Island Nature Reserve Joint management plan 2019 Management plan 93 Conservation and Parks Commission Department of Biodiversity, Conservation and Attractions Department of Biodiversity, Conservation and Attractions Parks and Wildlife Service 17 Dick Perry Avenue Technology Park, Western Precinct KENSINGTON WA 6151 Phone (08) 9219 9000 Fax (08) 9334 0498 dbca.wa.gov.au © State of Western Australia 2019 December 2019 ISBN 978-1-925978-03-2 (print) ISBN 978-1-921703-94-2 (online) WARNING: This plan may show photographs of, and refer to quotations from people who have passed away. This work is copyright. All traditional and cultural knowledge in this joint management plan is the cultural and intellectual property of Kwini Traditional Owners and is published with the consent of Balanggarra Aboriginal Corporation on their behalf. Written consent from Balanggarra Aboriginal Corporation must be obtained for use or reproduction of any such materials. Any unauthorised dealing may be in breach of the Copyright Act 1968 (Cth). All other non-traditional and cultural content in this joint management plan may be downloaded, displayed, printed and reproduced in unaltered form for personal use, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to the Department of Biodiversity, Conservation and Attractions. NB: The spelling of some of the words for country, and species of plants and animals in language are different in various documents. This is primarily due to the fact that establishing a formal and consistent ‘sounds for spelling’ system for a language that did not have a written form takes time to develop and refine.
    [Show full text]
  • Revisiting Inscriptions on the Investigator Tree on Sweers Island, Gulf of Carpentaria
    REVISITING INSCRIPTIONS ON THE INVESTIGATOR TREE ON SWEERS ISLAND, GULF OF CARPENTARIA COLLINS, S. J.1, MATE, G.2,1 & ULM, S.1,3 The Investigator Tree, so named after Matthew Flinders’ ship HMS Investigator, is an inscribed tree currently on display in the Queensland Museum. Before being accessioned into the Queensland Museum’s collection in 1889, the Investigator Tree grew on the western shore of Sweers Island in the southern Gulf of Carpentaria. The tree’s “Investigator” inscription, attributed to Flinders (1802), provided the catalyst for future and varied forms of European inscription making on Sweers Island, including a contentious additional “Investigator” inscription on the Investigator Tree carved by Thomas Baines in 1856. Previous researchers have speculated that Baines’ second “Investigator” inscription has caused the faded original “Investigator” inscription to be misinterpreted as either a Chinese or Dutch inscription predating Flinders’ visit to Sweers Island. For the first time, this study undertakes a physical examination of all markings on the Investigator Tree, including a second portion of the tree located at the Queensland Museum since 2009. In com­ bination with a review of the archival and historical record, findings provide alternative interpretations regarding the (28) inscriptions to address outstanding questions. Archival documents demonstrate that there were at least three inscribed trees on Sweers Island. This paper also revisits the possibility of there once being pre­Flinders inscriptions on the Investigator
    [Show full text]
  • BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
    BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands.
    [Show full text]
  • Corchorus L. and Hibiscus L.: Molecular Phylogeny Helps to Understand Their Relative Evolution and Dispersal Routes
    Corchorus L. and Hibiscus L.: Molecular Phylogeny Helps to Understand Their Relative Evolution and Dispersal Routes Arif Mohammad Tanmoy1, Md. Maksudul Alam1,2, Mahdi Muhammad Moosa1,3, Ajit Ghosh1,4, Waise Quarni1,5, Farzana Ahmed1, Nazia Rifat Zaman1, Sazia Sharmin1,6, Md. Tariqul Islam1, Md. Shahidul Islam1,7, Kawsar Hossain1, Rajib Ahmed1 and Haseena Khan1* 1Molecular Biology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh. 2Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA. 3Graduate Studies in Biological Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. 4Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India. 5Department of Pathology and Cell Biology, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA. 6Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan. 7Breeding Division, Bangladesh Jute Research Institute (BJRI), Dhaka 1207, Bangladesh. ABSTRACT: Members of the genera Corchorus L. and Hibiscus L. are excellent sources of natural fibers and becoming much important in recent times due to an increasing concern to make the world greener. The aim of this study has been to describe the molecular phylogenetic relationships among the important members of these two genera as well as to know their relative dispersal throughout the world. Monophyly of Corchorus L. is evident from our study, whereas paraphyletic occurrences have been identified in case of Hibiscus L.
    [Show full text]
  • Threatened Endemic Plants of Palau
    THREA TENED ENDEMIC PLANTS OF PALAU BIODI VERSITY CONSERVATION LESSONS LEARNED TECHNICAL SERIES 19 BIODIVERSITY CONSERVATION LESSONS LEARNED TECHNICAL SERIES 19 Threatened Endemic Plants of Palau Biodiversity Conservation Lessons Learned Technical Series is published by: Critical Ecosystem Partnership Fund (CEPF) and Conservation International Pacific Islands Program (CI-Pacific) PO Box 2035, Apia, Samoa T: + 685 21593 E: [email protected] W: www.conservation.org The Critical Ecosystem Partnership Fund is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. A fundamental goal is to ensure civil society is engaged in biodiversity conservation. Conservation International Pacific Islands Program. 2013. Biodiversity Conservation Lessons Learned Technical Series 19: Threatened Endemic Plants of Palau. Conservation International, Apia, Samoa Authors: Craig Costion, James Cook University, Australia Design/Production: Joanne Aitken, The Little Design Company, www.thelittledesigncompany.com Photo credits: Craig Costion (unless cited otherwise) Cover photograph: Parkia flowers. © Craig Costion Series Editors: Leilani Duffy, Conservation International Pacific Islands Program Conservation International is a private, non-profit organization exempt from federal income tax under section 501c(3) of the Internal Revenue Code. OUR MISSION Building upon a strong foundation of science, partnership and field demonstration,
    [Show full text]
  • A Taxonomic Revision of the Genus Vi7ex L
    J. Adelaide Sot. Gard. 10(1): 31-79(1987) A TAXONOMIC REVISION OF THE GENUS VI7EX L. (VERBENACEAE)* IN AUSTRALIA Ahmad Abid Munir State Herbarium, Botanic Gardens, North Terrace, Adelaide, South Australia 5000 Abstract A taxonomic revision of Vitex in Australia is presented. The following eight species are recognised: V. acuminata, V. bentlzamiana, V. glabrata, V. helogiton, V. melicopea, V. rotundifolia, V. trifolia and V. velutinifolia. V. velutinifolia (from Western Australia) is described as new. V. melicopea and V. helogiton are reinstated, with V. helogiton being recorded from Australia for the first time. V. rotundifolia is reinstated as the oldest valid name for the 1-foliolate species previously often named V. ovata, V. tnfolia var. ovata, V. &Oita var. unifoliolata, V. trifolia var. simplicifolia or V. trtfolia subsp. littoralis. V. tnfolia var, bicolor is placed in synonymy of V. trifolia var. trifolia. The following four species are typified: V. acuminata, V. benthamiana, V. helogiton and V. melicopea. A mnge of material of the non- endemic species was examined from Malesia. Affinities and distribution are considered for each species. A key to the species is provided and a detailed description of each species is supplemented by a habit sketch of a flowering branch and analytical drawings of the flower. Taxonomic History of the Genus The genus Vitex was described by Linnaeus (1753) with four species, V. agnus-castus, V trifolio, V. negundo and V. pinnata. The syntypes of the first named species came from Sicily and Naples, the second and third from India, and the fourth type from Ceylon. The genus was placed together with Clerodendrum, Gmelina and a few other genera of present Verbenaceae in "Didynamia Angiospermia", where it was retained by Murray (1774), Reichard (1778), Loureiro (1793), Schreber (1791), Gmelin (1792), Persoon (1797, 1807), Willdenow (1800), Link (1822), Lamarck & Poiret (1823), Sprengel (1825), Roxburgh (1832), Dietrich (1842) and a few others.
    [Show full text]
  • Contribution to the Biosystematics of Celtis L. (Celtidaceae) with Special Emphasis on the African Species
    Contribution to the biosystematics of Celtis L. (Celtidaceae) with special emphasis on the African species Ali Sattarian I Promotor: Prof. Dr. Ir. L.J.G. van der Maesen Hoogleraar Plantentaxonomie Wageningen Universiteit Co-promotor Dr. F.T. Bakker Universitair Docent, leerstoelgroep Biosystematiek Wageningen Universiteit Overige leden: Prof. Dr. E. Robbrecht, Universiteit van Antwerpen en Nationale Plantentuin, Meise, België Prof. Dr. E. Smets Universiteit Leiden Prof. Dr. L.H.W. van der Plas Wageningen Universiteit Prof. Dr. A.M. Cleef Wageningen Universiteit Dr. Ir. R.H.M.J. Lemmens Plant Resources of Tropical Africa, WUR Dit onderzoek is uitgevoerd binnen de onderzoekschool Biodiversiteit. II Contribution to the biosystematics of Celtis L. (Celtidaceae) with special emphasis on the African species Ali Sattarian Proefschrift ter verkrijging van de graad van doctor op gezag van rector magnificus van Wageningen Universiteit Prof. Dr. M.J. Kropff in het openbaar te verdedigen op maandag 26 juni 2006 des namiddags te 16.00 uur in de Aula III Sattarian, A. (2006) PhD thesis Wageningen University, Wageningen ISBN 90-8504-445-6 Key words: Taxonomy of Celti s, morphology, micromorphology, phylogeny, molecular systematics, Ulmaceae and Celtidaceae, revision of African Celtis This study was carried out at the NHN-Wageningen, Biosystematics Group, (Generaal Foulkesweg 37, 6700 ED Wageningen), Department of Plant Sciences, Wageningen University, the Netherlands. IV To my parents my wife (Forogh) and my children (Mohammad Reza, Mobina) V VI Contents ——————————— Chapter 1 - General Introduction ....................................................................................................... 1 Chapter 2 - Evolutionary Relationships of Celtidaceae ..................................................................... 7 R. VAN VELZEN; F.T. BAKKER; A. SATTARIAN & L.J.G. VAN DER MAESEN Chapter 3 - Phylogenetic Relationships of African Celtis (Celtidaceae) ........................................
    [Show full text]
  • LEAF ARCHITECTURE of SELECTED SPECIES of MALVACEAE Sensu APG and ITS TAXONOMIC SIGNIFICANCE
    Philippine Journal of Systematic Biology Vol. IV (June 2010) LEAF ARCHITECTURE OF SELECTED SPECIES OF MALVACEAE sensu APG AND ITS TAXONOMIC SIGNIFICANCE ALLEN ANTHONY P. LARAÑO, AND INOCENCIO E. BUOT JR. Institute of Biological Sciences, University of the Philippines Los Baños ABSTRACT The leaf architecture of Malvaceae sensu APG was examined and characterized to determine if it can be used in classification of the family and the identification of its species. Forty species were observed, measured and described. A dichotomous key was constructed based solely on leaf architecture characters. The dichotomous key indicated that leaf architecture characters can be used in distinguishing some species of Malvaceae sensu APG. Some basic leaf architectural characters can also be used in describing certain clades within the family. It is recommended that specimens are collected personally instead on relying on available specimens in the herbarium. Preparation of leaf skeletons through clearing method can also be done in future studies. Increase of sample size is also recommended. KEYWORDS: leaf architecture, APG, classification INTRODUCTION Malvaceae Jussieu, nom. cons is a newly circumscribed family of the Angiosperm Phylogeny Group (APG, 2003). This family now comprises 243 genera and 4225 species which are mainly tropical in distribution. In the APG system, member families of Malvales like Sterculiaceae, Bombacaceae, Tiliaceae and Malvaceae sensu strictu were merged to become Malvaceae sensu APG (or lato). This lumping of families became controversial and gained criticism from some taxonomists. Cheek (2006, see also Cheek in Heywood et. al., 2007, Stevens, 2010) opts for a full dismemberment of the super family into ten separate families (Bombacaceae, Malvaceae, Sterculiaceae, Tiliaceae, Durionaceae, Brownlowiaceae Byttneriaceae, Helicteraceae, Pentapetaceae, and Sparrmanniaceae).
    [Show full text]
  • Gulf Plains Bioregion
    Gulf Plains bioregion Description Figure 2 Monitoring data coverage Area: 121 100 km2 The Gulf Plains bioregion is characterised by extensive NT alluvial plains and coastal areas. The tropical savanna vegetation comprises mainly eucalypt and tea-tree open woodlands. The regional economy is mainly based on cattle grazing with some prawn fishing, QLD mining and tourism. Tenure is pastoral lease, Aboriginal land and nature reserves. Major population centres are Burketown, Normanton, Karumba and Doomadgee Aboriginal Community. bioregion and sub-IBRA boundary RMDC AussieGRASS data Location The Gulf Plains bioregion is located in the Gulf of Data sourcesMoni availabletoring data coverage Carpentaria in northern Queensland, with a small Data sources include: area (0.7% of bioregion area) in the Northern Territory (NT; see Figures 1 and 2). n Rapid Mobile Data Collection (RMDC) supported by AussieGRASS simulation (of pasture growth Figure 1 Location of the Gulf Plains and utilisation) and remote sensing (Multiple bioregion Regression Bare Ground Index, version bi1); these provide moderate reliability for reporting change (RMDC — road traverses and visual estimates; AussieGRASS — entire rangelands, simulated results with some ground validation) n domestic stocking density, which provides moderate reliability n fire extent, intensity and frequency, which provides high reliability n dust n distance from water n distribution and relative abundance of invasive animals and weeds Location of Gulf Plains bioregion n land use n land values. Gulf Plains bioregion 1 Climate Sustainable management The Gulf Plains bioregion has a monsoonal climate Critical stock forage with a winter dry season and a summer wet season. Spatially averaged median (1890–2005) rainfall is AussieGRASS, levels of simulated pasture 737 mm (April to March rainfall year; see Figure 3).
    [Show full text]