In-Flight Icing Hazards
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Snow Nowcasting Using a Real-Time Correlation of Radar Reflectivity
20 JOURNAL OF APPLIED METEOROLOGY VOLUME 42 Snow Nowcasting Using a Real-Time Correlation of Radar Re¯ectivity with Snow Gauge Accumulation ROY RASMUSSEN AND MICHAEL DIXON National Center for Atmospheric Research, Boulder, Colorado STEVE VASILOFF National Severe Storms Laboratory, Norman, Oklahoma FRANK HAGE,SHELLY KNIGHT,J.VIVEKANANDAN, AND MEI XU National Center for Atmospheric Research, Boulder, Colorado (Manuscript received 21 November 2001, in ®nal form 13 June 2002) ABSTRACT This paper describes and evaluates an algorithm for nowcasting snow water equivalent (SWE) at a point on the surface based on a real-time correlation of equivalent radar re¯ectivity (Ze) with snow gauge rate (S). It is shown from both theory and previous results that Ze±S relationships vary signi®cantly during a storm and from storm to storm, requiring a real-time correlation of Ze and S. A key element of the algorithm is taking into account snow drift and distance of the radar volume from the snow gauge. The algorithm was applied to a number of New York City snowstorms and was shown to have skill in nowcasting SWE out to at least 1 h when compared with persistence. The algorithm is currently being used in a real-time winter weather nowcasting system, called Weather Support to Deicing Decision Making (WSDDM), to improve decision making regarding the deicing of aircraft and runway clearing. The algorithm can also be used to provide a real-time Z±S relationship for Weather Surveillance Radar-1988 Doppler (WSR-88D) if a well-shielded snow gauge is available to measure real-time SWE rate and appropriate range corrections are made. -
Quantitative Interpretation of Laser Ceilometer Intensity Profiles
396 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 14 Quantitative Interpretation of Laser Ceilometer Intensity Pro®les R. R. ROGERS AND M.-F. LAMOUREUX Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada L. R. BISSONNETTE Defence Research Establishment Valcartier, Courcelette, Quebec, Canada R. M. PETERS Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania (Manuscript received 23 July 1996, in ®nal form 28 October 1996) ABSTRACT The authors have used a commercially available laser ceilometer to measure vertical pro®les of the optical extinction in rain. This application requires special signal processing to correct the raw data for the effects of receiver noise, high-pass ®ltering, and the incomplete overlap of the transmitted beam with the receiver ®eld of view at close range. The calibration constant of the ceilometer, denoted by C, is determined from the pro®le of the corrected returned power in conditions of moderate attenuation in which the power is completely extin- guished over a distance on the order of 1 km. In this determination, the value of the backscatter-to-extinction ratio k of the scattering medium must be speci®ed and an allowance made for the effects of multiple scattering. These requirements impose an uncertainty on C that can amount to 650%. An alternative to determining the calibration constant is explained, which does not require specifying k, although it assumes that k is constant with height. Using this alternative approach, the authors have estimated many extinction pro®les in rain and compared them with radar re¯ectivity pro®les measured with a UHF boundary layer wind pro®ler. -
FAA Advisory Circular AC 91-74B
U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Pilot Guide: Flight in Icing Conditions Date:10/8/15 AC No: 91-74B Initiated by: AFS-800 Change: This advisory circular (AC) contains updated and additional information for the pilots of airplanes under Title 14 of the Code of Federal Regulations (14 CFR) parts 91, 121, 125, and 135. The purpose of this AC is to provide pilots with a convenient reference guide on the principal factors related to flight in icing conditions and the location of additional information in related publications. As a result of these updates and consolidating of information, AC 91-74A, Pilot Guide: Flight in Icing Conditions, dated December 31, 2007, and AC 91-51A, Effect of Icing on Aircraft Control and Airplane Deice and Anti-Ice Systems, dated July 19, 1996, are cancelled. This AC does not authorize deviations from established company procedures or regulatory requirements. John Barbagallo Deputy Director, Flight Standards Service 10/8/15 AC 91-74B CONTENTS Paragraph Page CHAPTER 1. INTRODUCTION 1-1. Purpose ..............................................................................................................................1 1-2. Cancellation ......................................................................................................................1 1-3. Definitions.........................................................................................................................1 1-4. Discussion .........................................................................................................................6 -
Gauge and Radarradargauge
GaGaugugeeaandndRRaadadarr PPaaoo--LLiaiangngChaChangng CentCentrarallWWeaeattherherBBurureaeau,u,TTaaiwiwaann A Training Course on Quantitative Precipitation Estimation/Forecasting (QPE/QPF) Crowne Plaza Manila Galleria, Quezon City, Philippines 27-30 March 2012 OOuutlitlinnee RaRadadarraandndGGaaugugeeNetNetwwoorkrkininTTaaiwiwaann RaRadadarrDaDattaaQQCCususingingRefReflectlectivivitityyaandnd RaRainfinfaallllClimClimaattoolologgyy RaRadadarrQQPPEEaandndGGaaugugee--cocorrrrectectededQQPPEE OOututloloookk 2 OOppeerratiationonalalRRadadararNNeetwtwororkkiinnTTaiaiwwanan RRCCWWFF RRCCCCKK RRCCHHLL RRCCMMKK RRCCCCGG RRCCKKTT CCWBWB::RRCCWFWF,,RRCCHHLL,,RRCCKKTT,,RRCCCCGG((DDopoppplleerr,,wwaveavelleenngtgthh::10c10cmm)) AAiirrFFororccee::RRCCCCKK,,RRCCMMKK((dduualal--ppololarariizzatatiionon,,wwaveavelleenngtgthh::5c5cmm)) Taiwan operational radar network basic information RCWF RCHL RCCG RCKT RCCK RCMK Observation Range (km) 460,230 460,230 460,230 460,230 460,160 460,160 (Z,Vr) Gematronik Gematronik Gematronik Gematronik Gematronik Type WSR-88D 1500S 1500S 1500S 1500C 1500C Height (m) 766 63 38 42 203 48 Wavelength (cm) 10 10 10 10 5 5 Polarization Single Single Single Single Dual Dual Max. Unambiguous 26.55 21.15 21.15 49.5 49.5 49.5 Velocity (m/s) GGaaugugeeStStaattioionsns inin TTaaiwiwaann Data from CWB and Gov. agencies (WRA, SWCB,TPC,..) •All Gauge stations ~570 stations •Overland ~560 stations MMeaeannGGaaugugeeSpaSpacingcing ffrroommCWBCWBSitSiteses((dadattaainin22000077)) Number of Gauges CoConceptnceptooffRefReflectlectivivitityyClimClimaattoolologgyy -
Ott Parsivel - Enhanced Precipitation Identifier for Present Weather, Drop Size Distribution and Radar Reflectivity - Ott Messtechnik, Germany
® OTT PARSIVEL - ENHANCED PRECIPITATION IDENTIFIER FOR PRESENT WEATHER, DROP SIZE DISTRIBUTION AND RADAR REFLECTIVITY - OTT MESSTECHNIK, GERMANY Kurt Nemeth1, Martin Löffler-Mang2 1 OTT Messtechnik GmbH & Co. KG, Kempten (Germany) 2 HTW, Saarbrücken (Germany) as a laser-optic enhanced precipitation identifier and present weather sensor. The patented extinction method for simultaneous measurements of particle size and velocity of all liquid and solid precipitation employs a direct physical measurement principle and classification of hydrometeors. The instrument provides a full picture of precipitation events during any kind of weather phenomenon and provides accurate reporting of precipitation types, accumulation and intensities without degradation of per- formance in severe outdoor environments. Parsivel® operates in any climate regime and the built-in heating device minimizes the negative effect of freezing and frozen precipitation accreting critical surfaces on the instrument. Parsivel® can be integrated into an Automated Surface/ Weather Observing System (ASOS/AWOS) as part of the sensor suite. The derived data can be processed and 1. Introduction included into transmitted weather observation reports and messages (WMO, SYNOP, METAR and NWS codes). ® OTT Parsivel : Laser based optical Disdrometer for 1.2. Performance, accuracy and calibration procedure simultaneous measurement of PARticle SIze and VELocity of all liquid and solid precipitation. This state The new generation of Parsivel® disdrometer provides of the art instrument, designed to operate under all the latest state of the art optical laser technology. Each weather conditions, is capable of fulfilling multiple hydrometeor, which falls through the measuring area is meteorological applications: present weather sensing, measured simultaneously for size and velocity with an optical precipitation gauging, enhanced precipitation acquisition cycle of 50 kHz. -
Downloaded 09/24/21 04:33 AM UTC APRIL 2013 F R I E D R I C H E T a L
1182 MONTHLY WEATHER REVIEW VOLUME 141 Drop-Size Distributions in Thunderstorms Measured by Optical Disdrometers during VORTEX2 KATJA FRIEDRICH AND EVAN A. KALINA University of Colorado, Boulder, Colorado FORREST J. MASTERS AND CARLOS R. LOPEZ University of Florida, Gainesville, Florida (Manuscript received 13 April 2012, in final form 22 October 2012) ABSTRACT When studying the influence of microphysics on the near-surface buoyancy tendency in convective thun- derstorms, in situ measurements of microphysics near the surface are essential and those are currently not provided by most weather radars. In this study, the deployment of mobile microphysical probes in con- vective thunderstorms during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) is examined. Microphysical probes consist of an optical Ott Particle Size and Velocity (PARSIVEL) disdrometer that measures particle size and fall velocity distributions and a surface obser- vation station that measures wind, temperature, and humidity. The mobile probe deployment allows for targeted observations within various areas of the storm and coordinated observations with ground-based mobile radars. Quality control schemes necessary for providing reliable observations in severe environ- ments with strong winds and high rainfall rates and particle discrimination schemes for distinguishing be- tween hail, rain, and graupel are discussed. It is demonstrated how raindrop-size distributions for selected cases can be applied to study size-sorting and microphysical processes. The study revealed that the raindrop-size distribution changes rapidly in time and space in convective thunderstorms. Graupel, hailstones, and large raindrops were primarily observed close to the updraft region of thunderstorms in the forward- and rear-flank downdrafts and in the reflectivity hook appendage. -
Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality
Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality 1.) Introduction: The WSR-88D (Weather Surveillance Radar designed and built in the 80s) is the most useful tool used by National Weather Service (NWS) Meteorologists to detect precipitation, calculate its motion, estimate its type (rain, snow, hail, etc) and forecast its position. Radar stands for “Radio, Detection, and Ranging”, was developed in the 1940’s and used during World War II, has gone through numerous enhancements and technological upgrades to help forecasters investigate storms with greater detail and precision. However, as our ability to detect areas of precipitation, including rotation within thunderstorms has vastly improved over the years, so has the radar’s ability to detect other significant meteorological and non meteorological artifacts. In this article we will identify these signatures, explain why and how they occur and provide examples from KTYX and KCXX of both meteorological and non meteorological data which WSR-88D detects. KTYX radar is located on the Tug Hill Plateau near Watertown, NY while, KCXX is located in Colchester, VT with both operated by the NWS in Burlington. Radar signatures to be shown include: bright banding, tornadic hook echo, low level lake boundary, hail spikes, sunset spikes, migrating birds, Route 7 traffic, wind farms, and beam blockage caused by terrain and the associated poor data sampling that occurs. 2.) How Radar Works: The WSR-88D operates by sending out directional pulses at several different elevation angles, which are microseconds long, and when the pulse intersects water droplets or other artifacts, a return signal is sent back to the radar. -
Observation of Cloud Base Height and Precipitation Characteristics at a Polar Site Ny-Ålesund, Svalbard Using Ground-Based Remote Sensing and Model Reanalysis
remote sensing Article Observation of Cloud Base Height and Precipitation Characteristics at a Polar Site Ny-Ålesund, Svalbard Using Ground-Based Remote Sensing and Model Reanalysis Acharya Asutosh 1,2,*, Sourav Chatterjee 1,3 , M.P. Subeesh 1, Athulya Radhakrishnan 1 and Nuncio Murukesh 1 1 National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa 403804, India; [email protected] (S.C.); [email protected] (M.P.S.); [email protected] (A.R.); [email protected] (N.M.) 2 Indian Institute of Technology, Bhubaneswar, Odisha 752050, India 3 School of Earth, Ocean, and Atmospheric Sciences, Goa University, Goa 403206, India * Correspondence: [email protected] Abstract: Clouds play a significant role in regulating the Arctic climate and water cycle due to their impacts on radiative balance through various complex feedback processes. However, there are still large discrepancies in satellite and numerical model-derived cloud datasets over the Arctic region due to a lack of observations. Here, we report observations of cloud base height (CBH) characteristics measured using a Vaisala CL51 ceilometer at Ny-Ålesund, Svalbard. The study highlights the monthly and seasonal CBH characteristics at the location. It is found that almost 40% of the lowest Citation: Asutosh, A.; Chatterjee, S.; CBHs fall within a height range of 0.5–1 km. The second and third cloud bases that could be detected Subeesh, M.P.; Radhakrishnan, A.; by the ceilometer are mostly concentrated below 3 km during summer but possess more vertical Murukesh, N. Observation of Cloud spread during the winter season. Thin and low-level clouds appear to be dominant during the Base Height and Precipitation summer. -
METEOROLOGICAL HAZARDS by Werner Wehry and Lutz Lesch Prcsenledat the XXV Ostmongress, St
NOWCASTING METEOROLOGICAL HAZARDS by Werner Wehry and Lutz Lesch Prcsenledat the XXV OsTMongress, St. Auban, Fnnce cal elements of interest are process€d and displayed by The main workofregional forecasters and especially of means ofstatistical model inlerpretation (Knup ffer, 1996). m€teorologists briefing geneml aviation and, especially, Some of this information is available, already, in the Cer, flight comp€titions is to provide most accurate Nowcastin g man Weather Service systems. (up to twohours) and VeryShortRange Forecasting (VSRF, Hosever. mrssinS are the hard \rlue, concernrng up to 12 hours) including wamings of hazardous weather extreme weather, i-e- w€ath€rhazards likemaximum gusts, events in general and in task actions. In co-operation with large amount of convective rain, conditions of fl ash fl oods, the German National Weather Service (DWD) our Work- hail, and - in wint€r - sudden tuming ofrain into snow or ing Croup does res€arch pr€paring a modular system to glaze conditions. "Waming points" are available in the which will work mostly automatically, and it includes DWD monitoring system, now, like hail heads derived empirical parts. This system will enable the forecaster to from satellite cloud top temperature and thunderstorms, give objective information for proper decisions. A similar derived from radar and w€ather observations and, espe system working for several parts of the USA has been cially, from lightning location sysiems. described by Eilts et al (1996). 3. Special Methods for Nowcasting Hazards 2. Monitoring We are developing an empirical syst€m, combining all Such a nowcasting system needs all available meteoro' available Direct Model Output (DMO)and Model Output loSical inputin order to monitor the atmospherjc€lements Statistics (MOS) information, in order to catch theseldom- like t€mperature, precipitation, gusts etc. -
Triggered Upward Lightning from Towers in Rapid City, South Dakota
LIGHTNING-TRIGGERED UPWARD LIGHTNING FROM TOWERS IN RAPID CITY, SOUTH DAKOTA Tom A. Warner 1*, Marcelo M. F. Saba 2, Scott Rudge 3, Matthew Bunkers 3, Walt Lyons 4, and Richard E. Orville 5 1. Dept. of Atmospheric and Environmental Sciences, South Dakota School of Mines and Technology, Rapid City, SD, USA 2. National Institute for Space Research – INPE – Sao Jose dos Campos, Brazil 3. NOAA /National Weather Service, Rapid City, SD, USA 4. FMA Research, Inc., Fort Collins, CO, USA 5. Dept. of Atmospheric Sciences, Texas A&M University, College Station, Texas, USA 1. INTRODUCTION Since 2004, 84 upward flashes from 10 towers (91–191 m AGL) have been observed using optical Recent research efforts have shown that nearby instrumentation. High-speed cameras were added in flashes can trigger upward lightning from tall towers 2008 along with electric field sensing instrumentation in (e.g., Wang and Takagi, 2010; Mazur and Ruhnke , 2009, which allowed for coordinated measurements for 2011; Warner, 2011, Warner et al., 2011, and Zhou et some flashes. An analysis has shown that preceding al., 2011). Findings from these studies suggest that visible flash activity triggered all but one upward flash. these lightning-triggered upward lightning (LTUL) The upward flashes discussed below were flashes are more common with summer thunderstorms, observed with up to three high-speed cameras whereas self-initiated upward lightning (SIUL) flashes, operating between 1,000 and 67,000 images per where an upward leader initiates from a tall object second (ips). Fast electric field change data were without nearby preceding flash activity, favor less collected using a modified whip antenna at a sensor site electrically active winter storms. -
Analysis of Two Independent Methods for Retrieving Liquid Water Profiles in Spring and Summer Arctic Boundary Clouds U
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D7, 4219, doi:10.1029/2002JD002861, 2003 Analysis of two independent methods for retrieving liquid water profiles in spring and summer Arctic boundary clouds U. Lo¨hnert,1 G. Feingold,2 T. Uttal,2 A. S. Frisch,3 and M. D. Shupe4 Received 20 August 2002; revised 19 November 2002; accepted 9 January 2003; published 10 April 2003. [1] A large number of all-liquid, nondrizzling stratus clouds (163 hours of measurements) were observed with a dual-channel microwave radiometer and a colocated 35-GHz cloud radar during the spring and summer months of the Surface Heat Budget of the Arctic Ocean (SHEBA) project. An algorithm developed by Frisch et al. [1995, 1998] to derive the liquid water content (LWC) is applied to these measurements assuming constant cloud drop number density and cloud drop size distribution breadth with height. A second algorithm developed by Lo¨hnert et al. [2001] is specifically adapted for SHEBA clouds using a priori information from a large eddy simulation (LES) model initialized with summertime SHEBA radiosondes; about 50 soundings during nondrizzling, low-level, all- liquid water clouds are used. Using model-derived drop size distributions, a relationship between simulated radar reflectivity (Z) and model LWC is derived as well as an a priori LWC profile. Once the theoretical error covariance matrix of the Z-LWC relation is derived and the covariance matrix of the LWC profile is calculated, an optimal estimation method is applied to the SHEBA data. The Frisch et al. and Lo¨hnert et al. methods are also applied to the LES model output, resulting in overall root-mean-square differences on the order of 30 to 60%. -
COLD WEATHER OPERATIONS COLD WEATHER COLD OPERATIONS WEATHER Getting to Grips With
getting to grips with COLD WEATHER OPERATIONS COLD WEATHER COLD OPERATIONS WEATHER getting to grips with AIRBUS INDUSTRIE 01 / 00 Flight Operations Support - Customer Services Directorate Getting to grips with COLD WEATHER OPERATIONS A Flight Operations View AIRBUS INDUSTRIE FOREWORD The purpose of this document is to provide Airbus operators with an understanding of Airbus aircraft operations in cold weather conditions, and address such aspects as aircraft contamination, performance on contaminated runways, fuel freezing limitations and altimeter corrections. This brochure summarizes information contained in several Airbus Industrie documents and provides related recommendations. At the end of each chapter, a summary of main information to be remembered is highlighted and grouped together in the overview chapter. Should any deviation appear between the information provided in this brochure and that published in the applicable AFM, MMEL, FCOM, AMM, the latter shall prevail at all times All readers are encouraged to submit their questions and suggestions, regarding this document, to the following address: AIRBUS INDUSTRIE Flight Operations Support Customer Services Directorate 1, Rond Point Maurice Bellonte, BP 33 31707 BLAGNAC Cedex - FRANCE TELEX: AIRBU 530526F SITA: TLSBI7X Telefax: 33 5 61 93 29 68 or 33 5 61 93 44 65 AI/ST-F 945.9843/99 3 4 TABLE OF CONTENTS Foreword Overview Useful information in Airbus Industrie documentation Glossary / Definitions Abbreviations A. AIRCRAFT CONTAMINATION IN FLIGHT A1 Icing principles A1.1 Atmospheric