Summer 2007 Gems & Gemology Gem News

Total Page:16

File Type:pdf, Size:1020Kb

Summer 2007 Gems & Gemology Gem News EDITOR Brendan M. Laurs ([email protected]) CONTRIBUTING EDITORS Emmanuel Fritsch, IMN, University of Nantes, France ([email protected]) Henry A. Hänni, SSEF, Basel, Switzerland ([email protected]) Franck Notari, GemTechLab, Geneva, Switzerland ([email protected]) Kenneth V. G. Scarratt, GIA Research, Bangkok, Thailand ([email protected]) DIAMONDS U.S. Patent and Trademark Office (USPTO) awards patents, and consequently it may affect the validity of a Bar code technology applied to diamonds. Inscribing dia- number of patents on diamond cut designs. monds using lasers and other technologies has become a A general review of U.S. patent law as it applies to routine method for identifying a stone and personalizing it diamond cuts can be found in the Winter 2002 G&G (T. for individual situations. At the same time, bar coding has W. Overton, “Legal protection for proprietary diamond evolved from the traditional one-dimensional array of lines cuts,” pp. 310–325). One of the factors that the USPTO to a two-dimensional matrix code that can hold far more considers in awarding a patent is whether the claimed information. invention is a development that would be “obvious” to Diamond laser inscription technology has now pro- a person having ordinary skill in the relevant field. An gressed to the point where a miniature matrix code can be obvious invention is not eligible for a patent. Until the inscribed on the girdle of a diamond (see, e.g., figure 1). KSR International case, the U.S. Court of Appeals for Instead of just a grading report number, the matrix code the Federal Circuit (which has jurisdiction over patent can store all of the information in the report itself, such as disputes) applied a fairly narrow definition of obvious- clarity, cut, and color grades, as well as country of origin (if ness: whether a specific motivation or suggestion to known), the name of the manufacturer, and other combine prior inventions or knowledge (referred to as specifics. This has distinct advantages for diamond dealers prior art in patent law) could be found in the patent lit- and manufacturers when managing inventory, security erature, the nature of the problem, or the knowledge of a issues, and finances. Unlike traditional laser inscriptions, person having ordinary skill in the field. The justifica- which can be read with a loupe or a microscope, a matrix tion for this narrow test was the straightforward recogni- code requires a scanner to decode the information. While tion that nearly all inventions involve some synthesis of this does entail investment in additional equipment, it can previous knowledge, and that fact alone does not make also provide confidentiality to the owner of the stone. an invention obvious. One manufacturer of the inscription and code-reading equipment, PhotoScribe Technologies of New York, noted that the cost of applying a diamond matrix code is comparable to that of current laser inscriptions. Russell Shor ([email protected]) Editor’s note: The initials at the end of each item identify the GIA, Carlsbad editor or contributing editor who provided it. Full names and affiliations are given for other contributors. Interested contributors should send information and U.S. Supreme Court ruling may affect viability of some illustrations to Brendan Laurs at [email protected] or GIA, The diamond cut patents. On April 30, 2007, the United Robert Mouawad Campus, 5345 Armada Drive, Carlsbad, States Supreme Court handed down a decision in the case CA 92008. Original photos will be returned after consideration or publication. of KSR International v. Teleflex (available online at www.supremecourtus.gov/opinions/06pdf/04-1350.pdf). GEMS & GEMOLOGY, Vol. 43, No. 2, pp. 162–183 Although this case involved a patent for an automobile © 2007 Gemological Institute of America gas pedal, the ruling affects the standards by which the 162 GEM NEWS INTERNATIONAL GEMS & GEMOLOGY SUMMER 2007 variations of traditional round and square diamond cuts. This decision (which effectively overturns several decades of established precedent) still needs to be inter- preted and applied by the Federal Circuit and the USPTO, so it is premature to say whether any particular diamond cut patent is in danger. It does, however, counsel caution in the enforcement of existing cut patents and in the development of new designs. Thomas W. Overton ([email protected]) GIA, Carlsbad Figure 1. This simulated data matrix bar code on the girdle facet of a diamond reads “PhotoScribe.” The data matrix measures 80 × 80 μm; the same inscrip- tion using letters would require about 10 times the COLORED STONES AND space. Courtesy of PhotoScribe Technologies, New ORGANIC MATERIALS York City; magnified 130×. First discovery of amazonite in Mexico. Amazonite is a bluish green variety of potassium feldspar that has been found on every continent except Antarctica (see M. In this case, the invention consisted of an adjustable Ostrooumov, “L’amazonite,” Revue de Gemmologie, electronic gas pedal design that was a combination of sev- Vol. 108, 1991, pp. 8–12). More than 100 large ama- eral previous patents covering the component parts and zonite deposits are known, and there are numerous the method by which they were arranged. Teleflex (the smaller ones. Recently, blue to bluish green amazonite patent holder) sued KSR for infringement. Although KSR was discovered for the first time in Mexico (figures 2 and argued that the progress of science would have inevitably 3). This material is hosted by the Peñoles pegmatite, led to the combination at issue here (and previous patents which is located about 60 km southeast of the village had addressed the problem in a general sense), the Federal Valle de Allende (Sierra de Peñoles, Allende municipali- Circuit upheld the patent because, looking strictly at the ty, Chihuahua State). The pegmatite is genetically relat- language in the previous patents, there was no specific ed to a Li-F granite of Miocene age (32 million years, suggestion to combine them. according to K-Ar dating); this is younger than all other The Supreme Court, however, held that the Federal known amazonite deposits. The pegmatite consists of an Circuit was applying this test too rigidly. Instead, the outer zone of coarse-grained albite-oligoclase and quartz Court held that obviousness should be determined against with a small amount of pale blue amazonite. Toward a general background considering the scope of the prior art, the differences between the prior art and the inven- tion, and the level of ordinary skill—essentially, much more of a holistic, common sense approach. Where a cer- Figure 2. Amazonite was recently discovered in tain combination of elements is something obvious to Chihuahua State, Mexico. This specimen is 28 cm try—as it was in this case—the invention itself is likely wide; photo by Juan Manuel Espinosa. obvious as well. Although this new standard implicates a broad range of issues, this contributor believes it presents a particular hazard to diamond cut patents, since so many recent cut designs are minor variations of previous cuts (see, e.g., Overton, 2002; Spring 2004 Gem New International, pp. 75–76). As the Supreme Court stated, “If a person of ordi- nary skill can implement a predictable variation, [the law] likely bars its patentability” (KSR International, p. 13). Further, the Court held that when there is market pressure to solve a problem for which there are a finite number of predictable solutions, an invention resulting from the pursuit of known options is likely the product not of innovation but of ordinary skill and common sense. For this reason, it will likely be more difficult to defend those cut patents that are but minor evolutions of previous designs. There is, after all, little question that there has been substantial market pressure in recent years for manufacturers and jewelers to develop in-house GEM NEWS INTERNATIONAL GEMS & GEMOLOGY SUMMER 2007 163 nized mining to date), the deposit shows mineralogical, geochemical, and geological characteristics that are analo- gous to other important amazonite deposits worldwide (Ostrooumov, 1991). Mikhail Ostrooumov ([email protected]) University of Michoacán, Mexico Jacinto Robles Camacho National Anthropology and History Institute Mexico City Astorite—A rhodonite-rich rock from Colorado. Astorite is Figure 3. These beads and cabochons (4.82–11.32 ct) the trade name for a rhodonite-rich gem from Colorado of Mexican amazonite were recently cut in the miner- (although this term also has been used as a synonym for alogical laboratory at the University of Michoacán. richterite, which is an amphibole, and the name asterite Photo by Robert Weldon. has been applied to star sapphire; see J. de Fourestier, Glossary of Mineral Synonyms, Canadian Mineralogist Special Publication 2, Mineralogical Association of the interior, the pegmatite attains >50 vol.% amazonite, Canada, Ottawa, Ontario, 1999, p. 29). Astorite originates which occurs as distinctly blue crystals up to 2–3 cm in from the Toltec mine in the San Juan Mountains of south- longest dimension that are associated with albite, western Colorado, approximately 18 km from Silverton. quartz, and micas (biotite and zinnwaldite). The central This historic mine, which was originally opened for gold zone of the pegmatite consists mainly of a quartz core and other metals, was once the property of Colonel John with bluish green crystals of amazonite. Chemical anal- Jacob Astor IV, who among other accomplishments co- ysis (by EDXRF spectroscopy) of the amazonite from the founded the Waldorf-Astoria Hotel in New York City outer zones to the core of the pegmatite showed increas- before perishing on the RMS Titanic in 1912 (J. C. Zeitner, ing K, Rb, Cs, Pb, Tl, Ga, Be, Sr, U, and Th, and decreas- “Astorite: A new gem material,” Rock & Gem, Vol. 32, ing Al, Na, Fe, and Ba.
Recommended publications
  • Pezzottaite from Ambatovita, Madagascar: a New Gem Mineral
    PEZZOTTAITE FROM AMBATOVITA, MADAGASCAR: A NEW GEM MINERAL Brendan M. Laurs, William B. (Skip) Simmons, George R. Rossman, Elizabeth P. Quinn, Shane F. McClure, Adi Peretti, Thomas Armbruster, Frank C. Hawthorne, Alexander U. Falster, Detlef Günther, Mark A. Cooper, and Bernard Grobéty Pezzottaite, ideally Cs(Be2Li)Al2Si6O18, is a new gem mineral that is the Cs,Li–rich member of the beryl group. It was discovered in November 2002 in a granitic pegmatite near Ambatovita in cen- tral Madagascar. Only a few dozen kilograms of gem rough were mined, and the deposit appears nearly exhausted. The limited number of transparent faceted stones and cat’s-eye cabochons that have been cut usually show a deep purplish pink color. Pezzottaite is distinguished from beryl by its higher refractive indices (typically no=1.615–1.619 and ne=1.607–1.610) and specific gravity values (typically 3.09–3.11). In addition, the new mineral’s infrared and Raman spectra, as well as its X-ray diffraction pattern, are distinctive, while the visible spectrum recorded with the spec- trophotometer is similar to that of morganite. The color is probably caused by radiation-induced color centers involving Mn3+. eginning with the 2003 Tucson gem shows, (Be3Sc2Si6O18; Armbruster et al., 1995), and stoppaniite cesium-rich “beryl” from Ambatovita, (Be3Fe2Si6O18; Ferraris et al., 1998; Della Ventura et Madagascar, created excitement among gem al., 2000). Pezzottaite, which is rhombohedral, is Bcollectors and connoisseurs due to its deep purplish not a Cs-rich beryl but rather a new mineral species pink color (figure 1) and the attractive chatoyancy that is closely related to beryl.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Winter 2003 Gems & Gemology
    Winter 2003 VOLUME 39, NO. 4 EDITORIAL _____________ 267 Tomorrow’s Challenge: CVD Synthetic Diamonds William E. Boyajian FEATURE ARTICLES _____________ 268 Gem-Quality Synthetic Diamonds Grown by a Chemical Vapor Deposition (CVD) Method Wuyi Wang, Thomas Moses, Robert C. Linares, James E. Shigley, Matthew Hall, and James E. Butler pg. 269 Description and identifying characteristics of Apollo Diamond Inc.’s facetable, single-crystal type IIa CVD-grown synthetic diamonds. 284 Pezzottaite from Ambatovita, Madagascar: A New Gem Mineral Brendan M. Laurs, William B. (Skip) Simmons, George R. Rossman, Elizabeth P. Quinn, Shane F. McClure, Adolf Peretti, Thomas Armbruster, Frank C. Hawthorne, Alexander U. Falster, Detlef Günther, Mark A. Cooper, and Bernard Grobéty A look at the history, geology, composition, and properties of this new cesium-rich member of the beryl group. 302 Red Beryl from Utah: A Review and Update James E. Shigley, Timothy J. Thompson, and Jeffrey D. Keith A report on the geology, history, and current status of the world’s only known occurrence of gem-quality red beryl. pg. 299 REGULAR FEATURES _____________________ 314 Lab Notes • Chrysocolla “owl” agate • Red coral • Coated diamonds • Natural emerald with nail-head spicules • Emerald with strong dichroism • High-R.I. glass imitation of tanzanite • Large clam “pearl” • Blue sapphires with unusual color zoning • Spinel with filled cavities 322 Gem News International • Comparison of three historic blue diamonds • Natural yellow diamond with nickel-related optical centers
    [Show full text]
  • INTERNATIONAL GEMMOLOGICAL CONFERENCE Nantes - France INTERNATIONAL GEMMOLOGICAL August 2019 CONFERENCE Nantes - France August 2019
    IGC 2019 - Nantes IGC 2019 INTERNATIONAL GEMMOLOGICAL CONFERENCE Nantes - France INTERNATIONAL GEMMOLOGICAL August 2019 CONFERENCE Nantes - France www.igc-gemmology.org August 2019 36th IGC 2019 – Nantes, France Introduction 36th International Gemmological Conference IGC August 2019 Nantes, France Dear colleagues of IGC, It is our great pleasure and pride to welcome you to the 36th International Gemmological Conference in Nantes, France. Nantes has progressively gained a reputation in the science of gemmology since Prof. Bernard Lasnier created the Diplôme d’Université de Gemmologie (DUG) in the early 1980s. Several DUGs or PhDs have since made a name for themselves in international gemmology. In addition, the town of Nantes has been on several occasions recognized as a very attractive, green town, with a high quality of life. This regional capital is also an important hub for the industry (e.g. agriculture, aeronautics), education and high-tech. It has only recently developed tourism even if has much to offer, with its historical downtown, the beginning of the Loire river estuary, and the ocean close by. The organizers of 36th International Gemmological Conference wish you a pleasant and rewarding conference Dr. Emmanuel Fritsch, Dr. Nathalie Barreau, Féodor Blumentritt MsC. The organizers of the 36th International Gemmological Conference in Nantes, France From left to right Dr. Emmanuel Fritsch, Dr. Nathalie Barreau, Féodor Blumentritt MsC. 3 36th IGC 2019 – Nantes, France Introduction Organization of the 36th International Gemmological Conference Organizing Committee Dr. Emmanuel Fritsch (University of Nantes) Dr. Nathalie Barreau (IMN-CNRS) Feodor Blumentritt Dr. Jayshree Panjikar (IGC Executive Secretary) IGC Executive Committee Excursions Sophie Joubert, Richou, Cholet Hervé Renoux, Richou, Cholet Guest Programme Sophie Joubert, Richou, Cholet Homepage Dr.
    [Show full text]
  • Rocky Mountain Federation News, Vol 50, Issue 7 Page 1
    Rocky Mountain Federation News, Vol 50, Issue 7 Page 1 Rocky Mountain Federation News November 2019 Volume 50, Issue 7 The official publication of the Rocky Mountain Federation of Mineralogical Societies, Inc. The RMFMS is a regional member of the American Federation of Mineralogical Societies, Inc. and is issued monthly (except June and July). It is a privilege of membership of the RMFMS and cannot be exchanged by the editor for individual club newsletters from other regional federations. www.rmfms.org Rocky Mountain Federation News, Vol 50, Issue 7 Page 2 Contents From the Editor Please send us your Rockhounds of the Year. In From the Editor ................................................. 1 the words of Mike Rowe, we need to celebrate Affiliations ......................................................... 2 all those “bloody do-gooders.” Letter from the President ................................. 3 I recommend taking a moment to visit the ALAA “Recreational Rockhounding and Public revamped RMFMS.org website. Our Lands” ............................................................... 4 webmaster, Joel Johnstone, has been hard at It is Time to Get All Club Entries Ready for work on it. RMFMS Contests ............................................... 5 Please submit your contributions for the next Pezzottaite, Londonite & Rhodizite: More Pesky issue by December 5th to Cesium Minerals ............................................... 6 [email protected]. Upcoming Shows and Events .......................... 10 Heather Woods, PG 2019 RMFMS
    [Show full text]
  • Gems & Jewellery
    Gems &Jewellery Spring 2010 / Volume 19 / No. 1 Ruby from Mozambique Fluorescence Blues Gememory Lane – 1910 Valuing Treasure The Gemmological Association of Great Britain Gems&Jewellery / Spring 2010 / Volume 19 / No. 1 )NSTRUMENTSAND4ECHNIQUESShowsRecent Events Gem-A Conference 2009 Brief reports on the lectures presented at the Gem-A Annual Conference held at the Hilton London Kensington on Sunday 18 October 2009. Filter tips The value of the CCF becomes even greater with experience, and knowing how a particular gemstone is supposed to react. If a After a brief welcome, the first speaker was the well known author supposed aquamarine, for example, showed red through the CCF it and gemmologist Antoinette Matlins , who described the uses of would not be aquamarine. Indeed, with most blue gems red equals Gem-A’s Chelsea Colour Filter (CCF) ( 1). The CCF — developed at fake. Exceptions included natural cobalt spinels and most tanzanite. Chelsea Polytechnic, London, where Gem-A courses were taught With green stones, however, the gemmologist might hope to see red; in the early days — was celebrating its 75th anniversary in 2009. tsavorite garnets, chrome tourmalines and many emeralds showed Antoinette demonstrated with panache how the CCF, along with a red. With the red stones, ruby, of course, showed red, with synthetic small bag of other basic gemmological equipment (loupe, calcite ruby showing ‘super red’. dichroscope and Maglites), could be used to identify some 85% of the With experience, the CCF can also alert the gemmmologist to the stones commonly encountered on the market. Add a UV light and the possibility of colour treatment and even doublets.
    [Show full text]
  • 1 Exceptional Chiavennite Associated with Pezzottaite
    EXCEPTIONAL CHIAVENNITE ASSOCIATED WITH PEZZOTTAITE FROM THE SAKAVALANA PEGMATITE, AMBATOVITA, MADAGASCAR Federico Pezzotta(1), Alessandro Guastoni(1), Hervé Forner(2), Francesco Demartin(3), Roy Kristiansen(4) (1) Museo di Storia Naturale, Corso Venezia 55, 20121 Milano, Italy (2) TRASPARENCE s.r.l., Ambatomaro, Antananarivo, Madagascar (3) Dep. Chimica Strutturale e Stereochimica Inorganica, Università di Milano, Via G. Venezian 21, 20133 Milano, Italy (4) P.O. Box 32, N-1650 Sellebakk, Norway Abstract: exceptional specimens of chiavennite were recently found, associated with the new mineral pezzottaite, in the Sakavalana pegmatite at Ambatovita, in central-western Madagascar. Chiavennite at Ambatovita formed as a late-stage mineral, after quartz, amazonite, albite, spodumene, Cs-bearing beryl and pezzottaite, liddicoatite, Cs-rich muscovite-lepidolite, danburite and other accessories such as zircon, pyrochlore-group minerals and cassiterite. Chiavennite formed together with hambergite, a late generation of pezzottaite, and some masses of Mn-hydroxides (mainly cryptomelane). Chalcedony formed together and after chiavennite. INTRODUCTION In November 2002, in a wild area in central-western Madagascar close to the village of Ambatovita, 22 km south of Mandrosonoro, local miners discovered in the Sakavalana pegmatite a spectacular, large miarolitic cavity containing large crystals of citrine quartz, green amazonite, albite, green-to pink spodumene, multicolored liddicoatite and raspberry “Cs-rich beryl”, the recently approved new mineral pezzottaite (Laurs et al., 2003). This discovery, documented during the last year by several publications, has been described also in Le Règne Mineral by Warin and Jacques (2003). One of the authors (H.F.), in February 2003, examining some samples collected at Ambatovita, first observed a 5 cm specimen mainly consisting of a brownish-red mineral forming small aggregates of radial crystals, associated with Mn-hydroxides and cementing large fragments of quartz and pezzottaite crystals.
    [Show full text]
  • The Beryl Group – an Overview 概述綠柱石家族 Prof
    The Beryl Group – an Overview 概述綠柱石家族 Prof. Dr Henry A. Hänni, FGA 亨瑞 翰尼 GemExpert, Basel, Switzerland Website: www.gemexpert.ch Email: [email protected] Henry A. Hänni 亨瑞 翰尼 綠柱石家族的六邊形結構是由鈹鋁硅酸鹽 Introduction 組成。其晶格允許不同成分從原始形態中 The beryls Be3Al2Si6O18 form a group of better 進行各種替換,從而產生不同顏色的變 known gemstones like emerald, aquamarine, 體,並進一步形成相關的礦物質體。祖母 golden beryl and morganite (Fig. 1). As the 綠、海藍寶石和摩根石是較著名的綠柱石 crystals are usually transparent, the material 寶石。同構類質同象替代機制已形成較鮮 generally ends up as facetted gemstones. But 為人知的綠柱石成員。自1950年代以來, cat’s eyes and even rare star beryls are also 通過助熔劑、催化劑和水熱工藝製備了類 reported (Schmetzer et al., 2004). 似的合成物。 Fig. 2 shows some beryl crystals with the characteristic hexagonal form. Some crystals Abstract are etched due to dissolving after crystallisation. The beryl group consists of beryllium aluminium They crystallise – with the exception of emerald – silicates of hexagonal structure. The crystal in pegmatite, an igneous rock that forms in dykes lattice allows various replacements from the that had penetrated older bedrocks. Pegmatites original formula, leading to differently coloured consist of residual melts of elements often left varieties and further to related minerals. over after the crystallisation of granite. What is Emerald, aquamarine and morganite are the essential is that the pegmatites contain not only better known gemstone beryls. Isomorphous redundant light chemical elements, like silicium, replacement mechanisms have formed lesser aluminium and oxygen, but also elements with known members. Synthetic counterparts have an odd ion size or charge (as e.g. lithium, boron been made by flux catalyst and hydrothermal or beryllium). As pegmatites crystallise slowly, processes since the 1950s. Fig. 1 A selection of cut stones in the colour varieties of the beryl family: red beryl, morganite, emerald, aquamarine, golden beryl, green beryl, trapiche emerald and aquamarine cat’s eye.
    [Show full text]
  • Winter 2007 Gems & Gemology
    G EMS & G VOLUME XLIII WINTER 2007 EMOLOGY CVD Synthetic Diamonds Canary Tourmaline W Fluorescence Spectroscopy INTER Napoleon Necklace 2007 P AGES 291–408 V OLUME 43 N O. 4 THE QUARTERLY JOURNAL OF THE GEMOLOGICAL INSTITUTE OF AMERICA ® Winter 2007 VOLUME 43, NO. 4 291 LETTERS ________ FEATURE ARTICLES _____________ 294 Latest-Generation CVD-Grown Synthetic Diamonds from Apollo Diamond Inc. Wuyi Wang, Matthew S. Hall, Kyaw Soe Moe, Joshua Tower, and Thomas M. Moses Presents the gemological and spectroscopic properties of Apollo’s latest products, which show significant improvements in size, color, and clarity. 314 Yellow Mn-rich Tourmaline from the Canary Mining Area, Zambia pg. 295 Carat Points Brendan M. Laurs, William B. Simmons, George R. Rossman, Eric A. Fritz, John I. Koivula, Björn Anckar, and Alexander U. Falster Explores the vivid “canary” yellow elbaite from the Lundazi District of eastern Zambia, the most important source of this tourmaline. 332 Fluorescence Spectra of Colored Diamonds Using a Rapid, Mobile Spectrometer Sally Eaton-Magaña, Jeffrey E. Post, Peter J. Heaney, Roy A. Walters, Christopher M. Breeding, and James E. Butler Reports on the use of fluorescence spectroscopy to characterize colored diamonds from the Aurora Butterfly and other collections. NOTES AND NEW TECHNIQUES ________ 352 An Examination of the Napoleon Diamond Necklace Eloïse Gaillou and Jeffrey E. Post pg. 329 Provides a history and gemological characterization of this historic necklace. REGULAR FEATURES _____________________ 358 Lab Notes Apatite in spessartine • Atypical photoluminescence feature in a type IIa diamond • Diamond with “holiday” inclusions • Diamond with large etch channels containing iron sulfides • Black diamond with an oriented etch channel • The pareidolia of diamonds • Notable emerald carving • Gold coated onyx • Double-star sapphire • Imitation turquoise 366 Gem News International Record auction prices for diamonds • Namibian diamond mining pg.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0255278 A1 Bakke Et Al
    US 20140255278A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0255278 A1 Bakke et al. (43) Pub. Date: Sep. 11, 2014 (54) METHODS TO RECOVER CESIUMOR (60) Provisional application No. 61/772,946, filed on Mar. RUBDIUM FROMISECONDARY ORE 5, 2013. (71) Applicant: Cabot Corporation, Boston, MA (US) Publication Classification (72) Inventors: Bart Bakke, The Woodlands, TX (US); (51) Int. Cl. Claude Deveau, Pinawa (CA) C22B 26/10 (2006.01) BO2C23/08 (2006.01) (73) Assignee: Cabot Corporation, Boston, MA (US) (52) U.S. Cl. CPC ................. C22B 26/10 (2013.01); B02C 23/08 (21) Appl. No.: 14/277.914 (2013.01) USPC ............ 423/202; 209/552; 209/10; 209/44.1; (22) Filed: May 15, 2014 241/24.1 (57) ABSTRACT Related U.S. Application Data A method to recover cesium, rubidium, or both from second (63) Continuation of application No. 14/191,468, filed on ary ore is described and involves using scans and sorting Feb. 27, 2014. techniques. Refined secondary ore is further described. : Si.23 C. c. c. g. WSg. ...c. 4 3 4. 3 - Chute or Moving Bett 2. Vibratory Pan ------------------------- -------...---------- -------------------------...--- --- - - -va-voom myr v. m- , 4-x-ray sensor r“s ; ry 5 image? - \,-- W---m i Signal Y 3. A. m t www.------------ - Processor & Dual Energy Beam --- ...i 4. - . NW --- \ - N-D - a3 ?y\l- 2 ww...w-xwr- . 6. High Speed Air Jet --A - 7 - 7-Separated Process Streams 8- Remote User interface Patent Application Publication Sep. 11, 2014 Sheet 1 of 4 US 2014/0255278 A1 Fig.
    [Show full text]
  • Pezzottaite from Ambatovita, Madagascar: a New Gem Mineral
    PEZZOTTAITE FROM AMBATOVITA, MADAGASCAR: A NEW GEM MINERAL Brendan M. Laurs, William B. (Skip) Simmons, George R. Rossman, Elizabeth P. Quinn, Shane F. McClure, Adi Peretti, Thomas Armbruster, Frank C. Hawthorne, Alexander U. Falster, Detlef Günther, Mark A. Cooper, and Bernard Grobéty Pezzottaite, ideally Cs(Be2Li)Al2Si6O18, is a new gem mineral that is the Cs,Li–rich member of the beryl group. It was discovered in November 2002 in a granitic pegmatite near Ambatovita in cen- tral Madagascar. Only a few dozen kilograms of gem rough were mined, and the deposit appears nearly exhausted. The limited number of transparent faceted stones and cat’s-eye cabochons that have been cut usually show a deep purplish pink color. Pezzottaite is distinguished from beryl by its higher refractive indices (typically no=1.615–1.619 and ne=1.607–1.610) and specific gravity values (typically 3.09–3.11). In addition, the new mineral’s infrared and Raman spectra, as well as its X-ray diffraction pattern, are distinctive, while the visible spectrum recorded with the spec- trophotometer is similar to that of morganite. The color is probably caused by radiation-induced color centers involving Mn3+. eginning with the 2003 Tucson gem shows, (Be3Sc2Si6O18; Armbruster et al., 1995), and stoppaniite cesium-rich “beryl” from Ambatovita, (Be3Fe2Si6O18; Ferraris et al., 1998; Della Ventura et Madagascar, created excitement among gem al., 2000). Pezzottaite, which is rhombohedral, is Bcollectors and connoisseurs due to its deep purplish not a Cs-rich beryl but rather a new mineral species pink color (figure 1) and the attractive chatoyancy that is closely related to beryl.
    [Show full text]
  • Pegmatite Genesis: State of the Art
    Eur. J. Mineral. 2008, 20, 421–438 Published online August 2008 Paper presented at the symposium “Granitic Pagmatites: the State of the Art”, Porto, May 2007 Pegmatite genesis: state of the art Wm. B. “Skip” SIMMONS* and Karen L. WEBBER Department of Earth and Environmental Sciences, University of New Orleans, New Orleans, LA 70148, USA *Corresponding author, e-mail: [email protected] Abstract: No one universally accepted model of pegmatite genesis has yet emerged that satisfactorily explains all the diverse features of granitic pegmatites. Genesis from residual melts derived from the crystallization of granitic plutons is favoured by most researchers. Incompatible components, fluxes, volatiles and rare elements, are enriched in the residual melts. The presence of fluxes and volatiles, which lower the crystallization temperature, decrease nucleation rates, melt polymerization and viscosity, and increase diffusion rates and solubility, are considered to be critical to the development of large crystals. A number of new concepts have shed light on problems related to pegmatite genesis. Cooling rates calculated from thermal cooling models demonstrate that shallow-level pegmatites cool radically more rapidly than previously believed. Rapid cooling rates for pegmatites represent a quantum shift from the widely held view that the large crystals found in pegmatites are the result of very slow rates of cooling and crystal growth. Experimental and field evidence both suggest that undercooling and disequilibrium crystallization dominate pegmatite crys- tallization. London’s constitutional zone refining model of pegmatite evolution involves disequilibrium crystallization from an undercooled, flux-bearing granitic melt. The melt is not necessarily flux–rich and the model does not require the presence of an aqueous vapor phase.
    [Show full text]