Hierarchical Hybrid-Model Based Design, Verification, Simulation, and Synthesis of Mission Control for Autonomous Underwater Vehicles

Total Page:16

File Type:pdf, Size:1020Kb

Hierarchical Hybrid-Model Based Design, Verification, Simulation, and Synthesis of Mission Control for Autonomous Underwater Vehicles University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2005 HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION, SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES Siddhartha Bhattacharyya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Bhattacharyya, Siddhartha, "HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION, SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES" (2005). University of Kentucky Doctoral Dissertations. 344. https://uknowledge.uky.edu/gradschool_diss/344 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Siddhartha Bhattacharyya The Graduate School University of Kentucky 2005 HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION, SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Engineering at University of Kentucky By Siddhartha Bhattacharyya Lexington, Kentucky Co-Director: Dr. Ratnesh Kumar, Professor of Electrical Engineering and Dr. L.E. Holloway, Professor of Electrical Engineering Ames, Iowa Lexington, Kentucky 2005 Copyright © Siddhartha Bhattacharyya 2005 ABSTRACT OF DISSERTATION HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION, SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES The objective of modeling, verification, and synthesis of hierarchical hybrid mission control for underwater vehicle is to (i) propose a hierarchical architecture for mission control for an autonomous system, (ii) develop extended hybrid state machine models for the mission control, (iii) use these models to verify for logical correctness, (iv) check the feasibility of a simulation software to model the mission executed by an autonomous underwater vehicle (AUV) (v) perform synthesis of high-level mission coordinators for coordinating lower-level mission controllers in accordance with the given mission, and (vi) suggest further design changes for improvement. The dissertation describes a hierarchical architecture in which mission level controllers based on hybrid systems theory have been, and are being developed using a hybrid systems design tool that allows graphical design, iterative redesign, and code generation for rapid deployment onto the target platform. The goal is to support current and future autonomous underwater vehicle (AUV) programs to meet evolving requirements and capabilities. While the tool facilitates rapid redesign and deployment, it is crucial to include safety and performance verification into each step of the (re)design process. To this end, the modeling of the hierarchical hybrid mission controller is formalized to facilitate the use of available tools and newly developed methods for formal verification of safety and performance specifications. A hierarchical hybrid architecture for mission control of autonomous systems with application to AUVs is proposed and a theoretical framework for the models that make up the architecture is outlined.. An underwater vehicle like any other autonomous system is a hybrid system, as the dynamics of the vehicle as well as it’s vehicle level control is continuous whereas the mission level control is discrete, making the overall system a hybrid system i.e., one possessing both continuous and discrete states. The hybrid state machine models of the mission controller modules is derived from their implementation done using TEJA, a software for representing hybrid systems with support for auto code generation. The verification of their logical correctness properties has been done using UPPAAL, a software tool for verification of timed automata a special kind of hybrid system. A Teja to Uppaal converter, called dem2xml , has been created at Applied Reserarch Lab that converts a hybrid (timed) autonomous system description in Teja to an Uppaal system description. Verification work involved developing abstract models for the lower level vehicle controllers with which the mission controller modules interact and follow a hierarchical approach: Assuming the correctness of level-zero or vehicle controllers, we establish the correctness of level-one mission controller modules, and then the correctness of level-two modules, etc. The goal of verification is to show that any “valid” meaning for a mission formalized in our research verifies the safe and correct execution of actions. Simulation of the sequence of actions executed for each of the operations give a better view of the combined working of the mission coordinators and the low level controllers. So we next looked into the feasibility of simulating the operations executed during a mission. A Perl program has been developed to convert the UPPAAL files in .xml format to OpenGL graphic files. The graphic files simulate the steps involved in the execution of a sequence of operations executed by an AUV. The highest level coordinators send mission orders to be executed by the lower level controllers. So a more generalized design of the highest level controllers would help to incorporate the execution of a variety of missions for a vast field of applications. Initially, we consider manually synthesized mission coordinator modules. Later we design automated synthesis of coordinators. This method synthesizes mission coordinators which coordinate the lower level controllers for the execution of the missions ordered and can be used for any autonomous system. KEYWORDS: Autonomous Systems, Hybrid Systems, Verification, Hierarchical Architecture, Coordinator Synthesis Siddhartha Bhattacharyya 09/15/05 HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION, SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES By Siddhartha Bhattacharyya Dr. Ratnesh Kumar Director of Dissertation Dr. YuMing Zhang Director of Graduate Studies 09/15/2005 RULES FOR THE USE OF DISSERTATIONS Unpublished dissertations submitted for the Doctor's degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgments. Extensive copying or publication of the dissertation in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky. A library that borrows this dissertation for use by its patrons is expected to secure the signature of each user. Name Date DISSERTATION Siddhartha Bhattacharyya The Graduate School University of Kentucky 2005 HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION, SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Engineering at University of Kentucky By Siddhartha Bhattacharyya Lexington, Kentucky Co-Director: Dr. Ratnesh Kumar, Professor of Electrical Engineering and Dr. L.E. Holloway, Professor of Electrical Engineering Ames, Iowa Lexington, Kentucky 2005 Copyright © Siddhartha Bhattacharyya 2005 ACKNOWLEDGMENTS The following dissertation, while an individual work, benefited from the insights and direction of several people. First, my Dissertation Co-Chairs, Dr. Ratnesh Kumar and Dr.L.E.Holloway, exemplifies the high quality scholarship to which I aspire. In addition, they provided timely and instructive comments and evaluation at every stage of the dissertation process, allowing me to complete this project on schedule. Next, I wish to thank the complete Dissertation Committee, and outside reader, respectively: Dr. Zhang, Dr. Manivannan and Dr. Baxter. Each individual provided insights that guided and challenged my thinking, substantially improving the finished product. In addition to the technical and instrumental assistance above, I received equally important assistance from family and friend (Ganesh). My wife, Srabosti, provided on-going support throughout the dissertation process, as well as technical assistance critical for completing the project in a timely manner. My father, (Dr. S.K. Bhattacharyya), mother (Purabi Bhattacharyya), sister (Suparna chatterjee) and brother in law (Debasish chatterjee) instilled in me, from an early age, the desire and skills to obtain the Ph.D. Finally, I wish to thank the respondents of my study (who remain anonymous for confidentiality purposes). Their comments and insights created an informative and interesting project with opportunities for future work. iii Table of contents Table of Figures………………………………………………………………………......vi 1 Introduction................................................................................................................. 1 2 Hierarchical Hybrid Model-based Architecture.......................................................... 5 2.1 Proposed Hierarchical Hybrid Mission Control Architecture .......................... 11 2.2 Hybrid Mission Controller for a Survey AUV ................................................
Recommended publications
  • Archons (Commanders) [NOTICE: They Are NOT Anlien Parasites], and Then, in a Mirror Image of the Great Emanations of the Pleroma, Hundreds of Lesser Angels
    A R C H O N S HIDDEN RULERS THROUGH THE AGES A R C H O N S HIDDEN RULERS THROUGH THE AGES WATCH THIS IMPORTANT VIDEO UFOs, Aliens, and the Question of Contact MUST-SEE THE OCCULT REASON FOR PSYCHOPATHY Organic Portals: Aliens and Psychopaths KNOWLEDGE THROUGH GNOSIS Boris Mouravieff - GNOSIS IN THE BEGINNING ...1 The Gnostic core belief was a strong dualism: that the world of matter was deadening and inferior to a remote nonphysical home, to which an interior divine spark in most humans aspired to return after death. This led them to an absorption with the Jewish creation myths in Genesis, which they obsessively reinterpreted to formulate allegorical explanations of how humans ended up trapped in the world of matter. The basic Gnostic story, which varied in details from teacher to teacher, was this: In the beginning there was an unknowable, immaterial, and invisible God, sometimes called the Father of All and sometimes by other names. “He” was neither male nor female, and was composed of an implicitly finite amount of a living nonphysical substance. Surrounding this God was a great empty region called the Pleroma (the fullness). Beyond the Pleroma lay empty space. The God acted to fill the Pleroma through a series of emanations, a squeezing off of small portions of his/its nonphysical energetic divine material. In most accounts there are thirty emanations in fifteen complementary pairs, each getting slightly less of the divine material and therefore being slightly weaker. The emanations are called Aeons (eternities) and are mostly named personifications in Greek of abstract ideas.
    [Show full text]
  • Traffic and Transportation Simulation
    TRANSPORTATION RESEARCH Number E-C195 April 2015 Traffic and Transportation Simulation Looking Back and Looking Ahead: Celebrating 50 Years of Traffic Flow Theory, A Workshop January 12, 2014 Washington, D.C. TRANSPORTATION RESEARCH BOARD 2015 EXECUTIVE COMMITTEE OFFICERS Chair: Daniel Sperling, Professor of Civil Engineering and Environmental Science and Policy; Director, Institute of Transportation Studies, University of California, Davis Vice Chair: James M. Crites, Executive Vice President of Operations, Dallas–Fort Worth International Airport, Texas Division Chair for NRC Oversight: Susan Hanson, Distinguished University Professor Emerita, School of Geography, Clark University, Worcester, Massachusetts Executive Director: Neil J. Pedersen, Transportation Research Board TRANSPORTATION RESEARCH BOARD 2015–2016 TECHNICAL ACTIVITIES COUNCIL Chair: Daniel S. Turner, Emeritus Professor of Civil Engineering, University of Alabama, Tuscaloosa Technical Activities Director: Mark R. Norman, Transportation Research Board Peter M. Briglia, Jr., Consultant, Seattle, Washington, Operations and Preservation Group Chair Alison Jane Conway, Assistant Professor, Department of Civil Engineering, City College of New York, New York, Young Members Council Chair Mary Ellen Eagan, President and CEO, Harris Miller Miller and Hanson, Inc., Burlington, Massachusetts, Aviation Group Chair Barbara A. Ivanov, Director, Freight Systems, Washington State Department of Transportation, Olympia, Freight Systems Group Chair Paul P. Jovanis, Professor, Pennsylvania
    [Show full text]
  • Network Notebook
    Network Notebook Summer Quarter 2017 (July - September) A World of Services for Our Affiliates We make great radio as affordable as possible: • Our production costs are primarily covered by our arts partners and outside funding, not from our affiliates, marketing or sales. • Affiliation fees only apply when a station takes three or more programs. The actual affiliation fee is based on a station’s market share. Affiliates are not charged fees for the selection of WFMT Radio Network programs on the Public Radio Exchange (PRX). • The cost of our Beethoven and Jazz Network overnight services is based on a sliding scale, depending on the number of hours you use (the more hours you use, the lower the hourly rate). We also offer reduced Beethoven and Jazz Network rates for HD broadcast. Through PRX, you can schedule any hour of the Beethoven or Jazz Network throughout the day and the files are delivered a week in advance for maximum flexibility. We provide highly skilled technical support: • Programs are available through the Public Radio Exchange (PRX). PRX delivers files to you days in advance so you can schedule them for broadcast at your convenience. We provide technical support in conjunction with PRX to answer all your distribution questions. In cases of emergency or for use as an alternate distribution platform, we also offer an FTP (File Transfer Protocol), which is kept up to date with all of our series and specials. We keep you informed about our shows and help you promote them to your listeners: • Affiliates receive our quarterly Network Notebook with all our program offerings, and our regular online WFMT Radio Network Newsletter, with news updates, previews of upcoming shows and more.
    [Show full text]
  • Kronos: Processor Family for High-Level Languages Dmitry Kuznetsov, Alexey Nedorya, Eugene Tarassov, Vladimir Philippov, Marina Philippova
    Kronos: Processor Family for High-Level Languages Dmitry Kuznetsov, Alexey Nedorya, Eugene Tarassov, Vladimir Philippov, Marina Philippova To cite this version: Dmitry Kuznetsov, Alexey Nedorya, Eugene Tarassov, Vladimir Philippov, Marina Philippova. Kro- nos: Processor Family for High-Level Languages. 1st Soviet and Russian Computing (SoRuCom), Jul 2006, Petrozavodsk, Russia. pp.266-272, 10.1007/978-3-642-22816-2_32. hal-01568396 HAL Id: hal-01568396 https://hal.inria.fr/hal-01568396 Submitted on 25 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Kronos: Processor Family for High-Level Languages Dmitry N. Kuznetsov1, Alexey E. Nedorya2, Eugene V. Tarassov3, Vladimir E. Philippov4, and Marina Ya. Philippova5 1 California, USA; [email protected] 2 Veberi Ltd., Yaroslavl, Russia; [email protected] 3 Intel (Wind River), Inc.; [email protected] 4 Ershov Institute of Information Systems, SB RAS, Novosibirsk, Russia; [email protected] 5 xTech Ltd., Novosibirsk, Russia; [email protected] Abstract. The article describes the history of the Kronos project that took place in the middle of the 1980s in Akademgorodok, Novosibirsk, and was devoted to creating the first Russian 32-bit processor, Kronos.
    [Show full text]
  • GMO TRUST Form NPORT-P Filed 2020-07-28
    SECURITIES AND EXCHANGE COMMISSION FORM NPORT-P Filing Date: 2020-07-28 | Period of Report: 2020-05-31 SEC Accession No. 0001752724-20-146246 (HTML Version on secdatabase.com) FILER GMO TRUST Mailing Address Business Address 40 ROWES WHARF 40 ROWES WHARF CIK:772129| IRS No.: 000000000 | State of Incorp.:MA | Fiscal Year End: 0831 BOSTON MA 02110 BOSTON MA 02110 Type: NPORT-P | Act: 40 | File No.: 811-04347 | Film No.: 201052790 6173467646 Copyright © 2020 www.secdatabase.com. All Rights Reserved. Please Consider the Environment Before Printing This Document GMO Asset Allocation Bond Fund (A Series of GMO Trust) Schedule of Investments (showing percentage of total net assets) May 31, 2020 (Unaudited) Par Value / Shares Description Value ($) DEBT OBLIGATIONS 95.4% U.S. Government 95.4% 4,180,626 U.S. Treasury Inflation Indexed Bond, 0.25%, due 01/15/25(a) 4,322,632 9,708,322 U.S. Treasury Inflation Indexed Bond, 0.38%, due 01/15/27(a) 10,287,885 19,736,801 U.S. Treasury Inflation Indexed Bond, 0.50%, due 01/15/28(a) 21,285,579 32,786,545 U.S. Treasury Inflation Indexed Bond, 1.75%, due 01/15/28(a) 38,564,439 6,226,659 U.S. Treasury Inflation Indexed Bond, 0.75%, due 07/15/28(a) 6,899,050 11,269,835 U.S. Treasury Inflation Indexed Bond, 0.88%, due 01/15/29(a) 12,617,320 37,063,302 U.S. Treasury Inflation Indexed Bond, 2.50%, due 01/15/29(a) 46,777,790 20,266,660 U.S.
    [Show full text]
  • Wirth Transcript Final
    A. M. Turing Award Oral History Interview with Niklaus Wirth by Elena Trichina ETH, Zürich, Switzerland March 13, 2018 Trichina: My name is Elena Trichina. It is my honor to interview Professor Niklaus Wirth for the Turing Award Winners Project of the Association for Computing Machinery, the ACM. The Turing Award, sometimes referred to as “the Nobel Prize of computing,” is given annually for major contributions of lasting importance in computing. Professor Wirth received his award in 1984 in recognition of his outstanding work in developing a sequence of programming languages – Euler, Algol-W, Pascal, Modula. The hallmarks of Wirth’s languages are their simplicity, economy of design, and high-level engineering. We will talk about it and many other things later today in the interview that takes place on the 13th of March, 2018, in the Swiss Federal Institute of Technology. So we start. Ready? Guten Tag, Niklaus. Gruetzi. Wirth: Добрый ден, Елена Василевна Здравствуи [Good morning, Elena. Hello. – ed.] Trichina: Well, although your command of Russian is sufficient, my command of Swiss German is a little bit rudimentary. Shall we continue in one of the languages where we both feel comfortable? What would it be? French? English? Wirth: Oh, I think English is better for me. Yes, yes. Trichina: Okay. It’s probably better for the audience. [laughs] Wirth: Okay. True. Trichina: Okay. We continue in English. Here in front of me there is a list of the most important days in your life. You were born in February 1934 in Winterthur, which is a sort of middle-size industrial town in Switzerland.
    [Show full text]
  • Categorization of Common Coupling and Its Application
    A SEMANTIC ANCHORING INFRASTRUCTURE FOR MODEL-INTEGRATED COMPUTING By Kai Chen Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science August, 2006 Nashville, Tennessee Approved: Janos Sztipanovits Stephen R. Schach Gabor Karsai Gautam Biswas Sherif Abdelwahed Benoit Dawant 献给我的父母和我的妻子 To my parents & To my beloved wife, Yongjie ii ACKNOWLEDGMENTS I am greatly appreciative and thankful to my advisor, Dr. Janos Sztipanovits, for his scientific vision, detailed guidance, great patience and tremendous encouragement throughout these years. Dr. Sztipanovits has guided me through my transition from an incoming graduate student to an outgoing researcher. I also thank Dr. Stephen R. Schach, Dr. Gabor Karsai, Dr. Gautam Biswas, Dr. Sherif Abdelwahed and Dr. Benoit Dawant for serving on my dissertation committee. I appreciate their guidance and advice. Dr. Schach, who advised me while I was in the Master’s program, introduced me to the Software Engineering research area, which has direct impact on my thesis. I would also like to thank the members of the Institute for Software Integrated Systems, especially Dr. Sandeep Neema, Dr. John Koo, Dr. Douglas Schmidt, Dr. Aniruddha Gokhale, Ethan Jackson, Matthew Emerson, Graham Hemingway, Gabor Madl, Andrew Dixon, Brian Williams and Christopher Buskirk. Our many discussions stimulated my research. Most importantly, I want to express my deepest gratitude to my loving family. I am indebted to my mom and dad for their support, encouragement, and belief in me. Special thanks to my lovely wife, Yongjie, who makes all my work worthwhile.
    [Show full text]
  • Novosibirsk Programming School: a Historical Overview∗
    Bull. Nov. Comp. Center, Comp. Science, 37 (2014), 1{22 ⃝c 2014 NCC Publisher Novosibirsk programming school: a historical overview∗ A.G. Marchuk, F.A. Murzin, A.A. Bulyonkova, I.A. Krayneva Abstract. The paper gives the background and history of the foundation, in 1990, of the Institute of Informatics Systems, Siberian Branch, Russian Academy of Sciences (IIS SB RAS). The institute is rightfully considered the successor to the academic tradition of the Novosibirsk programming school created by Aca- demician A.P. Ershov, head of the Programming Department with the Computing Center, Siberian Branch, USSR Academy of Sciences (1957{1988). Today, Ershov's programming school, whose establishment dates back to the 1960s, continues to de- velop. In the 1990s, it was transformed into a separate entity, the Institute of Informatics Systems SB RAS. Here, theoretical studies into the topics outlined by A.P. Ershov, his colleagues and disciples are developed and put into practice. The IIS SB RAS is the only research institution in Siberia that focuses on computer science. The genesis of the programming theory and its current development by A.P. Ershov's colleagues and successors have been traced. The IIS SB RAS and Novosibirsk school of programming base their activities on the technological and methodological culture of system engineering, program design and development, which also applies to software engineering. The Novosibirsk programming school as a research and educational phenomenon does not concentrate solely on the good results in theoretical and practical programming. The researchers of the IIS SB RAS actively support social projects on education and informatisation of humani- ties.
    [Show full text]
  • Papers on the History, Current Status, and Future of Traffic Simulation
    Workshop 172 Simulation: Looking Back and Looking Ahead Constantinos Antoniou, National Technical University of Athens, Greece; Robert Lawrence Bertini, Portland State University, presiding Sponsored by Traffic Flow Theory and Characteristics Committee The focus of this year's SimSub simulation workshop is consistent with the meeting's theme, “Celebrating Our Legacy, Anticipating Our Future.” Top experts in the field will provide discussion papers on the history, current status, and future of traffic simulation. The audience will be asked to provide input and frame a forward-looking discussion of future trends and research needs. Join us for this popular annual event. The intent is to publish a circular containing the material presented. No Paper PPT Title/Author 1 x x Traffic Flow Modeling: A Genealogy Femke van Wageningen-Kessels, Delft University of Technology, Netherlands 2 x x History of the Use of Simulation in Traffic Analysis Edward Lieberman, KLD Associates, Inc. 3 x x Evolution of the TEXAS Model and Traffic Simulation Thomas W. Rioux, Rioux Engineering 4 History of VISSIM Development Peter Vortisch, PTV AG 5 x Evolution of SUMO Simulation Model Peter Wagner, German Aerospace Center 6 Thoughts on Traffic Simulation Models Alexander Skabardonis, University of California, Berkeley 7 x Future Directions for Managing Uncertainty in Stochastic Traffic Models Vincenzo Punzo, University of Naples Federico II, Italy 8 x x Big Data and the Calibration and Validation of Traffic Simulation Models Kaan Ozbay, Rutgers University 9 x x Looking Back and Forward at Modeling the Safety System William Young, Monash University, Australia 1 Traffic Flow Modeling: a Genealogy Femke van Wageningen-Kessels, Serge P.
    [Show full text]
  • Soviet Advanced Technology: the Case of High-Performance Computing
    SOVIET ADVANCED TECHNOLOGY: THE CASE OF HIGH-PERFORMANCE COMPUTING by Peter Wolcott Copyright © Peter Wolcott 1993 A Dissertation Submitted to the COMMITTEE ON BUSINESS ADMINISTRATION In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 9 3 2 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an ad- vanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, pro- vided that accurate acknowledgment of source is made. Requests for permission for ex- tended quotation from or reproduction of this manuscript in whole or in part may be granted by the copyright holder. SIGNED: 4 ACKNOWLEDGEMENTS This work more than a piece of scholarly research. It is a tapestry weaving together not only data and analysis, but also the lives and experiences of all those who have had a part in it, or whose work is described. I value the human element embodied in it highly. I have been privileged to work in The Mosaic Group. This study would have been much more difficult had I not had access to the expertise of the members of the group, the data they have collected, and the research tools they have built. Professor and Mrs. Seymour Goodman, Professor Tom Jarmoszko, Dr. Kevin Lynch, Professor William Mc- Henry, Dr. Ross Stapleton, Dr. Joel Snyder and many current and former Mosaic mem- bers have given me greatly valued information, criticism, advice, and friendship across many years and many countries.
    [Show full text]
  • 2008 Small Grain & Field Corn Research Report
    SMALLSMALL GRAINGRAIN ANDAND FIELDFIELD CORNCORN RESEARCHRESEARCH INSECTINSECT CONTROL,CONTROL, VARIETYVARIETY TRIALSTRIALS 20082008 SAN JOAQUIN COUNTY Cooperative Extension University of California 2101 East Earhart Ave. #200—Stockton—California—95206 2008 SMALL GRAIN and FIELD CORN RESEARCH PROGRESS REPORT Mick Canevari, Farm Advisor San Joaquin County ACKNOWLEDGEMENTS The 2008 small grain and field corn research program for San Joaquin County was conducted on common wheat, triticale, durum wheat, barley variety evaluations and spider mite control in field corn. The cooperation and management assistance of Steve Lay (Victoria Island Farms), Bob Cecchini (Brentwood,CA), Lee Jackson and UC Davis staff are greatly appreciated. Many thanks are extended to them for their assistance, interest and patience. CONTRIBUTING AUTHOR Donald Colbert ………… Extension Field Technician Randall Wittie ………….. Extension Field Technician Scott Whiteley …………. Extension Field Technician Caution This report is a summary of a small grain variety trial and a field corn spider mite trial conducted in San Joaquin County. It should not in any way be interpreted as a recommendation of the University of California but rather a guide as to the progress in finding solutions to problems. Insecticide trade names are used in this report, as well as the less familiar common names to familiarize the reader with the various products tested. No endorsement of products mentioned or criticism of similar products is intended. Insecticide rates in this report are always expressed as active ingredient (a.i.) of material per treated acre. Trade Name Common Name Company Acramite Bifenazate Chemtura Comite Propargite Chemtura Oberon Spiromesifen Bayer CropScience 2 Field Corn Spider Mite Trial Mick Canevari, Randall Wittie, Don Colbert, Scott Whiteley OBJECTIVES: Evaluate new insecticides for spider mite control and crop tolerance in field corn.
    [Show full text]
  • Kronos: Processor Family for High-Level Languages
    Kronos: Processor Family for High-Level Languages Dmitry N. Kuznetsov1, Alexey E. Nedorya2, Eugene V. Tarassov3, Vladimir E. Philippov4, and Marina Ya. Philippova5 1 California, USA; [email protected] 2 Veberi Ltd., Yaroslavl, Russia; [email protected] 3 Intel (Wind River), Inc.; [email protected] 4 Ershov Institute of Information Systems, SB RAS, Novosibirsk, Russia; [email protected] 5 xTech Ltd., Novosibirsk, Russia; [email protected] Abstract. The article describes the history of the Kronos project that took place in the middle of the 1980s in Akademgorodok, Novosibirsk, and was devoted to creating the first Russian 32-bit processor, Kronos. The basic principles of high- level languages oriented architecture design are presented by the example of the Kronos processors family architecture. The article contains a short review of the original multiuser multitask operation system, Excelsior, that was designed and implemented within the project and used for the Kronos family processors. Keywords: Kronos, Modula-2, 32-bit processors, high-level languages oriented architecture, OS Excelsior 1 Background Kronos is a generic name of a family of 32-bit processors for creating micro- and mini-computers. The Kronos processors architecture was designed to support high- level programming languages (C, Modula-2, Oberon, Pascal, Occam, etc.) that allowed implementing the newest ideas in software development and computer usage. The Kronos family of processors was developed in the Novosibirsk Computing Center (SB AS USSR) within the framework of the MARS project (“Modulnye Asinkhronnye Razvivayemye Sistemy” – Modular Asynchronous Open Systems) by the Kronos research team of the START research and technology group (RTG) (1985- 1988).
    [Show full text]