Appendix 1 49

Total Page:16

File Type:pdf, Size:1020Kb

Appendix 1 49 NOC99011 Appendix 1 49. Cervus duvauceli (swamp deer) Organisms that are the source of donor 50. Cervus eldi (eld's deer) nucleic acids (Identical to Appendix 1 of 51. Cervus nippon (sika deer) 52. Cervus timorensis (rusa deer) Application NOC9907) 53. Cervus unicolor (sambar) 1. Animals 54. Cricetulus griseus (chinese hamster) 55. Cricetus cricetus (hamster) 1. Acipenser baari (bester) 56. Dama dama (fallow deer) 2. Actocephalus forsteri 57. Dasyurus muculatus 58. Dromiciops australis 3. Alces alces (moose) 59. Drosophila hydei 4. Alectura lathami 5. Antechinus stuartii 60. Drosophila melanogaster (fruitfly) 6. Antechinus swainsonii 61. Drosophila virilis 62. Echinosorex gymnura 7. Apis mellifera (honey bee) 63. Echymipera kulubu 8. Aplysia californica 64. Echymipera rufescens 9. Arctocephalus australis 65. Elaphodus cephalophus (tufted deer) 10. Arctocephalus gazella 66. Elaphurus davidianus (Pere David‟s deer) 11. Arctocephalus pusillus 67. Equus caballus (horse) 12. Arctocephalus tropicalis 68. Eschrichtius robustus 13. Ardeotis australis 69. Eubalaena australis 14. Artemia franciscana 70. Eubalaena glacialis 15. Artemia salina 71. Eumetopias jubatus 16. Axis axis (axis deer) 72. Gallus gallus (chicken) 17. Axis porcinus (hog deer) 73. Glironia venusta 18. Balaena mysticetus 74. Globicephala macrorhunchus 19. Balaenoptera acutorostrata 75. Globicephala melas 20. Balaenoptera borealis 76. Glossina austeni 21. Balaenoptera edeni 77. Glossina fusca fuscipes 22. Balaenoptera musculus 78. Glossina morsitans morsitans 79. Glossina pallidipes 23. Balaenoptera physalus 80. Glossina palpalis palpalis 24. Berardius arnuxii 81. Homo sapiens (human, non-Maori and non- 25. Berardius bairdii Polynesian sources only) 26. Blastocerus dichotomus (marsh deer) 82. Hydropotes inermis (Chinese water deer) 27. Bos indicus (cattle) 83. Hyperoodon ampullatus 28. Bos taurus (cattle) 84. Hyperoodon planifrons 29. Caenolestes convelatus 85. Lagenorhynchus albirostris 30. Caenolestes fuliginosus 31. Caenorhabditis elegans 86. Lagenorhynchus australis 32. Callorhinus ursinus 87. Lagenorhynchus cruciger 33. Caluromys derbianus 88. Lagenorhynchus obliquidens 34. Caluromys lanatus 89. Lagenorhynchus obscurus 35. Caluromys philander 90. Leipea acellata 36. Canis familiaris (dog) 91. Lestorus iuca 37. Capera marginata 92. Lucilia cuprina 38. Capra hircus (goat) 93. Macrotis layntis 39. Capreolus capreolus (roe deer) 94. Manduca sexta 40. Cavia porcellus (guinea Pig) 95. Marmosa mexicana 41. Cephalorhynchus coomersonii 96. Marmosa murina 42. Cephalorhynchus eutropia 97. Megaptera novaeangliae 43. Cephalorhynchus heavisidii 98. Mesoplodon bidens 44. Ceratitis capitata 99. Mesoplodon bowdoini 45. Cercopithecus aethiops (african green 100. Mesoplodon carlhubbsi monkey) 101. Mesoplodon densirostris 46. Cervidae species (deer) 102. Mesoplodon europaeus 47. Cervus elaphus (red deer) 103. Mesoplodon ginkgodens 48. Cervus canadensis (wapiti) 104. Mesoplodon grayi 105. Mesoplodon hectori 161. Xenopus laevus (frog) 106. Mesoplodon layardi 162. Xenopus leavis 107. Mesoplodon mirus 163. Zaglossus bruijui 108. Mesoplodon pacificus 164. Zalophus californianus 109. Mesoplodon peruvianus 165. Ziphius cavirostris 110. Mesoplodon stejnegeri 111. Microcricetus aureus (hamster), (golden Syrian hamster) 112. Microperorctes longicaudata 113. Monodelphis americana 114. Monodelphis domestica 115. Moschus moschiferus (musk deer) 116. Muntiacus muntjak (Indian muntjac) 117. Muntiacus reevesi (Chinese muntjac) 118. Mus musculus 119. Mus spretus 120. Myrmecobius fasciatus 121. Neophoca cinerea 122. Notoryctes typhlops 123. Odocoileus hemionus (black-tailed deer) 124. Odocoileus virginianus (white-tailed deer) 125. Orcinus orca 126. Orcytolagus cuniculu (rabbit ) 127. Oreochromis mossambicus (tilapia) 128. Oreochromis niloticus (tilapia) 129. Ornithorhynchus anatinus 130. Otaria byroni 131. Ovis ammon (agali) 132. Ovis aries (sheep) 133. Ovis canadensis (bighorn) 134. Ovis musimon (mouflon) 135. Ozotoceras bezoarticus (pampas deer) 136. Parartemia zietziana 137. Perametes nusuta 138. Perca fluviatilis 139. Peroryctes raffrayana 140. Photinus pyralis (firefly) (gene encoding luciferase only) 141. Pteropus poliocephalus 142. Rangifer tarandus (reindeer) 143. Rattus norvegicus 144. Rattus rattus 145. Rhyncholestes raphanurus 146. Rhynchometes prattorum 147. Sarcophilus harrisii 148. Schistosoma japonicum 149. Setifer setosus 150. Sminthopsis murina 151. Solenodon cubanus 152. Sus scrofa (pig) 153. Tachyglossus aculeatus 154. Tarsipes rostratus 155. Tasmacetus shepherdi 156. Tenrec ecaudatus 157. Thalassoma duperrey (wrasse) 158. Thylacinus cynocephalus 159. Trichosurus vulpecula (possum) 160. Tursiops truncatus 2. Fish 216. Rivulus rivulus 217. Salmo salar (atlantic salmon) 166. Acipenser baari (bester) 218. Tetraodon fluviatilis 167. Aequorea victoria (jelly fish) (gene encoding 219. Tetraodon nigroviridis green fluorescent protein only) 220. Thalassoma duperrey (wrasse) 168. Anguilla anguilla (European eel) 221. Trematomus bernacchii 169. Anguilla japonica (Japanese eel) 222. Trematomus eulepidota 170. Brachidanio rerio (zebra fish) 223. Trematomus hansoni 171. Carassius auratus (goldfish) 224. Trematomus lepidorhinus 172.Chaenocephalus aceratus 225. Trematomus loennbergi 173. Champsocephalus esox 226. Trematomus newnesi 174. Champsocephalus gunnarii 227. Trematomus nicolai 175. Chionodraco hamatus 228. Trematomus pennellii 176. Chionodraco rastrospinosus 229. Trematomus scotti 177. Chionodracus hamatus 178. Chromatium vinosum 230.Xiphophorus heller 179. Clarias gariepinus (African catfish) 180. Clupea harengus 181. Cryodraco antarcticus 182. Cygnodraco mawsoni 183. Cyprinus carpio (common carp) 184. Dissostichus eleginoides 185. Dissostichus mawsoni 186. Eleginops maclovinus 187. Fugu rubripes (fugu fish) 188. Galaxias brevipinnis (Australian koaro) (Australian fish only) 189. Galaxias maculatus (Australian inanga) (Australian fish only) 190. Gobionotothen gibberifrons 191. Gymnodraco acuticeps 192. Histiodraco velifer 193. Huso huso (sturgeon) 194. Latimeria chalumnae (coelacanth) 195. Loligo forbesi (North Atlantic squid) 196. Lycodichthys dearborni 197. Morone saxatilis (striped bass) 198. Neoceratodus forsteri (Australian lungfish) 199. Notothenia coriiceps 200. Oncorhynchus kisutch (coho salmon) 201. Oncorhynchus mykiss (rainbow trout) 202. Oncorhynchus nerka (chum salmon) 203. Oreochromis niloticus (Tilapia) 204. Pacycara bracycephalum 205. Pagetopsis macropterus 206. Pagothenia borchgrevinki 207. Parachaenichthys charcoti 208. Paraliparis devriesi 209. Patagonotothen ramsayi 210. Patagonotothen tesselata 211. Penaeus monodon (tiger shrimp) 212. Perca fluviatilis (perch) 213. Pleuragramma antarcticum 214. Pseudaphritis urvillii 215. Pseudochannichthys georgianus 3. Plants 292. Cucurbita pepo 293. Daucus carota 294. Dianthus caryophyllus 231. Aciphylla acerosa 295. Dicksonia antarctica 232. Actinidia arguta 296. Dicksonia baudo inii 233. Actinidia chinensis (kiwi fruit) 297. Dicksonia berteriana 234. Actinidia deliciosa 298. Dicksonia blumei 235. Actinidia eryantha 299. Dicksonia brackenridgii 236. Adiantum capillaris-veneris (maidenhair fern) 300. Dicksonia deplanchei 237. Allium ampeloprasum 301. Dicksonia externa 238. Allium cepa 302. Dicksonia grandis 239. Allium chinense 303. Dicksonia herbertii 240. Allium fistulosum 304. Dicksonia hieronymi 241. Allium sativum 305. Dicksonia lanigera 242. Allium schoenoprasum 306. Dicksonia mollis 243. Allium tuberosum 307. Dicksonia schlechteri 244. Ananas comosus (pineapple) 308. Dicksonia sciurus 245. Annona cherimola 309. Dicksonia sellowiana 246. Antirrhinum majus 310. Dicksonia steubelii 247. Antirrhinum majus 311. Dicksonia thyrsopteroides 248. Apium graveolus 312. Dicksonia youngiae 249. Arabidopsis thaliana 313. Eucalyptus Grandis 250. Arachis hypogea 314. Eucalyptus Camaldulensis 251. Asparagus albus 315. Eucalyptus Nitens 316. Eucalyptus Globulus 252. Asparagus officinalis (asparagus) 317. Festuca arundinacea 253. Astelia alpina 318. Glycine max 254. Astelia argyocoma 319. Glycine soja 255. Astelia australiana 320. Gossypium hirsutum 256. Astelia degeneri 321. Helioanthus annus 257. Astelia forbesii 322. Hordeum vulgare (barley) 258. Astelia hemichrysa 259. Astelia menziesiana 323. Ipomoea batatas 260. Astelia nadeaudii 324. Juglans regia 261. Astelia neocaledonica 325. Lathyrus odoratus 262. Astelia papuana 326. Latuca sativa 263. Astelia psychrocharis 327. Leptinella acaenoides 264. Astelia pumila 328. Leptinella bogotensis 265. Astelia rapensis 329. Leptinella featherstonii 266. Astelia tovii 330. Leptinella scariosa 267. Astelia veratroides 331. Lolium perenne - Ryegrass 268. Astelia waialealae 332. Lolium multiflorum 269. Avena fatua 333. Lolium perenne 270. Avena sativa 334. Lotus berthelotii 271. Beta vulgaris 335. Lotus corniculatus 272. Betula pendula 336. Lotus japonicus 273. Brassica campestris 337. Lotus pedunculatus 274. Brassica napus 338. Lupinus luteus 275. Brassica oleracea 339. Lupinus angustifolius 276. Brassica rapa 340. Lupinus albus 277. Vicia faba (broad bean) 341. Lupinus arboreus 278. Brassica oleracea (broccoli) 342. Lupinus angustifolius 279. Capsicum annum 343. Lupinus arboreus 280. Carica papaya 344. Lupinus cosentinii 281. Cichorium intybus 345. Lupinus luteus 282. Citrus reticulata 346. Lupinus mutabilis 283. Collospermum montanum 347. Lupinus nootkatensis 284. Collospermum samoense 348. Lupinus polyphyllus 285. Cosmos atrosanguineus 349. Lycopersicon esculentum 286. Cucumis melo 350. Malus
Recommended publications
  • Methods and Work Profile
    REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services .......................................
    [Show full text]
  • Hepatitis Virus in Long-Fingered Bats, Myanmar
    DISPATCHES Myanmar; the counties are adjacent to Yunnan Province, Hepatitis Virus People’s Republic of China. The bats covered 6 species: Miniopterus fuliginosus (n = 640), Hipposideros armiger in Long-Fingered (n = 8), Rhinolophus ferrumequinum (n = 176), Myotis chi- nensis (n = 11), Megaderma lyra (n = 6), and Hipposideros Bats, Myanmar fulvus (n = 12). All bat tissue samples were subjected to vi- Biao He,1 Quanshui Fan,1 Fanli Yang, ral metagenomic analysis (unpublished data). The sampling Tingsong Hu, Wei Qiu, Ye Feng, Zuosheng Li, of bats for this study was approved by the Administrative Yingying Li, Fuqiang Zhang, Huancheng Guo, Committee on Animal Welfare of the Institute of Military Xiaohuan Zou, and Changchun Tu Veterinary, Academy of Military Medical Sciences, China. We used PCR to further study the prevalence of or- During an analysis of the virome of bats from Myanmar, thohepadnavirus in the 6 bat species; the condition of the a large number of reads were annotated to orthohepadnavi- samples made serologic assay and pathology impracticable. ruses. We present the full genome sequence and a morpho- Viral DNA was extracted from liver tissue of each of the logical analysis of an orthohepadnavirus circulating in bats. 853 bats by using the QIAamp DNA Mini Kit (QIAGEN, This virus is substantially different from currently known Hilden, Germany). To detect virus in the samples, we con- members of the genus Orthohepadnavirus and represents ducted PCR by using the TaKaRa PCR Kit (TaKaRa, Da- a new species. lian, China) with a pair of degenerate pan-orthohepadnavi- rus primers (sequences available upon request). The PCR he family Hepadnaviridae comprises 2 genera (Ortho- reaction was as follows: 45 cycles of denaturation at 94°C Thepadnavirus and Avihepadnavirus), and viruses clas- for 30 s, annealing at 54°C for 30 s, extension at 72°C for sified within these genera have a narrow host range.
    [Show full text]
  • A Note on the Recent Distribution of Aporia Crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) 453-454 ©Ges
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 2000 Band/Volume: 31 Autor(en)/Author(s): Fric Zdenek Flatynek, Hula Vladimir, Konvicka Martin, Pavlicko Alois Artikel/Article: A note on the recent distribution of Aporia crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) 453-454 ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (December 2000) 31 (3/4):453-454, Würzburg, ISSN 0171-0079 A note on the recent distribution of Aporia crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) by Z d e n e k Fr ic, V l a d im ír H u la , M a r t in K o n v ic k a & A lo is Pa v l ic k o received 20.X.2000 Eitschberger & Steiniger (2000), in their overview of records of Aporia crataegi in Germany, mentioned an interesting occurrence of this species in Wellertal, Silberbach and between Hohenberg, Fichtelgebirge and Dubina, closely to the German-Czech Republic border. The au­ thors speculated that the individuals originated from Czech territory. To understand the con­ text of their records, it is necessary to take into account the recent distribution of this species in the Czech Republic. Approximately since the 1950s, this butterfly species had been declining and gradually disap­ peared from both Bohemia and Moravia (Novak & Liska, 1997; Lastuvka, 1998; Beun, 1999), although there were occasional invasions followed by establishments of transient populations, such as near Pribram in the 1970s (Zeleny, 1977).
    [Show full text]
  • Detección De Agentes Virales En Ostión Japonés (Crassostrea Gigas)
    CENTRO DE INVESTIGACIONES BIOLÓGICAS DEL NOROESTE, S. C. Programa de Estudios de Posgrado Detección de agentes virales en ostión Japonés (Crassostrea gigas) T E S I S Que para obtener el grado de Doctor en Ciencias Uso, Manejo y Preservación de los Recursos Naturales (Orientación en: Biotecnología) p r e s e n t a Valérie Barbosa Solomieu La Paz, B. C. S.,(Junio-2004) COMITE TUTORIAL Dr. Ricardo Vázquez Juárez (co-director) CIBNOR, La Paz, Mexico Dr. Felipe Ascencio Valle (co-director) CIBNOR, La Paz, Mexico Dr. Tristan Renault (tutor) IFREMER, La Tremblade, France Dr. Ralph Elston (tutor) AQUATECHNICS, INC., Seattle, USA Dr. Jorge de la Rosa Vélez (tutor) UABC, Ensenada, Mexico COMISION REVISORA Dr. Ricardo Vázquez Juárez CIBNOR Dr. Felipe Ascencio Valle CIBNOR Dr. Tristan Renault IFREMER, France Dr. Ralph Elston AQUATECHNICS, INC., USA Dr. Jorge de la Rosa Vélez UABC JURADO Dr. Ricardo Vázquez Juárez CIBNOR Dr. Felipe Ascencio Valle CIBNOR Dr. Ralph Elston AQUATECHNICS, INC. Dr. Humberto Villarreal Colmenares CIBNOR Dr. Dariel Tovar Ramírez CIBNOR Suplente Dr. Pedro Enrique Saucedo Lastra CIBNOR PROLOGO Y DEDICATORIA A mi madre, por estar siempre presente, a pesar de las distancias y los oceános… A mi padre, con quién habría querido compartir estos momentos y muchos más. A mis abuelos, quienes nunca han dejado de apoyarme, con todo mi cariño. A mi hermano y su esposa, parte de nuestra pequeña y dispersa familia. A todos aquellos que estuvieron a lo largo de este camino para iluminarlo con una sonrisa o una mano tendida. A quienes llenaron de magia y de alegría estos años.
    [Show full text]
  • Viral Gastroenteritis
    viral gastroenteritis What causes viral gastroenteritis? y Rotaviruses y Caliciviruses y Astroviruses y SRV (Small Round Viruses) y Toroviruses y Adenoviruses 40 , 41 Diarrhea Causing Agents in World ROTAVIRUS Family Reoviridae Genus Segments Host Vector Orthoreovirus 10 Mammals None Orbivirus 11 Mammals Mosquitoes, flies Rotavirus 11 Mammals None Coltivirus 12 Mammals Ticks Seadornavirus 12 Mammals Ticks Aquareovirus 11 Fish None Idnoreovirus 10 Mammals None Cypovirus 10 Insect None Fijivirus 10 Plant Planthopper Phytoreovirus 12 Plant Leafhopper OiOryzavirus 10 Plan t Plan thopper Mycoreovirus 11 or 12 Fungi None? REOVIRUS y REO: respiratory enteric orphan, y early recognition that the viruses caused respiratory and enteric infections y incorrect belief they were not associated with disease, hence they were considered "orphan " viruses ROTAVIRUS‐ PROPERTIES y Virus is stable in the environment (months) y Relatively resistant to hand washing agents y Susceptible to disinfection with 95% ethanol, ‘Lyy,sol’, formalin STRUCTURAL FEATURES OF ROTAVIRUS y 60‐80nm in size y Non‐enveloped virus y EM appearance of a wheel with radiating spokes y Icosahedral symmetry y Double capsid y Double stranded (ds) RNA in 11 segments Rotavirus structure y The rotavirus genome consists of 11 segments of double- stranded RNA, which code for 6 structural viral proteins, VP1, VP2, VP3, VP4, VP6 and VP7 and 6 non-structural proteins, NSP1-NSP6 , where gene segment 11 encodes both NSP5 and 6. y Genome is encompassed by an inner core consisting of VP2, VP1 and VP3 proteins. Intermediate layer or inner capsid is made of VP6 determining group and subgroup specifici ti es. y The outer capsid layer is composed of two proteins, VP7 and VP4 eliciting neutralizing antibody responses.
    [Show full text]
  • Poplars and Willows: Trees for Society and the Environment / Edited by J.G
    Poplars and Willows Trees for Society and the Environment This volume is respectfully dedicated to the memory of Victor Steenackers. Vic, as he was known to his friends, was born in Weelde, Belgium, in 1928. His life was devoted to his family – his wife, Joanna, his 9 children and his 23 grandchildren. His career was devoted to the study and improve- ment of poplars, particularly through poplar breeding. As Director of the Poplar Research Institute at Geraardsbergen, Belgium, he pursued a lifelong scientific interest in poplars and encouraged others to share his passion. As a member of the Executive Committee of the International Poplar Commission for many years, and as its Chair from 1988 to 2000, he was a much-loved mentor and powerful advocate, spreading scientific knowledge of poplars and willows worldwide throughout the many member countries of the IPC. This book is in many ways part of the legacy of Vic Steenackers, many of its contributing authors having learned from his guidance and dedication. Vic Steenackers passed away at Aalst, Belgium, in August 2010, but his work is carried on by others, including mem- bers of his family. Poplars and Willows Trees for Society and the Environment Edited by J.G. Isebrands Environmental Forestry Consultants LLC, New London, Wisconsin, USA and J. Richardson Poplar Council of Canada, Ottawa, Ontario, Canada Published by The Food and Agriculture Organization of the United Nations and CABI CABI is a trading name of CAB International CABI CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 Tel: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 Tel: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © FAO, 2014 FAO encourages the use, reproduction and dissemination of material in this information product.
    [Show full text]
  • Novel Reovirus Associated with Epidemic Mortality in Wild Largemouth Bass
    Journal of General Virology (2016), 97, 2482–2487 DOI 10.1099/jgv.0.000568 Short Novel reovirus associated with epidemic mortality Communication in wild largemouth bass (Micropterus salmoides) Samuel D. Sibley,1† Megan A. Finley,2† Bridget B. Baker,2 Corey Puzach,3 Aníbal G. Armien, 4 David Giehtbrock2 and Tony L. Goldberg1,5 Correspondence 1Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, USA Tony L. Goldberg 2Wisconsin Department of Natural Resources, Bureau of Fisheries Management, Madison, WI, [email protected] USA 3United States Fish and Wildlife Service, La Crosse Fish Health Center, Onalaska, WI, USA 4Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA 5Global Health Institute, University of Wisconsin–Madison, Madison, Wisconsin, USA Reoviruses (family Reoviridae) infect vertebrate and invertebrate hosts with clinical effects ranging from inapparent to lethal. Here, we describe the discovery and characterization of Largemouth bass reovirus (LMBRV), found during investigation of a mortality event in wild largemouth bass (Micropterus salmoides) in 2015 in WI, USA. LMBRV has spherical virions of approximately 80 nm diameter containing 10 segments of linear dsRNA, aligning it with members of the genus Orthoreovirus, which infect mammals and birds, rather than members of the genus Aquareovirus, which contain 11 segments and infect teleost fishes. LMBRV is only between 24 % and 68 % similar at the amino acid level to its closest relative, Piscine reovirus (PRV), the putative cause of heart and skeletal muscle inflammation of farmed salmon. LMBRV expands the Received 11 May 2016 known diversity and host range of its lineage, which suggests that an undiscovered diversity of Accepted 1 August 2016 related pathogenic reoviruses may exist in wild fishes.
    [Show full text]
  • Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A
    Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou To cite this version: Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou. Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research. Viruses, MDPI, 2018, 10 (7), pp.366. 10.3390/v10070366. hal-02140538 HAL Id: hal-02140538 https://hal.archives-ouvertes.fr/hal-02140538 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Article Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé 1,2, Carlos Lopez-Vaamonde 1,3 ID , Jenny S. Cory 4 and Elisabeth A. Herniou 1,* ID 1 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, 37200 Tours, France; [email protected] (J.T.); [email protected]
    [Show full text]
  • And Giant Guitarfish (Rhynchobatus Djiddensis)
    VIRAL DISCOVERY IN BLUEGILL SUNFISH (LEPOMIS MACROCHIRUS) AND GIANT GUITARFISH (RHYNCHOBATUS DJIDDENSIS) BY HISTOPATHOLOGY EVALUATION, METAGENOMIC ANALYSIS AND NEXT GENERATION SEQUENCING by JENNIFER ANNE DILL (Under the Direction of Alvin Camus) ABSTRACT The rapid growth of aquaculture production and international trade in live fish has led to the emergence of many new diseases. The introduction of novel disease agents can result in significant economic losses, as well as threats to vulnerable wild fish populations. Losses are often exacerbated by a lack of agent identification, delay in the development of diagnostic tools and poor knowledge of host range and susceptibility. Examples in bluegill sunfish (Lepomis macrochirus) and the giant guitarfish (Rhynchobatus djiddensis) will be discussed here. Bluegill are popular freshwater game fish, native to eastern North America, living in shallow lakes, ponds, and slow moving waterways. Bluegill experiencing epizootics of proliferative lip and skin lesions, characterized by epidermal hyperplasia, papillomas, and rarely squamous cell carcinoma, were investigated in two isolated poopulations. Next generation genomic sequencing revealed partial DNA sequences of an endogenous retrovirus and the entire circular genome of a novel hepadnavirus. Giant Guitarfish, a rajiform elasmobranch listed as ‘vulnerable’ on the IUCN Red List, are found in the tropical Western Indian Ocean. Proliferative skin lesions were observed on the ventrum and caudal fin of a juvenile male quarantined at a public aquarium following international shipment. Histologically, lesions consisted of papillomatous epidermal hyperplasia with myriad large, amphophilic, intranuclear inclusions. Deep sequencing and metagenomic analysis produced the complete genomes of two novel DNA viruses, a typical polyomavirus and a second unclassified virus with a 20 kb genome tentatively named Colossomavirus.
    [Show full text]
  • National Parks Association of the Australian Capital Territory Inc
    Volume 53 Number 2 June 2016 National Parks Association of the Australian Capital Territory Inc. Burning Aranda Bushland Canberra Nature Map Jagungal Wilderness NPA Bulletin Volume 53 number 2 June 2016 Articles by contributors may not necessarily reflect association opinion or objectives. CONTENTS NPA outings program, June – September 2016 ...............13–16 From the Committee ................................................................2 Bushwalks Rod Griffiths and Christine Goonrey Exciting Rendezvous Valley pack walk ..........................17 The vital work of the National Parks Australia Council ..........3 Esther Gallant Rod Griffiths Mount Tantangara ...........................................................18 NPA's Nature Play program .....................................................3 Brian Slee Graham Scully Pretty Plain ......................................................................19 Aranda Bushland's recent hazard-reduction burn ....................4 Brian Slee Judy Kelly, with Michael Doherty and John Brickhill Glenburn Precinct news..........................................................20 Obituaries .................................................................................6 Col McAlister Book reviews. Leaf Litter, exploring the Mysteries................21 The National Rock Garden ......................................................7 of a Hidden World by Rachel Tonkin Compiled by Kevin McCue Judy Kelly Stolen .......................................................................................7
    [Show full text]
  • Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin (Megadyptes Antipodes)
    viruses Article Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin (Megadyptes antipodes) Subir Sarker 1,* , Ajani Athukorala 1, Timothy R. Bowden 2,† and David B. Boyle 2 1 Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; [email protected] 2 CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia; [email protected] (T.R.B.); [email protected] (D.B.B.) * Correspondence: [email protected]; Tel.: +61-3-9479-2317; Fax: +61-3-9479-1222 † Present address: CSIRO Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia. Abstract: Emerging viral diseases have become a significant concern due to their potential con- sequences for animal and environmental health. Over the past few decades, it has become clear that viruses emerging in wildlife may pose a major threat to vulnerable or endangered species. Diphtheritic stomatitis, likely to be caused by an avipoxvirus, has been recognised as a signifi- cant cause of mortality for the endangered yellow-eyed penguin (Megadyptes antipodes) in New Zealand. However, the avipoxvirus that infects yellow-eyed penguins has remained uncharacterised. Here, we report the complete genome of a novel avipoxvirus, penguinpox virus 2 (PEPV2), which was derived from a virus isolate obtained from a skin lesion of a yellow-eyed penguin. The PEPV2 genome is 349.8 kbp in length and contains 327 predicted genes; five of these genes were found to be unique, while a further two genes were absent compared to shearwaterpox virus 2 (SWPV2).
    [Show full text]
  • Zoogeography of the Holarctic Species of the Noctuidae (Lepidoptera): Importance of the Bering Ian Refuge
    © Entomologica Fennica. 8.XI.l991 Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Bering ian refuge Kauri Mikkola, J, D. Lafontaine & V. S. Kononenko Mikkola, K., Lafontaine, J.D. & Kononenko, V. S. 1991 : Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. - En to mol. Fennica 2: 157- 173. As a result of published and unpublished revisionary work, literature compi­ lation and expeditions to the Beringian area, 98 species of the Noctuidae are listed as Holarctic and grouped according to their taxonomic and distributional history. Of the 44 species considered to be "naturall y" Holarctic before this study, 27 (61 %) are confirmed as Holarctic; 16 species are added on account of range extensions and 29 because of changes in their taxonomic status; 17 taxa are deleted from the Holarctic list. This brings the total of the group to 72 species. Thirteen species are considered to be introduced by man from Europe, a further eight to have been transported by man in the subtropical areas, and five migrant species, three of them of Neotropical origin, may have been assisted by man. The m~jority of the "naturally" Holarctic species are associated with tundra habitats. The species of dry tundra are frequently endemic to Beringia. In the taiga zone, most Holarctic connections consist of Palaearctic/ Nearctic species pairs. The proportion ofHolarctic species decreases from 100 % in the High Arctic to between 40 and 75 % in Beringia and the northern taiga zone, and from between 10 and 20 % in Newfoundland and Finland to between 2 and 4 % in southern Ontario, Central Europe, Spain and Primorye.
    [Show full text]