WO 2017/106957 Al O

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/106957 Al O (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/106957 Al 29 June 2017 (29.06.2017) W P O P C T (51) International Patent Classification: (74) Agents: MACINS, Andris, I., D. et al; C6 Patent Group C07J5/00 (2006.01) C07D 305/14 (2006.01) Incorporated, operating as Carbon Patent Group, Unit A61K 47/54 (2 ) C07D 487/04 (2006.01) 203A - 116 Geary Avenue, Toronto, Ontario M6H 4H1 A61P 35/00 (2006.01) C07J 41/00 (2006.01) (CA). A61P 37/06 (2006.01) C07J 43/00 (2006.01) (81) Designated States (unless otherwise indicated, for every C07D 295/185 (2006.01) kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, PCT/CA20 16/000322 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, 22 December 2016 (22. 12.2016) KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, (25) Filing Language: English MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, (26) Publication Language: English RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (30) Priority Data: TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, 62/387,160 23 December 201 5 (23. 12.2015) US ZA, ZM, ZW. (71) Applicant: THE UNIVERSITY OF BRITISH (84) Designated States (unless otherwise indicated, for every COLUMBIA [CA/CA]; c/o University-Industry Liaison kind of regional protection available): ARIPO (BW, GH, Office, #103-6190 Agronomy Road, Vancouver, British GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Columbia V6T 1Z3 (CA). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (72) Inventors: CIUFOLINI, Marco, A.; 313-212 1 W 6th Av DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, enue, Vancouver, British Colombia V6K 1V5 (CA). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, CULLIS, Pieter, R.; 3732 West 1st Avenue, Vancouver, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, British Colombia V6R 1H4 (CA). TAM, Yuen, Yi, C ; GW, KM, ML, MR, NE, SN, TD, TG). #1708 - 1420 W. Georgia Street, Vancouver, British Columbia V6G 3K4 (CA). ZAIFMAN, Joshua; 8-2057 Published: West 2nd Avenue, Vancouver, British Columbia V6J 1J5 — with international search report (Art. 21(3)) (CA). [Continued on next page] (54) Title: LIPID-LINKED PRODRUGS o (57) Abstract: This invention provides lipid-linked prodrugs having structures as set out herein. Uses of such lipid-linked prodrug © compounds for treatment of various indications, and methods for making and using lipid-linked prodrugs are also provided. w o 2017/106957 Al II 11 II I 1 I 1 II I Mi ll i l lllll II I II before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) LIPID-LINKED PRODRUGS TECHNICAL FIELD This invention relates to a conjugate of a therapeutic compound and a lipid moiety, compositions thereof, and methods for their use in the delivery of therapeutic compounds. In particular the invention relates to lipid-linked prodrugs, wherein the linker covalently bound to the prodrug is biodegradable. Methods for making and using the conjugates also are provided. CROSS REFERENCE TO RELATEDAPPLICATIONS This application claims the benefit of U.S. Provisional Patent Application Serial Nos. 62/387,160 filed on 23 December 2015, entitled "LIPID-LINKED PRODRUGS". BACKGROUND Drug selectivity for a target tissue is an important consideration during drug design. Selective delivery of a drug to its target may allow for lower dosages and reduced side effects. Selectivity for a given target tissue may be particularly significant when the therapeutic agents being delivered are chemotherapeutics for the treatment of cancer. In particular, cytotoxic drug therapies are meant to target rapidly dividing cells, but may often be limited by the toxic side effects of the chemotherapeutic on healthy cells. Furthermore, other therapeutic moieties may benefit from selective targeting and improved pharmacokinetic characteristics (i.e. in υίυο stability, cellular uptake (for example, lipophilicity), etc.) Fatty acids have been used to improve selectivity of drugs for their target tissues (for example, US 7,235,583; US 8,552,054; US 6,090,800; US 2012/0264810; US 2013/0330401). Fatty acids previously have been conjugated with drugs to help the drugs as conjugates cross the blood brain barrier (for example, US 4,933,324). Lipid molecules, including fatty acids or fatty amines, also have been conjugated with drugs to render the conjugates more lipophilic than the unconjugated drugs. Fatty amines are lipid molecules that terminate in an amino group (unlike fatty acids which terminate in a carboxylic acid group). Fatty acids are naturally occurring whereas fatty amines are not a common tissue component in animals. SUMMARY This invention is based in part on the fortuitous discovery that conjugates of therapeutic compounds and lipid moieties described herein show improved selective delivery. Furthermore, some of the conjugates of therapeutic compounds and lipid moieties show improved loading, reduced toxicity, improved targeting, improved in vivo potency or improved vivo stability. In accordance with one embodiment, there is provided a compound, the compound having the structure of Formula I: Formula I wherein: 1 R may be H, a linear, branched or cyclic Ci-C20 al y , optionally having one or more cis or trans C=C double bonds of E or Z geometry, wherein the Ci-Cio alkyl may optionally be substituted with F, CI, Br, I, OH, C1-C6 O-Alkyl, or -C O-Acyl, wherein the G -C6 O-Alkyl or the G -C6 O-Acyl may optionally be substituted with F, Cl, Br, I or OH; 2 R may be H, a G-Ce primary amine, G-Ce secondary amine or a C -C6 tertiary amine, a linear, branched or cyclic G-Go alkyl, optionally having one or more cis or trans C=C double bonds of E or Z geometry, wherein the Ci-Cio alkyl may optionally be substituted with F, Cl, Br, I, OH, G -C6 O-Alkyl, or C,-C O-Acyl, wherein the G -C6 O-Alkyl or the Ci-Ce O-Acyl may optionally be substituted with F, Cl, Br, I or OH; X1 may be O, S or NR 0 , wherein R10 may be H, a linear, branched or cyclic G-Go alkyl, optionally having one or more cis or trans C=C double bonds of E or Z geometry, wherein the C - C alkyl may optionally be substituted with F, Cl, Br, I, OH, C - C O-Alkyl, or Ci-Ce O-Acyl, wherein the G-Ce O-Alkyl or the G -C6 O-Acyl may optionally be substituted with F, Cl, Br, I or OH; o A — Z — Y - M A — Y - M -C^ G1I may be G G G 1 or ' G 1 ; wherein: A-ZG I may be a drug moiety, wherein Z I may be an electronegative atom selected from N and O, such that the drug moiety was derived from a drug having the formula A - ZGI- H when GI has lost an H to covalently bind to Y GI; 2 11 11 Y may be CH , O, S, C(=0), P0 3 , or NR wherein R may be H, a linear, branched or cyclic -C o alkyl, optionally having one or more cis or trans C=C double bonds of E or Z geometry, wherein the C -C10 alkyl may optionally be substituted with F, CI, Br, I, OH, G -C O-Alkyl, or G -C6 O-Acyl, and wherein the G -C O-Alkyl or the G -C6 O- Acyl may optionally be substituted with F, CI, Br, I or OH; M GI may be 0-12 atoms selected from C, N, O or S, wherein two or more C atoms optionally have one or more cis or trans C=C double bonds of E or Z geometry and wherein the C atoms may optionally be substituted with F, CI, Br, I, OH, =0, G -Ce O-Alkyl, C,-C O-Acyl or G-C6 S-Alkyl; 1 alternatively, G may be H, « or R 3-C(=0)-, wherein R may be C -C2 linear or branched carbon chain, optionally having one or more, cis or trans C=C double bonds and optionally substituted with OH; alternatively, G may be an ionizable moiety selected from: -COOH; -NH +; -OH; - + + 8 8 NH3 ; -NH ;-SH; -NMe2; -NHMe; and R wherein R' may be C,-C10 alkyl optionally + + + substituted with one or more of COOH, -NH , -OH, -NH3 , -NH ,-SH, -NMe2, -NHMe; ni may be O, l , 2 , 3, 4 or 5; R may be H, a linear, branched or cyclic G-Go alkyl, optionally having one or more cis or trans C=C double bonds of E or Z geometry, wherein the G-G 0 alkyl may optionally be substituted with F, CI, Br, I, OH, -C O-Alkyl, or G-Ce O-Acyl, wherein the G-C6 O-Alkyl or the G -C O-Acyl may optionally be substituted with F, CI, Br, I or OH; 4 R may be H, a linear, branched or cyclic G-G 0 alkyl, optionally having one or more cis or trans C=C double bonds of E or Z geometry, wherein the G-G 0 alkyl may optionally be substituted with F, CI, Br, I, OH, G-C6 O-Alkyl, or G -Ce O-Acyl, wherein the G-C O-Alkyl or the G-C6 O-Acyl may optionally be substituted with F, CI, Br, I or OH; n2 may be o, l, 2 , 3, 4 or 5 ; R may be H, -C6 primary amine, -C6 secondary amine or G -Ce tertiary amine, a linear, branched or cyclic G-G 0 alkyl, optionally having one or more cis or trans C=C double bonds of E or Z geometry, wherein the G-G 0 alkyl may optionally be substituted with F, CI, Br, I, OH, G -C6 O-Alkyl, or G -C6 O-Acyl, wherein the G -C6 O-Alkyl or the G - C 6 O-Acyl may optionally be substituted with F, CI, Br, I or OH; 2 1 14 X may be 0 , S or NR , wherein R may be H, a linear, branched or cyclic G-G 0 alkyl, optionally having one or more cis or trans C=C double bonds of E or Z geometry, wherein the G-G , alkyl may optionally be substituted with F, CI, Br, I, OH, -Ce O-Alkyl, or G-Ce O-Acyl, wherein the G-Ce O-Alkyl or the -C O-Acyl may optionally be substituted with F, CI, Br, I or OH; O I I A |— Z 2—YG2 - Q2 A - Z Q2 G2 Q2 G is G or wherein: A-ZG may be a drug moiety, wherein ZG2 may be an electronegative atom selected from N and O, such that the drug moiety was derived from a drug having the formula A- ZG2-H when ZG2 has lost an H to covalently bind to Y G ; 2 11 YG may be CH2 0 , S, C(=0), P0 3 , or NR.
Recommended publications
  • Digitoxin-Induced Cytotoxicity in Cancer Cells Is Mediated Through Distinct Kinase and Interferon Signaling Networks
    Published OnlineFirst August 22, 2011; DOI: 10.1158/1535-7163.MCT-11-0421 Molecular Cancer Therapeutic Discovery Therapeutics Digitoxin-Induced Cytotoxicity in Cancer Cells Is Mediated through Distinct Kinase and Interferon Signaling Networks Ioannis Prassas1,2, George S. Karagiannis1,2, Ihor Batruch4, Apostolos Dimitromanolakis1,2, Alessandro Datti2,3,5, and Eleftherios P. Diamandis1,2,4 Abstract Cardiac glycosides (e.g., digoxin, digitoxin) constitute a diverse family of plant-derived sodium pump inhibitors that have been in clinical use for the treatment of heart-related diseases (congestive heart failure, atrial arrhythmia) for many years. Recently though, accumulating in vitro and in vivo evidence highlight potential anticancer properties of these compounds. Despite the fact that members of this family have advanced to clinical trial testing in cancer therapeutics, their cytotoxic mechanism is not yet elucidated. In this study, we investigated the cytotoxic properties of cardiac glycosides against a panel of pancreatic cancer cell lines, explored their apoptotic mechanism, and characterized the kinetics of cell death induced by these drugs. Furthermore, we deployed a high-throughput kinome screening approach and identified several kinases of the Na-K-ATPase-mediated signal transduction circuitry (epidermal growth factor receptor, Src, pkC, and mitogen-activated protein kinases) as important mediators downstream of cardiac glycoside cytotoxic action. To further extend our knowledge on their mode of action, we used mass-spectrometry–based quantitative proteomics (stable isotope labeling of amino acids in cell culture) coupled with bioinformatics to capture large-scale protein perturbations induced by a physiological dose of digitoxin in BxPC-3 pancreatic cancer cells and identified members of the interferon family as key regulators of the main protein/protein interactions downstream of digitoxin action.
    [Show full text]
  • Glycosides Pharmacognosy Dr
    GLYCOSIDES PHARMACOGNOSY DR. KIBOI Glycosides Glycosides • Glycosides consist of a sugar residue covalently bound to a different structure called the aglycone • The sugar residue is in its cyclic form and the point of attachment is the hydroxyl group of the hemiacetal function. The sugar moiety can be joined to the aglycone in various ways: 1.Oxygen (O-glycoside) 2.Sulphur (S-glycoside) 3.Nitrogen (N-glycoside) 4.Carbon ( Cglycoside) • α-Glycosides and β-glycosides are distinguished by the configuration of the hemiacetal hydroxyl group. • The majority of naturally-occurring glycosides are β-glycosides. • O-Glycosides can easily be cleaved into sugar and aglycone by hydrolysis with acids or enzymes. • Almost all plants that contain glycosides also contain enzymes that bring about their hydrolysis (glycosidases ). • Glycosides are usually soluble in water and in polar organic solvents, whereas aglycones are normally insoluble or only slightly soluble in water. • It is often very difficult to isolate intact glycosides because of their polar character. • Many important drugs are glycosides and their pharmacological effects are largely determined by the structure of the aglycone. • The term 'glycoside' is a very general one which embraces all the many and varied combinations of sugars and aglycones. • More precise terms are available to describe particular classes. Some of these terms refer to: 1.the sugar part of the molecule (e.g. glucoside ). 2.the aglycone (e.g. anthraquinone). 3.the physical or pharmacological property (e.g. saponin “soap-like ”, cardiac “having an action on the heart ”). • Modern system of naming glycosides uses the termination '-oside' (e.g. sennoside). • Although glycosides form a natural group in that they all contain a sugar unit, the aglycones are of such varied nature and complexity that glycosides vary very much in their physical and chemical properties and in their pharmacological action.
    [Show full text]
  • Chemistry, Spectroscopic Characteristics and Biological Activity of Natural Occurring Cardiac Glycosides
    IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) ISSN: 2455-264X, Volume 2, Issue 6 Part: II (Sep. – Oct. 2016), PP 20-35 www.iosrjournals.org Chemistry, spectroscopic characteristics and biological activity of natural occurring cardiac glycosides Marzough Aziz DagerAlbalawi1* 1 Department of Chemistry, University college- Alwajh, University of Tabuk, Saudi Arabia Abstract:Cardiac glycosides are organic compounds containing two types namely Cardenolide and Bufadienolide. Cardiac glycosides are found in a diverse group of plants including Digitalis purpurea and Digitalis lanata (foxgloves), Nerium oleander (oleander),Thevetiaperuviana (yellow oleander), Convallariamajalis (lily of the valley), Urgineamaritima and Urgineaindica (squill), Strophanthusgratus (ouabain),Apocynumcannabinum (dogbane), and Cheiranthuscheiri (wallflower). In addition, the venom gland of cane toad (Bufomarinus) contains large quantities of a purported aphrodisiac substance that has resulted in cardiac glycoside poisoning.Therapeutic use of herbal cardiac glycosides continues to be a source of toxicity today. Recently, D.lanata was mistakenly substituted for plantain in herbal products marketed to cleanse the bowel; human toxicity resulted. Cardiac glycosides have been also found in Asian herbal products and have been a source of human toxicity.The most important use of Cardiac glycosides is its affects in treatment of cardiac failure and anticancer agent for several types of cancer. The therapeutic benefits of digitalis were first described by William Withering in 1785. Initially, digitalis was used to treat dropsy, which is an old term for edema. Subsequent investigations found that digitalis was most useful for edema that was caused by a weakened heart. Digitalis compounds have historically been used in the treatment of chronic heart failure owing to their cardiotonic effect.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,794,716 B2 Adair (45) Date of Patent: *Sep
    US007794,716 B2 (12) United States Patent (10) Patent No.: US 7,794,716 B2 Adair (45) Date of Patent: *Sep. 14, 2010 (54) ANTIBODY COMPOSITION AND PASSIVE Adair, C.D. et al. “Elevated Endoxin-Like Factor Complicating a MMUNIZATION AGAINST Multifetal Second Trimester Pregnancy: Treatment Digoxin-Binding PREGNANCY-INDUCED HYPERTENSION Immunoglobulin'. Am. J. Nephrol., 1996, vol. 16, pp. 529-531. Aizman, O. et al., “Ouabain, a steroid hormone that signals with slow (75) Inventor: Charles David Adair, Signal Mountain, calcium oscillations'. PNAS, 2001, vol.98, No. 23, pp. 13420-13424. TN (US) Amorium, M.M.R., et al., “Corticosteriod therapy for prevention of respiratory distress syndrome in severe preeclampsia'. Am. J. Obstet. (73) Assignee: Glenveigh Pharmaceuticals, LLC, Gyngol., 1999, vol. 180, No. 5, pp. 1283-1288. Chattanooga, TN (US) Bagrov, A. Y., et al., “Characterizatin of a Urinary Bufodienolide Na+, K+-ATPase Inhibitor in Patients. After Acute Myocardial Infarc (*) Notice: Subject to any disclaimer, the term of this tion'. Hypertension, 1998, vol. 31, pp. 1097-1 103. patent is extended or adjusted under 35 Ball, W. J. Jr. et al., “Isolation and Characterization of Human Monoclonal Antibodies to Digoxin'. The Journal of Immunology, U.S.C. 154(b) by 700 days. 1999, vol. 163, pp. 2291-2298. This patent is Subject to a terminal dis Butler, V. et al., “Digoxin-Specific Antibodies'. Proc. Natl. Acad. Sci. claimer. USA (Physiology), 1967, vol. 57, pp. 71-78. Dasgupta, A. et al., “Monitoring Free Digoxin Instead of Total Digoxin in Patients with Congestive Heart Failure and High Concen (21) Appl. No.: 11/317,378 trations of Dogoxin-like Immunoreactive Substances”.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Systemic Delivery of the Anticancer Agent Arenobufagin Using Polymeric Nanomicelles
    Journal name: International Journal of Nanomedicine Article Designation: Original Research Year: 2017 Volume: 12 International Journal of Nanomedicine Dovepress Running head verso: Yuan et al Running head recto: Systemic delivery of arenobufagin open access to scientific and medical research DOI: http://dx.doi.org/10.2147/IJN.S139128 Open Access Full Text Article ORIGINAL RESEARCH Systemic delivery of the anticancer agent arenobufagin using polymeric nanomicelles Xue Yuan1,2 Abstract: Arenobufagin (ABG) is a major active component of toad venom, a traditional Qian Xie1 Chinese medicine used for cancer therapy. However, poor aqueous solubility limits its Keyu Su1 pharmacological studies in vivo due to administration difficulties. In this study, we aimed to Zhijie Li3 develop a polymeric nanomicelle (PN) system to enhance the solubility of ABG for effective Dong Dong3 intravenous delivery. ABG-loaded PNs (ABG-PNs) were prepared with methoxy poly (ethylene Baojian Wu1,2 glycol)-block-poly (D,L-lactic-co-glycolic acid) (mPEG-PLGA) using the solvent-diffusion technique. The obtained ABG-PNs were 105 nm in size with a small polydispersity index of 1 Research Center for 0.08. The entrapment efficiency and drug loading were 71.9% and 4.58%, respectively. Cellular Biopharmaceutics and Pharmacokinetics, College of uptake of ABG-PNs was controlled by specific clathrin-mediated endocytosis. In addition, Pharmacy, 2Guangdong Province Key ABG-PNs showed improved drug pharmacokinetics with an increased area under the curve Laboratory of Pharmacodynamic value (a 1.73-fold increase) and a decreased elimination clearance (37.8% decrease). The Constituents of TCM and New Drugs Research, 3International Ocular nanomicelles showed increased drug concentrations in the liver and lung.
    [Show full text]
  • A Phytochemical Investigation of Two South African Plants: Strophanthus Speciosus and Eucomis Montana
    UNIVERSITY OF KWAZULU-NATAL A PHYTOCHEMICAL INVESTIGATION OF TWO SOUTH AFRICAN PLANTS WITH THE SCREENING OF EXTRACTIVES FOR BIOLOGICAL ACTIVITY By ANDREW BRUCE GALLAGHER B. Sc Honours (cum laude) (UKZN) Submitted in fulfilment of the requirements for the degree of Master of Science In the School of Biological and Conservation Science and The School of Chemistry University of KwaZulu-Natal, Howard College campus Durban South Africa 2006 ABSTRACT Two South African medicinal plants, Strophanthus speciosus and Eucomis montana, were investigated phytochemically. From Strophanthus speciosus a cardenolide, neritaloside, was isolated, whilst Eucomis montana yielded three homoisoflavanones, 3,9- dihydroeucomin, 4' -demethyl-3,9-dihydroeucomin, and 4' -demethyl-5-0-methyl-3,9- dihydroeucomin. The structures were elucidated on the basis of spectroscopic data. The homoisoflavanones were screened for anti-inflammatory activity usmg a chemiluminescent luminol assay, modified for microplate usage. All of the homoisoflavanones exhibited good inhibition of chemiluminescence, with ICso values for 3,9-dihydroeucomin, 4' -demethyl-3,9-dihydroeucomin, and 4' -demethyl-5-0-methyl-3,9- dihydroeucomin being 14mg/mL, 7 mg/mL, and 13mg/mL respectively. The ICso value of 4'-demethyl-3,9-dihydroeucomin compared favourably with the NSAID control (meloxicam), which had an ICso of 6mg/mL. Neritaloside was not screened for biological activity as the yield of 14.4mg was insufficient for the muscle-relaxant screen for which it was intended. An assay for antioxidant/free radical scavenging activity was also performed. All the compounds had excellent antioxidant/free radical scavenging activity, with percentage inhibition of the reaction being 92%, 96%, and 94% for 3,9-dihydroeucomin, 4'­ demethyl-3,9-dihydroeucomin, and 4'-demethyl-5-0-methyl-3,9-dihydroeucomin respectively at a concentration of 10mg/mL.
    [Show full text]
  • Eiichi Kimura, MD, Department of Internal Medicine, Nippon Medical
    Effect of Metildigoxin (ƒÀ-Methyldigoxin) on Congestive Heart Failure as Evaluated by Multiclinical Double Blind Study Eiichi Kimura,* M.D. and Akira SAKUMA,** Ph.D. In Collaboration with Mitsuo Miyahara, M.D. (Sapporo Medi- cal School, Sapporo), Tomohiro Kanazawa, M.D. (Akita Uni- versity School of Medicine, Akita), Masato Hayashi, M.D. (Hiraga General Hospital, Akita), Hirokazu Niitani, M.D. (Showa Uni- versity School of Medicine, Tokyo), Yoshitsugu Nohara, M.D. (Tokyo Medical College, Tokyo), Satoru Murao, M.D. (Faculty of Medicine, University of Tokyo, Tokyo), Kiyoshi Seki, M.D. (Toho University School of Medicine, Tokyo), Michita Kishimoto, M.D. (National Medical Center Hospital, Tokyo), Tsuneaki Sugi- moto, M.D. (Faculty of Medicine, Kanazawa University, Kana- zawa), Masao Takayasu, M.D. (National Kyoto Hospital, Kyoto), Hiroshi Saimyoji, M.D. (Faculty of Medicine, Kyoto University, Kyoto), Yasuharu Nimura, M.D. (Medical School, Osaka Uni- versity, Osaka), Tatsuya Tomomatsu, M.D. (Kobe University, School of Medicine, Kobe), and Junichi Mise, M.D. (Yamaguchi University, School of Medicine, Ube). SUMMARY The efficacy on congestive heart failure of metildigoxin (ƒÀ-methyl- digoxin, MD), a derivative of digoxin (DX), which had a good absorp- tion rate from digestive tract, was examined in a double blind study using a group comparison method. After achieving digitalization with oral MD or intravenous deslanoside in the non-blind manner, mainte- nance treatment was initiated and the effects of orally administered MD and DX were compared. MD was administered in 44 cases , DX in 42. The usefulness of the drug was evaluated after 2 weeks , taking into account the condition of the patient and the ease of administration .
    [Show full text]
  • Cardenolide Biosynthesis in Foxglove1
    Review 491 Cardenolide Biosynthesis in Foxglove1 W. Kreis2,k A. Hensel2, and U. Stuhlemmer2 1 Dedicated to Prof. Dr. Dieter He@ on the occasion of his 65th birthday 2 Friedrich-Alexander-Universität Erlangen, Institut für Botanik und Pharmazeutische Biologie, Erlangen, Germany Received: January 28, 1998; Accepted: March 28, 1998 Abstract: The article reviews the state of knowledge on the genuine cardiac glycosides present in Digitalis species have a biosynthesis of cardenolides in the genus Digitalis. It sum- terminal glucose: these cardenolides have been termed marizes studies with labelled and unlabelled precursors leading primary glycosides. After harvest or during the controlled to the formulation of the putative cardenolide pathway. Alter- fermentation of dried Digitalis leaves most of the primary native pathways of cardenolide biosynthesis are discussed as glycosides are hydrolyzed to yield the so-called secondary well. Special emphasis is laid on enzymes involved in either glycosides. Digitalis cardenolides are valuable drugs in the pregnane metabolism or the modification of cardenolides. medication of patients suffering from cardiac insufficiency. In About 20 enzymes which are probably involved in cardenolide therapy genuine glycosides, such as the lanatosides, are used formation have been described "downstream" of cholesterol, as well as compounds obtained after enzymatic hydrolysis including various reductases, oxido-reductases, glycosyl trans- and chemical saponification, for example digitoxin (31) and ferases and glycosidases as well as acyl transferases, acyl es- digoxin, or chemical modification of digoxin, such as metildig- terases and P450 enzymes. Evidence is accumulating that car- oxin. Digitalis lanata Ehrh. and D.purpurea L are the major denolides are not assembled on one straight conveyor belt but sources of the cardiac glycosides most frequently employed in instead are formed via a complex multidimensional metabolic medicine.
    [Show full text]
  • Plant Toxins: Poison Or Therapeutic?
    COLUMNS CHIMIA 2020, 74, No. 5 421 doi:10.2533/chimia.2020.421 Chimia 74 (2020) 421–422 © Swiss Chemical Society Chemical Education A CHIMIA Column Topics for Teaching: Chemistry in Nature Plant Toxins: Poison or Therapeutic? Catherine E. Housecroft* *Correspondence: Prof. C. E. Housecroft, E-mail: [email protected], Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Abstract: Many plants that are classed as poisonous also have therapeutic uses, and this is illustrated using members of the Drimia and Digitalis genera which are sources of cardiac glyco- sides. Keywords: Cardiac glycoside · Education · Plants · Stereochemistry · Toxins Earlier in this series of Chemical Education Columns, we in- troduced glycosides when describing anthocyanins.[1] In the pres- ent article, we focus on cardiac glycosides which are compounds Fig. 1. Digitalis lutea (small yellow foxglove). Edwin C. Constable 2019 that stimulate the heart. Scheme 1 shows the basic building blocks of the two main classes of cardiac glycosides: bufadienolides and altissima (tall white squill, Fig. 2) which is widely distributed in cardenolides. The prefix card- stems from the Greek for heart the savanna and open scrubland of sub-Saharan Africa. D. mar- (καρδια, kardiá), while buf- originates from the fact that toads itima (sea, maritime or red squill) grows in coastal regions of (genus Bufo) are one of the major sources of these compounds.[2] the Mediterranean, and its medicinal properties were described The ending -enolide refers to the lactone unit (a cyclic carboxylic as early as 1500 BCE. In the Indian subcontinent, the expecto- ester, top right in each structure in Scheme 1).
    [Show full text]
  • World Journal of Pharmaceutical Research Pradhan Et Al
    World Journal of Pharmaceutical Research Pradhan et al. World Journal of Pharmaceutical SJIF ImpactResearch Factor 6.805 Volume 5, Issue 8, 426-443. Review Article ISSN 2277– 7105 ` BUFO SKIN-SECRETIONS ARE SOURCES OF PHARMACOLOGICALLY AND THERAPEUTICALLY SIGNIFICANT COMPOUNDS Dr. Bishnu Charan Pradhan*1 and Shakti Prasad Pradhan2 1Dept. of Zoology Angul Mahila Mahavidyalaya, Angul, Odisha, India. 759122. 2Dept. of Pharmacy. Utkal University, Vanivihar, Bhubaneswar, Odisha, India. ABSTRACT Article Received on 07 June 2016, Amphibians have been occupying a wide range of habitats since they Revised on 28 June 2016, evolved around 363 million-years-ago. Along with legs and lungs, skin Accepted on 18 July 2016 DOI: 10.20959/wjpr20168-6752 played an important role in survival of amphibians and made it possible for them to exploit diverse ecological conditions. Amphibian skin not only helps in avoiding desiccation but also helps in imposing *Corresponding Author Dr. Bishnu Charan defense against predators as well as pathogens. Amphibian skin Pradhan possesses wide variety of chemical compounds, which have potential Dept. of Zoology Angul significance in pharmacology and therapeutics. Toads especially those Mahila Mahavidyalaya, belonging to genus Bufo, are outstanding source of useful granular- Angul, Odisha, India. 759122. gland secretions. Compounds derived from toad skin-secretions can be used as analgesics, painkillers and as medicine against cardiac- problems, multi-drug resistant bacteria, HIV and Cancer. KEYWORDS: Bufadienolides, pharmacology, Bufo skin-secretions, toxins. INTRODUCTION Amphibians started trolling the landmasses of earth about 363 million-years-ago, with Acanthostega and Ichthyostega probably being the earliest of known amphibians (Evans[20] et al 1998). Fossil records elucidate that ancestors of modern amphibians like Frogs, Toads, Caecilians and Salamanders probably evolved about 200 million years ago during the Triassic period.
    [Show full text]
  • Quo Vadis Cardiac Glycoside Research?
    toxins Review Quo vadis Cardiac Glycoside Research? Jiˇrí Bejˇcek 1, Michal Jurášek 2 , VojtˇechSpiwok 1 and Silvie Rimpelová 1,* 1 Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6, Czech Republic; [email protected] (J.B.); [email protected] (V.S.) 2 Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 3, Prague 6, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-220-444-360 Abstract: AbstractCardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG’s toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG’s toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations.
    [Show full text]