Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Heart Attack/Coronary Infarct

Total Page:16

File Type:pdf, Size:1020Kb

Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Heart Attack/Coronary Infarct Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Heart Attack/Coronary Infarct Chemical Activity Count (+)-ADLUMINE 1 (+)-ALPHA-VINIFERIN 1 (+)-AROMOLINE 1 (+)-BORNYL-ISOVALERATE 1 (+)-CATECHIN 5 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALLOCATECHIN 1 (+)-HERNANDEZINE 2 (+)-ISOCORYDINE 2 (+)-PRAERUPTORUM-A 1 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ACETOXYCOLLININ 1 (-)-ALPHA-BISABOLOL 1 (-)-APOGLAZIOVINE 1 (-)-ARGEMONINE 1 (-)-BETONICINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 2 (-)-BORNYL-FERULATE 2 (-)-BORNYL-P-COUMARATE 2 (-)-CANADINE 1 (-)-DICENTRINE 1 (-)-EPICATECHIN 6 (-)-EPICATECHIN-3-O-GALLATE 1 Chemical Activity Count (-)-EPIGALLOCATECHIN 1 (-)-EPIGALLOCATECHIN-3-O-GALLATE 2 (-)-EPIGALLOCATECHIN-GALLATE 3 (-)-HYDROXYJASMONIC-ACID 1 (-)-N-(1'-DEOXY-1'-D-FRUCTOPYRANOSYL)-S-ALLYL-L-CYSTEINE-SULFOXIDE 1 (-)-SPARTEINE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 2 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 2 0-METHYLCORYPALLINE 2 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 1,7-BIS(4-HYDROXY-3-METHOXYPHENYL)-1,6-HEPTADIEN-3,5-DIONE 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 3 1-(METHYLSULFINYL)-PROPYL-METHYL-DISULFIDE 1 1-ETHYL-BETA-CARBOLINE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 2 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 10-GINGEROL 1 12-(4'-METHOXYPHENYL)-DAURICINE 1 12-METHOXYDIHYDROCOSTULONIDE 3 12-O-ACETYL-DAURICINE 1 13',II8-BIAPIGENIN 2 2 Chemical Activity Count 13-HYDROXYLUPANINE 2 13-OXYINGENOL-ESTER 1 14-ACETOXYCEDROL 2 14-O-ACETYL-ACOVENIDOSE-C 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 16-HYDROXYINGENOL-ESTER 1 2'-O-GLYCOSYLVITEXIN 1 2,3,7-TRIHYDROXY-5-(3,4-DIHYDROXY-E-STYRYL)-6,7,8,9-TETRAHYDRO-5H- 1 BENZOCYCLOHEPTENE 2,6-DIMETHOXYPHENOL 1 2-(3',4-DIPHENYL)-ETHANOL 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-CAFFEOYL-OXY-3-{2-(4-HYDROXYBENZYL)-4,5-DIHYDROXY}PHENYLPROPIONIC-ACID 1 2-METHYLBUT-3-ENE-2-OL 1 2-THIOURACIL 1 2-VINYL-4H-1,3-DITHIIN 3 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 2 3',4',5,7-TETRAHYDROXYFLAVONE 1 3,3'-DIMETHYLELLAGIC-ACID 2 3,4,5-TRI-O-CAFFEOYLQUINIC-ACID 1 3,4-DICAFFEOYL-QUINIC-ACID 1 3,4-DIHYDROXYACETOPHENONE 2 3,4-DIHYDROXYBENZOATE 1 3,4-DIHYDROXYBENZOIC-ACID 1 3,4-HYDROXYCINNAMIC-ACID 1 3 Chemical Activity Count 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 1 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID 1 3,5,4'-TRIHYDROXY-6,7-METHYLENEDIOXY-3,O-BETA-D-GLUCOPYRANOSIDE 1 3,5,8,3',4'-PENTAHYDROXYFLAVONE 1 3,5-DI-O-CAFFEOYLQUINIC-ACID 1 3,5-DICAFFEOYL-QUINIC-ACID 1 3,7,8,2',5'-PENTAHYDROXYFLAVONE 1 3-ACETYLACONITINE 1 3-ALPHA,15-DIHYDROXY-LABDA-8(17)-13E-DIENE 1 3-ALPHA-DIHYDROCADAMBINE 1 3-ALPHA-HYDROXY-12,13E-BIFORMENE 1 3-ALPHA-HYDROXYMANOOL 1 3-BETA-23,28-TRIHYDROXY-12-OLEANENE-23-CAFFEATE 1 3-BETA-23,28-TRIHYDROXY-12-OLEANENE-3-BETA-CAFFEATE 1 3-BETA-HYDROXY-2,3-DIHYDROWITHANOLIDE-F 2 3-BETA-HYDROXYPARTHENOLIDE 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-20(29)-LUPEN-28-OIC-ACID 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-OLEAN-12-EN-28-OIC-ACID 1 3-BETA-TRANS-(3,4-DIHYDROXYCINNAMOYLOXY)-OLEAN-18-EN-28-OIC-ACID 1 3-HYDROXY-FLAVONE 1 3-N-BUTYL-PHTHALIDE 5 3-O-ACETYLOLEANOLIC-ACID 1 3-O-CAFFEOYLQUINIC-ACID 1 3-OXO-11-ALPHA-HYDROXYOLEAN-12-ENE-30-OIC-ACID 1 3-OXO-11-ALPHA-METHOXYOLEAN-12-ENE-30-OIC-ACID 1 3-OXO-OLEAN-9(11),12-DIENE-30-OIC-ACID 1 4,5-DI-O-CAFFEOYLQUINIC-ACID 1 4 Chemical Activity Count 4-ACETYLARABINOSYL-ELLAGIC-ACID 1 4-ACETYLXYLOSYL-ELLAGIC-ACID 1 4-ALLYL-PYROCATECHOL 1 4-AMINO-4-CARBOXYCHROMAN-2-ONE 1 4-ARABINOSYL-ELLAGIC-ACID 1 4-CINNAMOYLMUSSATIOSIDE 1 4-DIMETHYLCAFFEOYLMUSSATIOSIDE 1 4-HYDROXY-TRITRIACONTANE-16,18-DIONE 1 4-KETOPINORESINOL 1 4-O-CAFFEOYLQUINIC-ACID 1 4-P-METHOXYCINNAMOYLMUSSATIOSIDE 1 4-TERPINEOL 2 4-VINYL-GUAIACOL 2 5,6-DEHYDROKAWAIN 1 5,6-DI-C-GLUCOSYLAPIGENIN 1 5,7-DIHYDROXYCOUMARIN-7-METHYL-ETHER 1 5,7-DIMETHOXYFLAVONE 1 5,8-DIHYDROXYBENZOPYRANONE 1 5-DEOXYINGENOL-ESTER 1 5-HYDROXY-8-O-BETA-D-GLUCOPYRANOSYL-BENZOPYRANONE 1 5-METHOXY-N,N-DIMETHYLTRYPTAMINE 1 5-O-BETA-D-GLUCOPYRANOSYL-3-1-(4-PHENYL)-DECANE 1 5-O-CAFFEOYLQUINIC-ACID 1 6'-O-ACETYL-DAIDZIN 1 6'-O-ACETYL-GENISTIN 1 6,7,4'-TRIHYDROXYISOFLAVAN 1 6,7,4'-TRIHYDROXYISOFLAVANONE 1 5 Chemical Activity Count 6,7,4'-TRIHYDROXYISOFLAVONE 1 6,7-DI-4'-METHOXYISOFLAVAN 1 6,7-DI-4'-METHOXYISOFLAVANONE 1 6,7-DI-4'-METHOXYISOFLAVONE 1 6,7-DIHYDROXY-4'-METHOXYISOFLAVAN 1 6,7-DIHYDROXY-4'-METHOXYISOFLAVANONE 1 6,7-DIHYDROXY-4'-METHOXYISOFLAVONE 1 6,7-DIHYDROXYCOUMARIN 1 6,7-DIMETHYLAESCULETIN 1 6,7-DIMETHYLESCULETIN 1 6-ACETONYLDIHYDRONITIDINE 1 6-DEHYDROGINGERDIONE 1 6-DEOXYJACAREUBIN 1 6-GINGERDIOL 1 6-GINGERDIONE 1 6-GINGEROL 5 6-METHOXY-BENZOLINONE 1 6-METHOXYBENZOXAZOLINONE 1 6-O-(2''-ACETYL-3'',4''-O-DI-P-METHOXYCINNAMOYL-ALPHA-L-RHAMNOPYRANOSYL)-CATALPOL 1 6-O-(4''-ACETYL-2'',3''-O-DI-P-METHOXYCINNAMOYL-ALPHA-L-RHAMNOPYRANOSYL)-CATALPOL 1 6-O-ANGELOYLPLENOLIN 1 6-SHOGAOL 5 7,8-DIHYDROXYFLAVONE 1 7-METHOXYCOUMARIN 2 7-N-BUTOXY-3,2',5'-TRIHYDROXYFLAVONE 1 7-[3-(3,4-DIHYDROXY-4-HYDROXYMETHYL-TETRAHYDRO-FURAN-2-YLOXY)-4,5-DIHYDROXY-6- 1 HYDROXYMETHYL-TETRAHYDRO-PYRAN-2-YLOXY]...
Recommended publications
  • Effect of Bioactive Compound of Aronia Melanocarpa on Cardiovascular System in Experimental Hypertension
    Hindawi Oxidative Medicine and Cellular Longevity Volume 2017, Article ID 8156594, 8 pages https://doi.org/10.1155/2017/8156594 Research Article Effect of Bioactive Compound of Aronia melanocarpa on Cardiovascular System in Experimental Hypertension 1 1 1,2 1 Martina Cebova, Jana Klimentova, Pavol Janega, and Olga Pechanova 1Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia 2Department of Pathology, Faculty of Medicine, Comenius University, Bratislava, Slovakia Correspondence should be addressed to Martina Cebova; [email protected] Received 4 August 2017; Revised 10 October 2017; Accepted 18 October 2017; Published 30 November 2017 Academic Editor: Victor M. Victor Copyright © 2017 Martina Cebova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aronia melanocarpa has attracted scientific interest due to its dense contents of different polyphenols. We aimed to analyse effects of Aronia melanocarpa (AME) extract on blood pressure (BP), lipid peroxidation, cytokine level, total NOS activity in the left ventricle (LV), and aorta of L-NAME-induced hypertensive rats. 12-week-old male WKY rats were assigned to the control group and groups treated with AME extract (57.90 mg/kg/day), L-NAME (40 mg/kg/day), or combination of L-NAME (40 mg/kg/day) and AME (57.90 mg/kg/day) in tap water for 3 weeks. NOS activity, eNOS protein expression, and conjugated diene (CD) concentration were determined in the LV and aorta. After 3 weeks of L-NAME treatment, BP was increased by 28% and concomitant treatment with AME reduced it by 21%.
    [Show full text]
  • A Phytochemical Investigation of Two South African Plants: Strophanthus Speciosus and Eucomis Montana
    UNIVERSITY OF KWAZULU-NATAL A PHYTOCHEMICAL INVESTIGATION OF TWO SOUTH AFRICAN PLANTS WITH THE SCREENING OF EXTRACTIVES FOR BIOLOGICAL ACTIVITY By ANDREW BRUCE GALLAGHER B. Sc Honours (cum laude) (UKZN) Submitted in fulfilment of the requirements for the degree of Master of Science In the School of Biological and Conservation Science and The School of Chemistry University of KwaZulu-Natal, Howard College campus Durban South Africa 2006 ABSTRACT Two South African medicinal plants, Strophanthus speciosus and Eucomis montana, were investigated phytochemically. From Strophanthus speciosus a cardenolide, neritaloside, was isolated, whilst Eucomis montana yielded three homoisoflavanones, 3,9- dihydroeucomin, 4' -demethyl-3,9-dihydroeucomin, and 4' -demethyl-5-0-methyl-3,9- dihydroeucomin. The structures were elucidated on the basis of spectroscopic data. The homoisoflavanones were screened for anti-inflammatory activity usmg a chemiluminescent luminol assay, modified for microplate usage. All of the homoisoflavanones exhibited good inhibition of chemiluminescence, with ICso values for 3,9-dihydroeucomin, 4' -demethyl-3,9-dihydroeucomin, and 4' -demethyl-5-0-methyl-3,9- dihydroeucomin being 14mg/mL, 7 mg/mL, and 13mg/mL respectively. The ICso value of 4'-demethyl-3,9-dihydroeucomin compared favourably with the NSAID control (meloxicam), which had an ICso of 6mg/mL. Neritaloside was not screened for biological activity as the yield of 14.4mg was insufficient for the muscle-relaxant screen for which it was intended. An assay for antioxidant/free radical scavenging activity was also performed. All the compounds had excellent antioxidant/free radical scavenging activity, with percentage inhibition of the reaction being 92%, 96%, and 94% for 3,9-dihydroeucomin, 4'­ demethyl-3,9-dihydroeucomin, and 4'-demethyl-5-0-methyl-3,9-dihydroeucomin respectively at a concentration of 10mg/mL.
    [Show full text]
  • Relationships Between the Content of Phenolic Compounds and the Antioxidant Activity of Polish Honey Varieties As a Tool for Botanical Discrimination
    molecules Article Relationships between the Content of Phenolic Compounds and the Antioxidant Activity of Polish Honey Varieties as a Tool for Botanical Discrimination Monika K˛edzierska-Matysek 1, Małgorzata Stryjecka 2, Anna Teter 1 , Piotr Skałecki 1, Piotr Domaradzki 1 and Mariusz Florek 1,* 1 Institute of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; [email protected] (M.K.-M.); [email protected] (A.T.); [email protected] (P.S.); [email protected] (P.D.) 2 Institute of Agricultural Sciences, State School of Higher Education in Chełm, Pocztowa 54, 22-100 Chełm, Poland; [email protected] * Correspondence: mariusz.fl[email protected]; Tel.: +48-81-4456621 Abstract: The study compared the content of eight phenolic acids and four flavonoids and the antioxidant activity of six Polish varietal honeys. An attempt was also made to determine the correlations between the antioxidant parameters of the honeys and their polyphenol profile using principal component analysis. Total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (ABTS) and reduction capacity (FRAP) were determined spectrophotometrically, and the phenolic compounds were determined using high-performance liquid chromatography (HPLC). The buckwheat honeys showed the strongest antioxidant activity, most likely because they had the highest Citation: K˛edzierska-Matysek,M.; concentrations of total phenols, total flavonoids, p-hydroxybenzoic acid, caffeic acid, p-coumaric acid, Stryjecka, M.; Teter, A.; Skałecki, P.; vanillic acid and chrysin. The principal component analysis (PCA) of the data showed significant Domaradzki, P.; Florek, M.
    [Show full text]
  • Bufadienolides and Their Medicinal Utility: a Review
    International Journal of Pharmacy and Pharmaceutical Sciences Academic Sciences ISSN- 0975-1491 Vol 5, Issue 4, 2013 Review Article BUFADIENOLIDES AND THEIR MEDICINAL UTILITY: A REVIEW *ANJOO KAMBOJ, AARTI RATHOUR, MANDEEP KAUR Chandigarh College of Pharmacy, Landran, Mohali (Pb), India. Email: [email protected] Received: 09 Jul 2013, Revised and Accepted: 14 Aug 2013 ABSTRACT Bufadienolides are a type of cardiac glycoside originally isolated from the traditional Chinese drug Chan’Su which increases the contractile force of the heart by inhibiting the enzyme Na+/K+–ATPase. They also show toxic activities to livestock. They are widely used in traditional remedies for the treatment of several ailments, such as infections, rheumatism, inflammation, disorders associated with the central nervous system, as antineoplastic and anticancer component. Structural changes in functionality could significantly alter their cytotoxic activities. The novel oxy-functionalized derivatives of bufalin obtained could provide new platforms for combinatorial synthesis and other further investigations for the development of new bufadienolides antitumor drugs. In this review, naturally occurring bufadienolides which are isolated from both plant and animal sources are reviewed and compiled with respect to their structural changes and medicinal utility. Keywords: Bufadienolides, Cell growth inhibitory activity, Antitumor drugs, Cardenolides, Bufalin. INTRODUCTION dysfunction. Bufadienolides are a new type of natural steroids with potent antitumor activities, originally isolated from the traditional Bufadienolides are C-24 steroids; its characteristic structural feature Chinese drug Chan’Su [2-4]. They have been reported to exhibit is a doubly unsaturated six membered lactone ring having a 2- significant inhibitory activities against human myeloid leukemia pyrone group attached at the C-17β position of the cells (K562, U937, ML1, HL60), human hepatoma cells (SMMC7221), perhydrophenanthrene nucleus.
    [Show full text]
  • WO 2018/218208 Al 29 November 2018 (29.11.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/218208 Al 29 November 2018 (29.11.2018) W !P O PCT (51) International Patent Classification: Fabio; c/o Bruin Biosciences, Inc., 10225 Barnes Canyon A61K 31/00 (2006.01) A61K 47/00 (2006.01) Road, Suite A104, San Diego, California 92121-2734 (US). BEATON, Graham; c/o Bruin Biosciences, Inc., 10225 (21) International Application Number: Barnes Canyon Road, Suite A104, San Diego, California PCT/US20 18/034744 92121-2734 (US). RAVULA, Satheesh; c/o Bruin Bio (22) International Filing Date: sciences, Inc., 10225 Barnes Canyon Road, Suite A l 04, San 25 May 2018 (25.05.2018) Diego, Kansas 92121-2734 (US). (25) Filing Language: English (74) Agent: MALLON, Joseph J.; 2040 Main Street, Four teenth Floor, Irvine, California 92614 (US). (26) Publication Langi English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 62/5 11,895 26 May 2017 (26.05.2017) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 62/5 11,898 26 May 2017 (26.05.2017) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (71) Applicants: BRUIN BIOSCIENCES, INC. [US/US]; DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 10225 Barnes Canyon Road, Suite A104, San Diego, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, California 92121-2734 (US).
    [Show full text]
  • WO 2011/036557 Al 31 March 2011 (31.03.2011) PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2011/036557 Al 31 March 2011 (31.03.2011) PCT (51) International Patent Classification: Vancouver, British Columbia V6T 1Z1 (CA). C08G 65/335 (2006.01) CI2N 15/87 (2006.01) ROBERGE, Michel [CA/CA]; 4228 West 10th Avenue, A61K 47/22 (2006.01) C12N 15/88 (2006.01) Vancouver, British Columbia V6R 2H4 (CA). CULLIS, A61K 47/34 (2006.01) A61K 31/713 (2006.01) Pieter, R. [CA/CA]; 3732 West 1st Avenue, Vancouver, A61K 9/127 (2006.01) C07J 7/00 (2006.01) British Columbia V6R 1H4 (CA). C07D 213/74 (2006.01) C07J 41/00 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/IB20 10/0025 18 AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (22) International Filing Date: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 22 September 2010 (22.09.2010) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (25) Filing Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (26) Publication Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (30) Priority Data: SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/277,306 22 September 2009 (22.09.2009) US TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Influence of the Growing Conditions on the Flavonoids and Phenolic Acids
    Influence of the growing conditions on the flavonoids and phenolic acids accumulation in amaranth (Amaranthus hypochondriacus L.) leaves Influencia de las condiciones de crecimiento en la acumulación de flavonoids y ácidos fenólicos en hojas de amaranto (Amaranthus hypochondriacus L.) Ana P. Barba de la Rosa1 , Antonio de León-Rodríguez1 , Bente Laursen2, and Inge S. Fomsgaard2,‡ 1 Instituto Potosino de Investigación Científica y Tecnológica (IPICYT). Camino a la Presa San José 2055, Col. Lomas 4 sección. 78216, San Luis Potosí, San Luis Potosí, México. 2 Aarhus University, Faculty of Science and Technology, Department of Agroecology. AU Flakkebjerg Forsøgsvej 1 4200 Slagelse, Denmark. ‡ Corresponding author ([email protected]) SUMMARY RESUMEN Phytochemicals or phenolic compounds are Los f itoquímicos o compuestos fenólicos son important natural bioactive molecules that plants importantes moléculas bioactivas naturales que las accumulate in response to environmental conditions plantas acumulan en respuesta a las condiciones and may exert benef icial effects on health by protecting ambientales y que pueden ejercen efectos benéf icos humans against many diseases. The aim of this work para la salud protegiendo a los humanos de muchas was to analyze the influence of biotic and abiotic enfermedades. El objetivo de este trabajo fue analizar stress on the accumulation of flavonoids and phenolic la influencia del estrés biótico y abiótico en la acids on leaves of two cultivars of Amaranthus acumulación de flavonoides y ácidos fenólicos en las hypochondriacus, which are differentiated by the colour hojas de dos cultivares de Amaranthus hypochondriacus of their leaves (red or green). Phenolic compounds diferenciadas por el color de sus hojas (rojas y verdes).
    [Show full text]
  • Agastache Rugosa Alleviates the Multi-Hit Effect on Hepatic Lipid Metabolism, Infammation and Oxidative Stress During Nonalcoholic Fatty Liver Disease
    Agastache rugosa alleviates the multi-hit effect on hepatic lipid metabolism, inammation and oxidative stress during nonalcoholic fatty liver disease Yizhe Cui Heilongjiang Bayi Agricultural University https://orcid.org/0000-0002-7877-8328 Renxu Chang Heilongjiang Bayi Agricultural University Qiuju Wang Heilongjiang Bayi Agricultural University Yusheng Liang University of Illinois at Urbana-Champaign Juan J Loor University of Illinois at Urbana-Champaign Chuang Xu ( [email protected] ) Heilongjiang Bayi Agricultural University Research Keywords: NAFLD, Agastache rugosa, mice, AML12 cells, multi-targets Posted Date: April 21st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-21957/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease, and has high rates of morbidity and mortality worldwide. Agastache rugosa (AR) possesses unique anti-oxidant, anti‐inammatory and anti-atherosclerosis characteristics. Methods To investigate the effects and the underlying mechanism of AR on NAFLD, we fed mice a high-fat diet (HFD) to establish NAFLD model of mice in vivo experiment and induced lipidosis in AML12 hepatocytes through a challenge with free fatty acids (FFA) in vitro. The contents of total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in liver homogenates were measured. Pathological changes in liver tissue were evaluated by HE staining. Oil red O staining was used to determine degree of lipid accumulation in liver tissue, and Western blot was used to detect abundance of inammation-, lipid metabolism- and endoplasmic reticulum stress-related proteins.
    [Show full text]
  • Journal of the Taiwan Institute of Chemical Engineers 42 (2011) 608–615
    Journal of the Taiwan Institute of Chemical Engineers 42 (2011) 608–615 Contents lists available at ScienceDirect Journal of the Taiwan Institute of Chemical Engineers journal homepage: www.elsevier.com/locate/jtice Correlation of solid solubilities for phenolic compounds and steroids in supercritical carbon dioxide using the solution model Chie-Shaan Su, Yen-Ming Chen, Yan-Ping Chen * Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan ARTICLE INFO ABSTRACT Article history: The solid solubilities of phenolic compounds and steroids in supercritical carbon dioxide were correlated in Received 19 June 2010 this study using the solution model in its dimensionless form. The molar volume of solid solutes in Received in revised form 16 November 2010 supercritical carbon dioxide (V2) was taken as an adjustable parameter in this solution model. Their values Accepted 26 November 2010 for various solid solutes were determined from experimental solubility data at various temperatures and Available online 26 January 2011 pressures. The V2 parameters were well correlated with the densities of supercritical carbon dioxide. This correlation was further generalized to predict the solubility of complex solid in supercritical carbon Keywords: dioxide. The applicability of the solution model was presented in this study for two categories of phenolic Solubility and steroid compounds. The solution model with less parameters yielded comparably satisfactory results Supercritical carbon dioxide Solution model to those from commonly used semi-empirical models. The solution model with generalized parameters Phenolic compounds also yielded acceptable predicted results for these complex compounds. Steroids ß 2010 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
    [Show full text]
  • Aristolochia Species and Aristolochic Acids
    B. ARISTOLOCHIA SPECIES AND ARISTOLOCHIC ACIDS 1. Exposure Data 1.1 Origin, type and botanical data Aristolochia species refers to several members of the genus (family Aristolochiaceae) (WHO, 1997) that are often found in traditional Chinese medicines, e.g., Aristolochia debilis, A. contorta, A. manshuriensis and A. fangchi, whose medicinal parts have distinct Chinese names. Details on these traditional drugs can be found in the Pharmacopoeia of the People’s Republic of China (Commission of the Ministry of Public Health, 2000), except where noted. This Pharmacopoeia includes the following Aristolochia species: Aristolochia species Part used Pin Yin Name Aristolochia fangchi Root Guang Fang Ji Aristolochia manshuriensis Stem Guan Mu Tong Aristolochia contorta Fruit Ma Dou Ling Aristolochia debilis Fruit Ma Dou Ling Aristolochia contorta Herb Tian Xian Teng Aristolochia debilis Herb Tian Xian Teng Aristolochia debilis Root Qing Mu Xiang In traditional Chinese medicine, Aristolochia species are also considered to be inter- changeable with other commonly used herbal ingredients and substitution of one plant species for another is established practice. Herbal ingredients are traded using their common Chinese Pin Yin name and this can lead to confusion. For example, the name ‘Fang Ji’ can be used to describe the roots of Aristolochia fangchi, Stephania tetrandra or Cocculus species (EMEA, 2000). Plant species supplied as ‘Fang Ji’ Pin Yin name Botanical name Part used Guang Fang Ji Aristolochia fangchi Root Han Fang Ji Stephania tetrandra Root Mu Fang Ji Cocculus trilobus Root Mu Fang Ji Cocculus orbiculatus Root –69– 70 IARC MONOGRAPHS VOLUME 82 Similarly, the name ‘Mu Tong’ is used to describe Aristolochia manshuriensis, and certain Clematis or Akebia species.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Heart Attack/Coronary Infarct
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Heart Attack/Coronary Infarct Chemical Activity Count (+)-ADLUMINE 1 (+)-ALPHA-VINIFERIN 1 (+)-AROMOLINE 1 (+)-BORNYL-ISOVALERATE 1 (+)-CATECHIN 5 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALLOCATECHIN 1 (+)-HERNANDEZINE 2 (+)-ISOCORYDINE 2 (+)-PRAERUPTORUM-A 1 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ACETOXYCOLLININ 1 (-)-ALPHA-BISABOLOL 1 (-)-APOGLAZIOVINE 1 (-)-ARGEMONINE 1 (-)-BETONICINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 2 (-)-BORNYL-FERULATE 2 (-)-BORNYL-P-COUMARATE 2 (-)-CANADINE 1 (-)-DICENTRINE 1 (-)-EPICATECHIN 6 (-)-EPICATECHIN-3-O-GALLATE 1 Chemical Activity Count (-)-EPIGALLOCATECHIN 1 (-)-EPIGALLOCATECHIN-3-O-GALLATE 2 (-)-EPIGALLOCATECHIN-GALLATE 3 (-)-HYDROXYJASMONIC-ACID 1 (-)-N-(1'-DEOXY-1'-D-FRUCTOPYRANOSYL)-S-ALLYL-L-CYSTEINE-SULFOXIDE 1 (-)-SPARTEINE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 2 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 2 0-METHYLCORYPALLINE 2 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 1,7-BIS(4-HYDROXY-3-METHOXYPHENYL)-1,6-HEPTADIEN-3,5-DIONE 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 3 1-(METHYLSULFINYL)-PROPYL-METHYL-DISULFIDE 1 1-ETHYL-BETA-CARBOLINE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL
    [Show full text]
  • Recent Advances in the Analysis of Phenolic Compounds in Unifloral
    molecules Review Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys Marco Ciulu, Nadia Spano, Maria I. Pilo and Gavino Sanna * Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy; [email protected] (M.C.); [email protected] (N.S.); [email protected] (M.I.P.) * Correspondence: [email protected]; Tel.: +39-079-229500; Fax: +39-079-228625 Academic Editors: Maurizio Battino, Etsuo Niki and José L. Quiles Received: 28 January 2016; Accepted: 25 March 2016; Published: 8 April 2016 Abstract: Honey is one of the most renowned natural foods. Its composition is extremely variable, depending on its botanical and geographical origins, and the abundant presence of functional compounds has contributed to the increased worldwide interest is this foodstuff. In particular, great attention has been paid by the scientific community towards classes of compounds like phenolic compounds, due to their capability to act as markers of unifloral honey origin. In this contribution the most recent progress in the assessment of new analytical procedures aimed at the definition of the qualitative and quantitative profile of phenolic compounds of honey have been highlighted. A special emphasis has been placed on the innovative aspects concerning the extraction procedures, along with the most recent strategies proposed for the analysis of phenolic compounds. Moreover, the centrality of validation procedures has been claimed and extensively discussed in order to ensure the fitness-for-purpose of the proposed analytical methods. In addition, the exploitation of the phenolic profile as a tool for the classification of the botanical and geographical origin has been described, pointing out the usefulness of chemometrics in the interpretation of data sets originating from the analysis of polyphenols.
    [Show full text]