(12) Patent Application Publication (10) Pub. No.: US 2012/0264810 A1 Lin Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2012/0264810 A1 Lin Et Al US 20120264810A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0264810 A1 Lin et al. (43) Pub. Date: Oct. 18, 2012 (54) COMPOSITIONS AND METHODS FOR 61/400,763, filed on Jul. 30, 2010, provisional appli ENHANCING CELLULARUPTAKE AND cation No. 61/400,758, filed on Jul. 30, 2010. INTRACELLULAR DELVERY OF LIPID PARTICLES Publication Classification (75) Inventors: Paulo J.C. Lin, Vancouver (CA); (51) Int. Cl. Yuen Yic. Tam, Vancouver (CA); C07. 4I/00 (2006.01) Srinivasulu Masuna, Edmonton A6II 47/24 (2006.01) (CA); Marco A. Ciufolini, CI2N 5/071 (2010.01) Vancouver (CA); Michel Roberge, A63L/73 (2006.01) Vancouver (CA); Pieter R. Cullis, A6II 47/22 (2006.01) Vancouver (CA) C07D 215/46 (2006.01) A 6LX 3L/705 (2006.01) (73) Assignee: The University of British (52) U.S. Cl. ............ 514/44A: 540/5: 546/163; 514/788: Columbia, Vancouver (CA) 514/44 R; 435/375 (21) Appl. No.: 13/497,395 (57) ABSTRACT (22) PCT Filed: Sep. 22, 2010 Compositions, methods and compounds useful for enhancing the uptake of a lipid particle b\ a cell are describedIn particu (86). PCT No.: PCT/B2O1O/OO2518 lar embodiments, the methods of the invention include con tacting a cell with a lipid particle and a compound that binds S371 (c)(1), a Na+/K+ ATPase to enhance uptake of the lipid particle b\the (2), (4) Date: Jul. 3, 2012 cell Related compositions useful in practicing methods include lipid particles comprising a conjugated compound Related U.S. Application Data that enhances uptake of the lipid particles b\ the cell The (60) Provisional application No. 61/277.306, filed on Sep. methods and compositions are useful in delivering a thera 22, 2009, provisional application No. 61/277.307, peutic agent to a cell, e g for the treatment of a disease or filed on Sep. 22, 2009, provisional application No. disorder in a Subject Patent Application Publication Oct. 18, 2012 Sheet 1 of 18 US 2012/026481.0 A1 Figure 1 A. 6OO 500 S. 5 e 4OO 1 ug/mL 3OO E35 ug/mL E S 10 ug/mL 2OO 15ug/mL g a 100 Time (Hr) siRNA Uptake 1.60 1.40 1.2O 1.OO O.80 O. 60 O. 40 O.2O O.OO O 2O 40 60 8O Compound Patent Application Publication Oct. 18, 2012 Sheet 2 of 18 US 2012/026481.0 A1 Punctate Distribution 18O 160 1. 40 1.20 1. OO O.8O O. 60 O. 40 O.2O O. OO O 2O 40 60 8O Compound Patent Application Publication Oct. 18, 2012 Sheet 3 of 18 US 2012/026481.0 A1 & Diprophylline & Isoxicam s r I l O 5 1O 15 2O 25 3O Concentration (uM) mano Chloroquine & Diphemani methylsulfate ...:... Trimethobenzamide hydrochloride O 1O 2O 3O Concentration (uM) Patent Application Publication Oct. 18, 2012 Sheet 4 of 18 US 2012/026481.0 A1 Intracellular Distribution of siRNACy3 120 100 Cytosolic Cy3 Signal Punctate Cy3. Signal 24.68 OOOO O SS (-) LN-siRNA (+) LN-siRNA + 0 (+) LN-siRNA + 10 (+) LN-siRNA + 30 uM chloroquine uM chloroquine uM chloroquine Treatment Patent Application Publication Oct. 18, 2012 Sheet 5 of 18 US 2012/026481.0 A1 Figure 3. 11-1-N/-N-11N1a1n O-SOMe C 3 n linoleyl-1-methanesulfonate NH HN1N1\- 2. C N1 OH 1 2 Ho-N-o-r 4,7-Dichloroquinoline 1,4-Diaminobutane 4 3-allyloxy-1,2-propane diol HN1a1a-NH2 2, 80 °C, 1 h 1 -> n 120 °C, 6 h 85% C N 5 N-(7-chloroquinolin-4-yl)butane-1,4-diamine 1) 5, THF NaH, Ph.H 1n 11 N1 n-1-1-1-1aO 2) NaBH 4 -- l -- 3, reflux o m O MeOH 60% R 23% from 7 6 R = CHO-CH-CH=CH ZnC,2, Pd(PPh3). Bu sSnH D. 7 R = CH-OH2 (75%)2 2 Swern oxidation 8 R. CHO C 11-1N1-FN-1N1-1-1- O 2 m m O lu NS-1-1-1N N N Patent Application Publication Oct. 18, 2012 Sheet 6 of 18 US 2012/026481.0 A1 Figure 4 350 -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 3OO 2 25O DDLinDMA 200 BDLinDMA + CO 10 uM 15O SDLinDMA + CG 3OuM e OVO 8CG-DLinDMA O 100 ŠS s 5O s Š O S. 2O 1O 5 2.5 siRNACy5 (ug/mL) B. 60% 50% S 40% so-$o DLinDMA is 30% w8x DLinDMA + COR 1 OuM g \say DLinDMA + COR 30 uM 20% -- CG-DLin DMA 10% O% s is O 5 1O 15 2O siRNACy5 (ug/mL) Patent Application Publication Oct. 18, 2012 Sheet 7 of 18 US 2012/026481.0 A1 C. 60% -a- 50% S 40% --DLinDMA 9s 30% & DLinDMA + CG 10 uM 2 asa DLinDMA + COR 30 uM 20% -e-CG-DLinDMA 10% O% O 5 1O 15 2O siRNACy5 (ug/mL) D. DLinDMA:CQ-lipid DLinDMA:CQ-lipid (40:0) (35:5) E. DLinDMA.co-lipid T DLinDMA.co.ipid (40:0) (35:5) Patent Application Publication Oct. 18, 2012 Sheet 8 of 18 US 2012/026481.0 A1 Figures 5A and 5B A. 23 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3. SSR 8. -- 43% ixiti:8& 48% Q-lipii:. as .38 flies. 58 E8 : siR&A&3 girl. Patent Application Publication Oct. 18, 2012 Sheet 9 of 18 US 2012/026481.0 A1 Figures 5C-5E C. iA as is t-dipiti ta. ce-lipid 5% . a -ts. is Sir SX. f Sir R. S 8-it SS&clipsis Scripts Sassic 2ns w gira. S to 28 S 3 2 S is 23 St. 20 S s y 8 Atia scies s S. E. 8 tars y 2 cars 48% is a 48:3pths f saintain spinosa. f &K-Li Stairs s scalisir it. s s: s & calci Patent Application Publication Oct. 18, 2012 Sheet 10 of 18 US 2012/026481.0 A1 Figure 6 Increased siRNA Cy3 Accumulation Normalized siRNACy3 Normalized siRNACy3 Small Molecule Cytosolic Distribution Accumulation Levodopa 0.72 1.28 Naphazoline hydrochloride O.68 1.32 ACetohexamide O.68 1.32 Nicosamide O8O 1.35 Diprophylline O.64 1.38 ISOXicam O.65 142 Increased siRNA Cy3 Cytosolic Distribution Normalized siRNACy3 Normalized siRNACy3 Small Molecule Cytosolic Distribution Accumulation Diphemanil methylsulfate 1.43 0.70 lsoxSuprine hydrochloride 1.44 0.51 Trimethobenzamide hydrochloride 1.45 0.70 Chloroquine 160 O.34 Azaguanine-8 1.61 0.54 Isoflupredone acetate 1.61 0.50 Patent Application Publication Oct. 18, 2012 Sheet 11 of 18 US 2012/026481.0 A1 Figure 7A Incubation of LN compound 96-well optical plate Figure 7B CD c 9 o SPDO O D siRNA-Cy3 s s O Z Time (hrs) Patent Application Publication Oct. 18, 2012 Sheet 12 of 18 US 2012/026481.0 A1 Figure 8A 12 1525 O. 5 O 1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 Small molecules Figure 8B 39 3.5 c 3 9. S 2.5 2 15 uM 2s 1.5 M a 1.5 D 0.15 uM O 1 N 0.5 E d O - t W S& s p. ŠP s S &Cu SS P s &S S s SS S Sy cse s S KS&S OS Q S o s ss isO o ' KSs Cardiac glycosides Patent Application Publication Oct. 18, 2012 Sheet 13 of 18 US 2012/026481.0 A1 Figure 9A Figure 9B O M 30 nM C. O. E 9 9 r 5 3 - 5 3 LN-SiRNA: GAPDH B-Actin Patent Application Publication Oct. 18, 2012 Sheet 14 of 18 US 2012/026481.0 A1 Figure 10 DSSE-REG. -H, settsrier excessarissed s: 83 is remit is Et pro f is siastics Patent Application Publication Oct. 18, 2012 Sheet 15 of 18 US 2012/026481.0 A1 Figure 11A & DSPE-PEG KSTR-PEG NP uptake in NCaP cells 140 :------------------------------------- SDSPF-PEG KSTR-PEG 2. ENP conic agfind Patent Application Publication Oct. 18, 2012 Sheet 16 of 18 US 2012/026481.0 A1 Figure 12A a - 350 250 150 & SPE-PEG 100 3: STRPFG e.g. ShATP. A. sh Scramble Ceiries Figure 12B O E CS al CD O -C C ATP1A1 {-actin Patent Application Publication Oct. 18, 2012 Sheet 17 of 18 US 2012/026481.0 A1 Figure 13A DSPE-PEG STR-PEG t '? c \r tr. C. r. 3 c - r a c - r an Figure 13B SEG : STR-PEG LNP concentiations (ug find Patent Application Publication Oct. 18, 2012 Sheet 18 of 18 US 2012/026481.0 A1 Figure 14 GAPDH mRNA relative to 18S rRNA i O.8 2.5 mg/kg Oa - i- - - - - - - - - - OSaling Kirray issues US 2012/026481.0 A1 Oct. 18, 2012 COMPOSITIONS AND METHODS FOR branes. Liposomal nanoparticle (LN) encapsulation of ENHANCING CELLULARUPTAKE AND siRNA has demonstrated significant potential for overcoming INTRACELLULAR DELVERY OF LIPID these problems for delivery of siRNA to hepatocytes in vivo PARTICLES and thus enabling siRNA to be used as therapeutics ((Zim mermann et al., 2006)). However, the design of LN formula CLAIM OF PRIORITY tions of siRNA (LN-siRNA) for other in vivo applications is 0001. This application claims priority to provisional U.S. far from optimized. In particular, effective targeting to spe Application Nos. 61/277.306, filed 22 Sep. 2009: 61/277.307, cific cells is lacking as the majority of systemic administered filed 22 Sep. 2009: 61/400,758, filed 30 Jul. 2010; and LN-siRNA is taken up by the reticular endothelial system in 61/400,763, filed 30 Jul. 2010; each of which is incorporated the spleen and liver (Fenske et al., 2008).
Recommended publications
  • Digitoxin-Induced Cytotoxicity in Cancer Cells Is Mediated Through Distinct Kinase and Interferon Signaling Networks
    Published OnlineFirst August 22, 2011; DOI: 10.1158/1535-7163.MCT-11-0421 Molecular Cancer Therapeutic Discovery Therapeutics Digitoxin-Induced Cytotoxicity in Cancer Cells Is Mediated through Distinct Kinase and Interferon Signaling Networks Ioannis Prassas1,2, George S. Karagiannis1,2, Ihor Batruch4, Apostolos Dimitromanolakis1,2, Alessandro Datti2,3,5, and Eleftherios P. Diamandis1,2,4 Abstract Cardiac glycosides (e.g., digoxin, digitoxin) constitute a diverse family of plant-derived sodium pump inhibitors that have been in clinical use for the treatment of heart-related diseases (congestive heart failure, atrial arrhythmia) for many years. Recently though, accumulating in vitro and in vivo evidence highlight potential anticancer properties of these compounds. Despite the fact that members of this family have advanced to clinical trial testing in cancer therapeutics, their cytotoxic mechanism is not yet elucidated. In this study, we investigated the cytotoxic properties of cardiac glycosides against a panel of pancreatic cancer cell lines, explored their apoptotic mechanism, and characterized the kinetics of cell death induced by these drugs. Furthermore, we deployed a high-throughput kinome screening approach and identified several kinases of the Na-K-ATPase-mediated signal transduction circuitry (epidermal growth factor receptor, Src, pkC, and mitogen-activated protein kinases) as important mediators downstream of cardiac glycoside cytotoxic action. To further extend our knowledge on their mode of action, we used mass-spectrometry–based quantitative proteomics (stable isotope labeling of amino acids in cell culture) coupled with bioinformatics to capture large-scale protein perturbations induced by a physiological dose of digitoxin in BxPC-3 pancreatic cancer cells and identified members of the interferon family as key regulators of the main protein/protein interactions downstream of digitoxin action.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Partial Agreement in the Social and Public Health Field
    COUNCIL OF EUROPE COMMITTEE OF MINISTERS (PARTIAL AGREEMENT IN THE SOCIAL AND PUBLIC HEALTH FIELD) RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies, and superseding Resolution AP (82) 2) AND APPENDIX I Alphabetical list of medicines adopted by the Public Health Committee (Partial Agreement) updated to 1 July 1988 APPENDIX II Pharmaco-therapeutic classification of medicines appearing in the alphabetical list in Appendix I updated to 1 July 1988 RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (superseding Resolution AP (82) 2) (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies) The Representatives on the Committee of Ministers of Belgium, France, the Federal Republic of Germany, Italy, Luxembourg, the Netherlands and the United Kingdom of Great Britain and Northern Ireland, these states being parties to the Partial Agreement in the social and public health field, and the Representatives of Austria, Denmark, Ireland, Spain and Switzerland, states which have participated in the public health activities carried out within the above-mentioned Partial Agreement since 1 October 1974, 2 April 1968, 23 September 1969, 21 April 1988 and 5 May 1964, respectively, Considering that the aim of the Council of Europe is to achieve greater unity between its members and that this
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Relative Selectivity of Plant Cardenolides for Na+/K+-Atpases from the Monarch Butterfly and Non-Resistant Insects
    fpls-09-01424 September 26, 2018 Time: 15:23 # 1 ORIGINAL RESEARCH published: 28 September 2018 doi: 10.3389/fpls.2018.01424 Relative Selectivity of Plant Cardenolides for NaC/KC-ATPases From the Monarch Butterfly and Non-resistant Insects Georg Petschenka1*, Colleen S. Fei2, Juan J. Araya3, Susanne Schröder4, Barbara N. Timmermann5 and Anurag A. Agrawal2 1 Institute for Insect Biotechnology, Justus-Liebig-Universität, Giessen, Germany, 2 Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States, 3 Centro de Investigaciones en Productos Naturales, Escuela de Química, Instituto de Investigaciones Farmacéuticas, Facultad de Farmacia, Universidad de Costa Rica, San Pedro, Costa Rica, 4 Institut für Medizinische Biochemie und Molekularbiologie, Universität Rostock, Rostock, Germany, 5 Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States A major prediction of coevolutionary theory is that plants may target particular herbivores with secondary compounds that are selectively defensive. The highly specialized Edited by: monarch butterfly (Danaus plexippus) copes well with cardiac glycosides (inhibitors Daniel Giddings Vassão, C C Max-Planck-Institut für chemische of animal Na /K -ATPases) from its milkweed host plants, but selective inhibition Ökologie, Germany of its NaC/KC-ATPase by different compounds has not been previously tested. Reviewed by: We applied 17 cardiac glycosides to the D. plexippus-NaC/KC-ATPase and to the Stephen Baillie Malcolm, C C Western Michigan University, more susceptible Na /K -ATPases of two non-adapted insects (Euploea core and United States Schistocerca gregaria). Structural features (e.g., sugar residues) predicted in vitro Supaart Sirikantaramas, inhibitory activity and comparison of insect NaC/KC-ATPases revealed that the monarch Chulalongkorn University, Thailand has evolved a highly resistant enzyme overall.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Marrakesh Agreement Establishing the World Trade Organization
    No. 31874 Multilateral Marrakesh Agreement establishing the World Trade Organ ization (with final act, annexes and protocol). Concluded at Marrakesh on 15 April 1994 Authentic texts: English, French and Spanish. Registered by the Director-General of the World Trade Organization, acting on behalf of the Parties, on 1 June 1995. Multilat ral Accord de Marrakech instituant l©Organisation mondiale du commerce (avec acte final, annexes et protocole). Conclu Marrakech le 15 avril 1994 Textes authentiques : anglais, français et espagnol. Enregistré par le Directeur général de l'Organisation mondiale du com merce, agissant au nom des Parties, le 1er juin 1995. Vol. 1867, 1-31874 4_________United Nations — Treaty Series • Nations Unies — Recueil des Traités 1995 Table of contents Table des matières Indice [Volume 1867] FINAL ACT EMBODYING THE RESULTS OF THE URUGUAY ROUND OF MULTILATERAL TRADE NEGOTIATIONS ACTE FINAL REPRENANT LES RESULTATS DES NEGOCIATIONS COMMERCIALES MULTILATERALES DU CYCLE D©URUGUAY ACTA FINAL EN QUE SE INCORPOR N LOS RESULTADOS DE LA RONDA URUGUAY DE NEGOCIACIONES COMERCIALES MULTILATERALES SIGNATURES - SIGNATURES - FIRMAS MINISTERIAL DECISIONS, DECLARATIONS AND UNDERSTANDING DECISIONS, DECLARATIONS ET MEMORANDUM D©ACCORD MINISTERIELS DECISIONES, DECLARACIONES Y ENTEND MIENTO MINISTERIALES MARRAKESH AGREEMENT ESTABLISHING THE WORLD TRADE ORGANIZATION ACCORD DE MARRAKECH INSTITUANT L©ORGANISATION MONDIALE DU COMMERCE ACUERDO DE MARRAKECH POR EL QUE SE ESTABLECE LA ORGANIZACI N MUND1AL DEL COMERCIO ANNEX 1 ANNEXE 1 ANEXO 1 ANNEX
    [Show full text]
  • Eiichi Kimura, MD, Department of Internal Medicine, Nippon Medical
    Effect of Metildigoxin (ƒÀ-Methyldigoxin) on Congestive Heart Failure as Evaluated by Multiclinical Double Blind Study Eiichi Kimura,* M.D. and Akira SAKUMA,** Ph.D. In Collaboration with Mitsuo Miyahara, M.D. (Sapporo Medi- cal School, Sapporo), Tomohiro Kanazawa, M.D. (Akita Uni- versity School of Medicine, Akita), Masato Hayashi, M.D. (Hiraga General Hospital, Akita), Hirokazu Niitani, M.D. (Showa Uni- versity School of Medicine, Tokyo), Yoshitsugu Nohara, M.D. (Tokyo Medical College, Tokyo), Satoru Murao, M.D. (Faculty of Medicine, University of Tokyo, Tokyo), Kiyoshi Seki, M.D. (Toho University School of Medicine, Tokyo), Michita Kishimoto, M.D. (National Medical Center Hospital, Tokyo), Tsuneaki Sugi- moto, M.D. (Faculty of Medicine, Kanazawa University, Kana- zawa), Masao Takayasu, M.D. (National Kyoto Hospital, Kyoto), Hiroshi Saimyoji, M.D. (Faculty of Medicine, Kyoto University, Kyoto), Yasuharu Nimura, M.D. (Medical School, Osaka Uni- versity, Osaka), Tatsuya Tomomatsu, M.D. (Kobe University, School of Medicine, Kobe), and Junichi Mise, M.D. (Yamaguchi University, School of Medicine, Ube). SUMMARY The efficacy on congestive heart failure of metildigoxin (ƒÀ-methyl- digoxin, MD), a derivative of digoxin (DX), which had a good absorp- tion rate from digestive tract, was examined in a double blind study using a group comparison method. After achieving digitalization with oral MD or intravenous deslanoside in the non-blind manner, mainte- nance treatment was initiated and the effects of orally administered MD and DX were compared. MD was administered in 44 cases , DX in 42. The usefulness of the drug was evaluated after 2 weeks , taking into account the condition of the patient and the ease of administration .
    [Show full text]
  • Cardenolide Biosynthesis in Foxglove1
    Review 491 Cardenolide Biosynthesis in Foxglove1 W. Kreis2,k A. Hensel2, and U. Stuhlemmer2 1 Dedicated to Prof. Dr. Dieter He@ on the occasion of his 65th birthday 2 Friedrich-Alexander-Universität Erlangen, Institut für Botanik und Pharmazeutische Biologie, Erlangen, Germany Received: January 28, 1998; Accepted: March 28, 1998 Abstract: The article reviews the state of knowledge on the genuine cardiac glycosides present in Digitalis species have a biosynthesis of cardenolides in the genus Digitalis. It sum- terminal glucose: these cardenolides have been termed marizes studies with labelled and unlabelled precursors leading primary glycosides. After harvest or during the controlled to the formulation of the putative cardenolide pathway. Alter- fermentation of dried Digitalis leaves most of the primary native pathways of cardenolide biosynthesis are discussed as glycosides are hydrolyzed to yield the so-called secondary well. Special emphasis is laid on enzymes involved in either glycosides. Digitalis cardenolides are valuable drugs in the pregnane metabolism or the modification of cardenolides. medication of patients suffering from cardiac insufficiency. In About 20 enzymes which are probably involved in cardenolide therapy genuine glycosides, such as the lanatosides, are used formation have been described "downstream" of cholesterol, as well as compounds obtained after enzymatic hydrolysis including various reductases, oxido-reductases, glycosyl trans- and chemical saponification, for example digitoxin (31) and ferases and glycosidases as well as acyl transferases, acyl es- digoxin, or chemical modification of digoxin, such as metildig- terases and P450 enzymes. Evidence is accumulating that car- oxin. Digitalis lanata Ehrh. and D.purpurea L are the major denolides are not assembled on one straight conveyor belt but sources of the cardiac glycosides most frequently employed in instead are formed via a complex multidimensional metabolic medicine.
    [Show full text]
  • Quo Vadis Cardiac Glycoside Research?
    toxins Review Quo vadis Cardiac Glycoside Research? Jiˇrí Bejˇcek 1, Michal Jurášek 2 , VojtˇechSpiwok 1 and Silvie Rimpelová 1,* 1 Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6, Czech Republic; [email protected] (J.B.); [email protected] (V.S.) 2 Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 3, Prague 6, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-220-444-360 Abstract: AbstractCardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG’s toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG’s toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]