<<

STUDENT MATHEMATICAL Volume 62

Computability

Rebecca Weber http://dx.doi.org/10.1090/stml/062

Computability Theory

STUDENT MATHEMATICAL LIBRARY Volume 62

Computability Theory

Rebecca Weber

American Mathematical Society Providence, Rhode Island Editorial Board Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell

2000 Subject Classification. Primary 03Dxx; Secondary 68Qxx.

For additional information and updates on this book, visit www.ams.org/bookpages/stml-62

Library of Congress Cataloging-in-Publication Data Weber, Rebecca, 1977– Computability theory / Rebecca Weber. p. cm. — (Student mathematical library ; v. 62) Includes bibliographical and index. ISBN 978-0-8218-7392-2 (alk. paper) 1. theory. 2. Computable functions. I. Title.

QA9.6.W43 2012 511.352—dc23 2011050912

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904- 2294 USA. Requests can also be made by e-mail to [email protected]. c 2012 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 171615141312 Contents

Chapter 1. Introduction 1 §1.1. Approach 1 §1.2. Some History 4 §1.3. Notes on Use of the Text 6 §1.4. Acknowledgements and References 7

Chapter 2. Background 9 §2.1. First-Order 9 §2.2. Sets 15 §2.3. Relations 21 §2.4. and 29 §2.5. Recursion and Induction 30 §2.6. Some Notes on Proofs and Abstraction 37

Chapter 3. Defining Computability 41 §3.1. Functions, Sets, and 41 §3.2. Turing Machines 43 §3.3. Partial Recursive Functions 50 §3.4. Coding and Countability 56 §3.5. A Universal 62

v vi Contents

§3.6. The Church-Turing Thesis 65 §3.7. Other Definitions of Computability 66

Chapter 4. Working with Computable Functions 77 §4.1. The 77 §4.2. The “Three ” 78 §4.3. Parametrization 79 §4.4. The Recursion 81 §4.5. Unsolvability 85

Chapter 5. and Enumerating Sets 95 §5.1. Dovetailing 95 §5.2. Computing and Enumerating 96 §5.3. Aside: and Incompleteness 102 §5.4. Enumerating Noncomputable Sets 105

Chapter 6. Turing and Post’s Problem 109 §6.1. Reducibility of Sets 109 §6.2. Finite Injury Priority 115 §6.3. Notes on Approximation 124

Chapter 7. Two Hierarchies of Sets 127 §7.1. Turing Degrees and Relativization 127 §7.2. The 131 §7.3. Index Sets and Arithmetical 135

Chapter 8. Further Tools and Results 139 §8.1. The Lemma 139 §8.2. The Arslanov Completeness Criterion 142 §8.3. E Modulo Finite Difference 145

Chapter 9. Areas of Research 149 §9.1. Sets and Degrees 149 §9.2. Randomness 155 §9.3. Some 169 Contents vii

§9.4. Computable Model Theory 174 §9.5. 177

Appendix A. Mathematical Asides 189 §A.1. The Greek Alphabet 189 §A.2. Summations 190 §A.3. Cantor’s Proofs 190

Bibliography 193

Index 199

Bibliography

[1] , Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99 (1928), no. 1, 118–133 (German). [2] Klaus Ambos-Spies, Carl G. Jockusch Jr., Richard A. Shore, and Robert I. Soare, An algebraic decomposition of the recursively enumerable degrees and the coin- cidence of several degree classes with the promptly simple degrees, Trans. Amer. Math. Soc. 281 (1984), no. 1, 109–128. [3] Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp, and Theodore A. Sla- man, Comparing DNR and WWKL, J. Symbolic Logic 69 (2004), no. 4, 1089– 1104. [4] Klaus Ambos-Spies and Anton´ın Kuˇcera, Randomness in computability theory, Computability Theory and its Applications (Boulder, CO, 1999), 2000, pp. 1–14. [5] M. M. Arslanov, Some generalizations of a fixed-point theorem, Izv. Vyssh. Uchebn. Zaved. Mat. 5 (1981), 9–16 (Russian). [6] M.M.Arslanov,R.F.Nadyrov,andV.D.Solovev, A criterion for the complete- ness of recursively enumerable sets, and some generalizations of a fixed point theorem,Izv.Vysˇs. Uˇcebn. Zaved. Matematika 4 (179) (1977), 3–7 (Russian). [7] C. J. Ash and J. Knight, Computable Structures and the Hyperarithmetical Hi- erarchy, Studies in Logic and the Foundations of Mathematics, vol. 144, North- Holland Publishing Co., Amsterdam, 2000. [8] Jon Barwise (ed.), Handbook of , with the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra, Studies in Logic and the Foundations of Mathematics, Vol. 90, North-Holland Publishing Co., Amsterdam, 1977. [9] Charles H. Bennett and Martin Gardner, The random number Omega bids fair to hold the mysteries of the universe, Scientific American 241 (1979), no. 5, 20–34. [10] George S. Boolos, John P. Burgess, and Richard C. Jeffrey, Computability and Logic, 4th ed., Cambridge University Press, Cambridge, 2002. [11] Gregory J. Chaitin, Information-theoretic characterizations of recursive infinite strings,Theoret.Comput.Sci.2 (1976), no. 1, 45–48. [12] G. J. Chaitin, Incompleteness for random reals, Adv. in Appl. Math. 8 (1987), no. 2, 119–146.

193 194 Bibliography

[13] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman, On the strength of Ramsey’s theorem for pairs,J.SymbolicLogic66 (2001), no. 1, 1–55. [14] , An Unsolvable Problem of Elementary ,Amer. J. Math. 58 (1936), no. 2, 345–363. Reprinted in [18]. [15] , A note on the , J. Symbolic Logic 1 (1936), no. 1, 40–41. Correction in J. Symbolic Logic 1 No. 3 (1936), 101–102. Reprinted in [18]. [16] Robert L. Constable, Harry B. Hunt, and Sartaj Sahni, On the computational complexity of scheme equivalence, Technical Report 74–201, Department of Com- puter Science, Cornell University, Ithaca, NY, 1974. [17] Nigel Cutland, Computability: An introduction to recursive theory, Cambridge University Press, Cambridge, 1980. [18] Martin Davis (ed.), The Undecidable: Basic papers on undecidable , unsolvable problems and computable functions, Raven Press, Hewlett, N.Y., 1965. [19] Martin Davis, Hilbert’s tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233–269. [20] , Why G¨odel didn’t have Church’s thesis, Inform. and Control 54 (1982), no. 1-2, 3–24. [21] , American logic in the 1920s, Bull. Symbolic Logic 1 (1995), no. 3, 273– 278. [22] Rodney G. Downey and Denis R. Hirschfeldt, Algorithmic Randomness and Com- plexity, Theory and Applications of Computability, Springer, New York, 2010. [23] Bruno Durand and Alexander Zvonkin, , Kolmogorov’s Heritage in Mathematics, 2007, pp. 281–299. [24] A. Ehrenfeucht, J. Karhum¨aki, and G. Rozenberg, The (generalized) Post cor- respondence problem with lists consisting of two words is decidable,Theoret. Comput. Sci. 21 (1982), no. 2, 119–144. [25] Herbert B. Enderton, A Mathematical Introduction to Logic,2nded.,Har- court/Academic Press, Burlington, MA, 2001. [26] Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek (eds.), Handbook of Recursive Mathematics. Vol. 1: Recursive Model Theory, Studies in Logic and the Foundations of Mathematics, vol. 138, North-Holland, Amsterdam, 1998. [27] Richard M. Friedberg, Two recursively enumerable sets of incomparable degrees of unsolvability (solution of Post’s problem, 1944), Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 236–238. [28] , Three theorems on recursive enumeration. I. Decomposition. II. Max- imal . III. Enumeration without duplication, J. Symb. Logic 23 (1958), 309– 316. [29] P´eter G´acs, Every is reducible to a random one, Inform. and Control 70 (1986), no. 2-3, 186–192. [30] Kurt G¨odel, Uber¨ unentscheidbare S¨atze der und verwandter Systeme I, Monatsh. Math. Phys. 38 (1931), no. 1, 173–198 (German). An English translation appears in [18]. [31] S. S. Gonˇcarov, The number of nonautoequivalent constructivizations, Logika 16 (1977), no. 3, 257–282, 377 (Russian); English transl., Algebra Logic 16 (1977), no. 3, 169–185. [32] , The problem of the number of nonautoequivalent constructivizations, Algebra Logika 19 (1980), no. 6, 621–639, 745 (Russian); English transl., Algebra Logic 19 (1980), no. 6, 404–414. [33] S. S. Gonˇcarov and V. D. Dzgoev, Autostability of models, Algebra Logika 19 (1980), no. 1, 45–58, 132 (Russian); English transl., Algebra Logic 19 (1980), no. 1, 28–37. Bibliography 195

[34] Eitan Gurari, An Introduction to the Theory of , Sci- ence Press, 1989. Available at http://www.cse.ohio-state.edu/~gurari/theory-bk/ theory-bk.html. [35] Petr H´ajek and Pavel Pudl´ak, of First-Order ,Per- spectives in Mathematical Logic, Springer-Verlag, Berlin, 1993. [36] Valentina S. Harizanov, Computability-theoretic complexity of countable struc- tures, Bull. Symbolic Logic 8 (2002), no. 4, 457–477. [37] , Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), no. 10, 437–479. [38] Denis R. Hirschfeldt, Andr´e Nies, and Frank Stephan, Using random sets as or- acles,J.Lond.Math.Soc.(2)75 (2007), no. 3, 610–622. [39] Denis R. Hirschfeldt and Richard A. Shore, Combinatorial principles weaker than Ramsey’s theorem for pairs,J.SymbolicLogic72 (2007), no. 1, 171–206. [40] Jeffry Lynn Hirst, in Subsystems of Second Order Arithmetic, Ph.D. Thesis, The Pennsylvania State University, 1987. [41] John E. Hopcroft, Turing Machines, Scientific American 250 (1984), no. 5, 86–98. [42] C. G. Jockusch Jr., M. Lerman, R. I. Soare, and R. M. Solovay, Recursively enu- merable sets modulo iterated jumps and extensions of Arslanov’s completeness criterion, J. Symbolic Logic 54 (1989), no. 4, 1288–1323. 0 [43] Carl G. Jockusch Jr. and Robert I. Soare, Π1 classes and degrees of , Trans. Amer. Math. Soc. 173 (1972), 33–56. [44] S. C. Kleene, General recursive functions of natural numbers, Math. Ann. 112 (1936), no. 1, 727–742. Reprinted in [18]. [45] Peter M. Kogge, The Architecture of Symbolic , McGraw-Hill Series in Supercomputing and Parallel Processing, McGraw-Hill, 1990. [46] A. N. Kolmogorov, On tables of random numbers, Sankhy¯aSer.A25 (1963), 369–376. [47] , Three approaches to the definition of the concept “quantity of informa- tion”, Problemy Peredaˇci Informacii 1 (1965), no. vyp. 1, 3–11 (Russian); English transl., Probl. Inf. Transm. 1 (1965), 1–7. [48] Julia F. Knight, Degrees coded in jumps of orderings, J. Symbolic Logic 51 (1986), no. 4, 1034–1042. [49] Leon G. Kraft, A Device for Quantizing, Grouping, and Coding Amplitude Mod- ulated Pulses, Electrical Engineering Master’s Thesis, MIT, Cambridge, MA, 1949. [50] Shira Kritchman and Ran Raz, The surprise examination and the second incompleteness theorem, Notices Amer. Math. Soc. 57 (2010), no. 11, 1454–1458. 0 [51] Anton´ın Kuˇcera, Measure, Π1-classes and complete extensions of PA, Recursion Theory Week (Oberwolfach, 1984), 1985, pp. 245–259. [52] Anton´ın Kuˇcera and Sebastiaan A. Terwijn, Lowness for the of random sets, J. Symbolic Logic 64 (1999), no. 4, 1396–1402. [53] A. H. Lachlan, Lower bounds for pairs of recursively enumerable degrees,Proc. London Math. Soc. (3) 16 (1966), 537–569. [54] Steffen Lempp, Manuel Lerman, and Reed Solomon, Embedding finite lattices into the computably enumerable degrees—a status survey, Logic Colloquium ’02, 2006, pp. 206–229. [55] L. A. Levin, Laws on the conservation (zero increase) of information, and ques- tions on the foundations of theory, Problemy Peredaˇci Informacii 10 (1974), no. 3, 30–35 (Russian); English transl., Probl. Inf. Transm. 10 (1974), 206–210. 196 Bibliography

[56] Ming Li and Paul Vit´anyi, An Introduction to Kolmogorov Complexity and its Applications, 2nd ed., Graduate Texts in , Springer-Verlag, New York, 1997. [57] Peter Linz, An Introduction to Formal and Automata, 2nd ed., Jones and Bartlett Publishers, 1997. [58] Wolfgang Maass, Recursively enumerable generic sets, J. Symbolic Logic 47 (1982), no. 4, 809–823 (1983). [59] A. Markoff, On the impossibility of certain in the theory of associa- tive systems, C. R. (Doklady) Acad. Sci. URSS (N.S.) 55 (1947), 583–586. [60] Donald A. Martin, Classes of recursively enumerable sets and degrees of unsolv- ability, Z. Math. Logik Grundlagen Math. 12 (1966), 295–310. [61] Yu. V. Matijaseviˇc, On recursive unsolvability of Hilbert’s tenth problem, Logic, Methodology and of Science, IV (Proc. Fourth Internat. Congr., Bucharest, 1971), 1973, pp. 89–110. [62] and G´eraud S´enizergues, Decision problems for semi-Thue systems with a few rules, 11th Annual IEEE Symposium on Logic in Computer Science (New Brunswick, NJ, 1996), 1996, pp. 523–531. 0 [63] Russell Miller, The Δ2-spectrum of a linear order, J. Symbolic Logic 66 (2001), no. 2, 470–486. [64] A. A. Muˇcnik, On the unsolvability of the problem of reducibility in the theory of algorithms, Dokl. Akad. Nauk SSSR (N.S.) 108 (1956), 194–197 (Russian). [65] Roman Murawski, Recursive Functions and Metamathematics: Problems of Completeness and , G¨odel’s Theorems, Library, vol. 286, Kluwer Academic Publishers , Dordrecht, 1999. [66] Andr´e Nies, Lowness properties and randomness,Adv.Math.197 (2005), no. 1, 274–305. [67] , Computability and Randomness, Oxford Logic Guides, vol. 51, Oxford University Press, Oxford, 2009. [68] Piergiorgio Odifreddi, Classical Recursion Theory: The theory of functions and sets of natural numbers, with a foreword by G. E. Sacks, Studies in Logic and the Foundations of Mathematics, vol. 125, North-Holland Publishing Co., Amsterdam, 1989. [69] R´ozsa P´eter, Uber¨ den Zusammenhang der verschiedenen Begriffe der rekursiven Funktion, Math. Ann. 110 (1935), no. 1, 612–632 (German). [70] , Konstruktion nichtrekursiver Funktionen, Math. Ann. 111 (1935), no. 1, 42–60 (German). [71] Emil L. Post, Finite combinatory processes. Formulation I,J.SymbolicLogic1 (1936), no. 3, 103–105. Reprinted in [18]. [72] , Recursively enumerable sets of positive and their decision prob- lems, Bull. Amer. Math. Soc. 50 (1944), 284–316. Reprinted in [18]. [73] , A variant of a recursively unsolvable problem, Bull. Amer. Math. Soc. 52 (1946), 264–268. [74] , Recursive unsolvability of a problem of Thue, J. Symbolic Logic 12 (1947), 1–11. [75] Hartley Rogers Jr., Theory of Recursive Functions and Effective Computability, 2nd ed., MIT Press, Cambridge, MA, 1987. [76] C.-P. Schnorr, A unified approach to the definition of random sequences,Math. Systems Theory 5 (1971), 246–258. [77] J. C. Shepherdson and H. E. Sturgis, Computability of recursive functions,J. Assoc. Comput. Mach. 10 (1963), 217–255. Bibliography 197

[78] J. R. Shoenfield, On degrees of unsolvability, Ann. of Math. (2) 69 (1959), 644– 653. [79] Richard A. Shore, Nowhere simple sets and the of recursively enumerable sets, J. Symbolic Logic 43 (1978), no. 2, 322–330. [80] Stephen G. Simpson, Subsystems of Second Order Arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1999. [81] Douglas Smith, Maurice Eggen, and Richard St. Andre, A Transition to Advanced Mathematics, 3rd ed., Brooks/Cole Publishing Company, Wadsworth, Inc., 1990. [82] Robert I. Soare, Recursively Enumerable Sets and Degrees: A Study of Com- putable Functions and Computably Generated Sets, Perspectives in Mathemati- cal Logic, Springer-Verlag, Berlin, 1987. [83] Robert Solovay, Draft of paper (or series of papers) on Chaitin’s work,May, 2004. Unpublished notes. [84] S. Tennenbaum, Non-Archimedean models for arithmetic, Notices Amer. Math. Soc. 6 (1959), 270. [85] A. M. Turing, On computable numbers, with an application to the Entschei- dungsproblem, Proc. Lond. Math. Soc. (2) 42 (1937), 230–265. A correction ap- pears in Proc. Lond. Math. Soc. (2), 43 (1937), 544–546. Both reprinted in [18]. [86] , From Frege to G¨odel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, Mass., 1967. [87] S´ergio B. Volchan, What is a random sequence?, Amer. Math. Monthly 109 (2002), no. 1, 46–63. [88] Judson Chambers Webb, Mechanism, Mentalism, and Metamathematics: An es- say on finitism, Synthese Library, vol. 137, D. Reidel Publishing Co., Dordrecht, 1980. [89] and , Principia Mathematica, Vol. 1–3, Cambridge University Press, 1910–1913. Second edition, strongly edited, 1927. [90] D. Zambella, On sequences with simple initial segments, University of Amster- dam ILLC technical report ML-1990-05, 1990. [91] A. K. Zvonkin and L. A. Levin, The complexity of finite objects and the basing of the concepts of information and randomness on the theory of algorithms, Uspehi Mat. Nauk 25 (1970), no. 6(156), 85–127 (Russian).

Index

∅, 129, see also halting set bijection, 30 1-randomness, 159 binary sequence, 43, 157 1-reduction, 133 binary string, 43, 157 bit-flip, 46 , 53 , 147 alphabet, 87 bounding, 186 0 and, logical, 9 BΠn, 186 0 antecedent, 10 BΣn, 186 antisymmetry, 22 arithmetic c.e., see computably enumerable Peano, 173, 175, 183 capping, 150, 153 Robinson, 104, 173 cardinality, 20, 25, 191 second-order, 178 , 16 standard model, 104, 173 Chaitin’s Ω, 165 arithmetic transfinite recursion, 183 characteristic function, 43 arithmetical Church-Turing thesis, 65 completeness, 133 , 33 comprehension , 183 co-c.e., 102 hierarchy, 131 code, 56 arity, 103, 170 of a Turing machine, 59 Arslanov completeness criterion, , 29 143 cofinite, 106 associativity, 33 coinfinite, 106 automorphism, 30 , 17 of a lattice, 147 completeness theorem, 103, 172 axiom of a production system, 88 composition, 51 axiomatizable, 163 via indices, 80 comprehension, 179 base case, 31 arithmetical, 183 1 Berry’s paradox, 163 Π1, 184

199 200 Index

recursive, 179 finite difference, 114, 145 computable first-, 173 function, 65 fixed-point theorem, 81 set, 96 function computable model theory, 174 Ackermann, 53 computably (in)separable sets, 101, characteristic, 43 136, 175 computable, 65 computably categorical, 176 , 42 computably enumerable set, 97 pairing, 57 relativized, 129 partial, 42 conjunction, 9 partial recursive, 54 consequent, 10 primitive recursive, 50 , 10 countable, 20 G¨odel’s incompleteness, 105, 145, countably infinite, 20 163, 178 cupping, 150, 153 graph low, 151 general mathematical, 33 of a function, 29, 100, 113 De Morgan’s Laws of a relation, 24, 27 for predicate logic, 10 greatest lower bound, 28 for sets, 19 halting probability, 165 decidable, 85 halting set, 78, 99, 114, 128, 129, definability, 147, 150 133 degree, see relativized, 129 degree invariance, 154 high set, 154 diagonalization, 63, 105, 190 diagonally non-recursive, 185 implication, logical, 10 disjoint, 16 incompleteness theorem, 105, 145, disjoint union, 101 163, 178 disjunction, 10 independent sentence, 104 domain index, 60 of a function, 29 index set, 82, 86, 135 of quantification, 13 induction, 179 domination, 64 on N,31 dovetailing, 96 on recursively defined sets, 35 inductive step, 31 E , 146, 153 injection, 29 E∗ , 146 injury, 116, 121 effective, 97 internal state, 44 effective countability, 56, 62 , 103, 170 embedding, 150 intersection, 16, 18 enumeration of Turing machines, 60 interval, 158 equality invariance, 147 for partial functions, 42 for degrees, 154 for sets, 15, 19 isomorphism, 29 equivalence class, 25 , 25 join, 101, 127, 128, 130, 146 equivalence, logical, 11 jump, 129 Index 201

omega, 130 notation, 111 oracle Turing machine, 109 K, 78, see also halting set orbit, 147 K(σ), 159 overspill, 175 K-trivial, 169 KC Theorem, 161 padding lemma, 60 Kolmogorov complexity pairing function, 57 plain, 167 parameter, 180 prefix-free, 159 parametrization, 79 Kraft inequality, 160, 166 partial computable functions, 65 , 42 , 69 for allowing, 55, 62 , 103, 170 partial order, 27 lattice, 146 partition, 26 complemented, 146 Peano arithmetic, 173, 175 distributive, 146 in reverse math, 183 embedding, 150 permutation, 30 nondistributive, 152 ϕe,60 1 least upper bound, 28 Π1 comprehension axiom, 184 left-c.e. set, 125, 166 , 186 limit lemma, 139 plain Kolmogorov complexity, 167 limit, discrete, 41, 140 poset, 27 linear order, 27, 176 Post correspondence system, 91 low basis theorem, 183 Post’s problem, 115, 120 low for random, 169 Post’s theorem, 134 low set, 130, 140 , 16, 192 noncomputable, 142 predicate, 13 lower bound, 28 prefix-free Kolmogorov complexity, 159 maximal set, 154 Turing machine, 158 measure, 158 primitive recursion, 51 meet, 128, 146 priority, 116, 117, 121 model, 103, 170, 180 product, Cartesian, 16 modular arithmetic, 26 production, 87 modulus, 140 normal, 88 lemma, 140 semi-Thue, 88 μ,55 projection, 51 negation, 10, 15 quantifiers, 13 nondeterministic Turing machine, alternation of, 131 68 collapsing like, 133 nonstandard model, 104, 174, 175 quotient structure, 25, see also nonuniformity, see uniformity Turing degree, E∗ not, 10 randomness, 155, 159 Ω, 165 and Turing degree, 165 or, logical, 10 for finite strings, 159 oracle, 109 relative, 168 finite, 111 range, 29 202 Index read/write head, 44 incomplete, 120, 142 recursion theorem, 81 nowhere, 153 with parameters, 142 promptly, 151 recursive, 96 solvable, 85 recursive comprehension axiom, theorem, 103, 172 179 splitting theorem, 153 recursive definition stage bounding of a function, 35 notation, 96, 100, 111 of a set, 33 use of, 111, 118, 121, 136 reduction property, 100 standard model, 104, 173 reflexivity, 22 string, 43, 157 relation, 21 structure, 170 relative randomness, 168 computably categorical, 176 relativization, 128 , 16 requirement, 106, 117 successor, 51 injury, 116 surjection, 30 priority, 116 symmetric difference, 114, 136, 144, satisfaction, 107 145 restriction, 112, 157 symmetry, 22 reverse mathematics, 177 , 103, 172 Rice’s theorem, 82 Robinson arithmetic, 104, 173 tape, 44 nonstandard model, 174 , 10 theorem of a production system, 88 s-m-n theorem, 79, 82, 84 theory, 170 relativized, 128 first-order, 173 satisfaction, 107 second-order, 173, 178 second-order arithmetic, 178 total computable functions, 65 second-order theory, 173, 178 total order, 27 , 103, 172 transitive closure, 27 semi-Thue system, 88, 92 transitivity, 22, 147 sentence, 13 table, 12 sequence, 43, 157 , 16 set, 15 , 114 arithmetical, 131 Turing degree, 127, 149 bi-immune, 124 and randomness, 165 computable, 96 c.e., 128, 149 computably enumerable, 97 Turing equivalence, 112 creative, 145 , 129 d.c.e., 125 Turing machine, 44 high, 154 , 78 left-c.e., 125, 166 code of, 59 low, 130, 140 enumeration of, 60 maximal, 154 index of, 60 productive, 145 nondeterministic, 68 simple, 106, see also simple set nonstandard, 67 simple set, 106, 117, 146, 164 oracle, 109 effectively, 145 prefix-free, 158 Index 203

universal, 62 , 112 unbounded search, 54 uncountable, 21 , see unsolvable problem uniformity, 3, 61, 80, 85, 86, 97, 101, 104, 108, 110, 112, 128, 130, 177 main discussion of, 3, 61, 86, 97, 108, 110 union, 16, 18 , 62 universe, 16 of a model, 170 unlimited , 73 unsolvable problem, 85 halting problem, 78, see also halting set in behavior of Turing machines, 77, 78, 86 index sets, 82, 87 solutions to Post correspondence systems, 92 , 90 word problem for semi-Thue systems, 89 word problem for Thue systems, 90 upper bound, 27 use, 111 of divergent , 111

We, 100 weak jump, 114, 143 relativized, 130 weak K¨onig’s lemma, 181, 182 weak weak K¨onig’s lemma, 185 without loss of generality, 39 witness, 118 word, 87 word problem for groups, 90 for semi-Thue systems, 89

Selected Titles in This Series

62 Rebecca Weber, Computability Theory, 2012 61 Anthony Bonato and Richard J. Nowakowski, The Game of Cops and Robbers on Graphs, 2011 60 Richard Evan Schwartz, Mostly Surfaces, 2011 59 Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yudovina, Introduction to Representation Theory, 2011 58 Alvaro´ Lozano-Robledo, Elliptic Curves, Modular Forms, and Their L-functions, 2011 57 Charles M. Grinstead, William P. Peterson, and J. Laurie Snell, Probability Tales, 2011 56 Julia Garibaldi, Alex Iosevich, and Steven Senger, The Erd˝os Distance Problem, 2011 55 Gregory F. Lawler, Random Walk and the Heat Equation, 2010 54 Alex Kasman, Glimpses of Soliton Theory, 2010 53 Jiˇr´ıMatouˇsek, Thirty-three Miniatures, 2010 52 Yakov Pesin and Vaughn Climenhaga, Lectures on Fractal and Dynamical Systems, 2009 51 Richard S. Palais and Robert A. Palais, Differential Equations, Mechanics, and Computation, 2009 50 Mike Mesterton-Gibbons, A Primer on the Calculus of Variations and Optimal , 2009 49 Francis Bonahon, Low-Dimensional Geometry, 2009 48 John Franks, A (Terse) Introduction to Lebesgue Integration, 2009 47 L. D. Faddeev and O. A. Yakubovski˘i, Lectures on Quantum Mechanics for Mathematics Students, 2009 46 Anatole Katok and Vaughn Climenhaga, Lectures on Surfaces, 2008 45 Harold M. Edwards, Higher Arithmetic, 2008 44 Yitzhak Katznelson and Yonatan R. Katznelson, A(Terse) Introduction to , 2008 43 Ilka Agricola and Thomas Friedrich, Elementary Geometry, 2008 42 C. E. Silva, Invitation to Ergodic Theory, 2008 41 Gary L. Mullen and Carl Mummert, Finite Fields and Applications, 2007 40 Deguang Han, Keri Kornelson, David Larson, and Eric Weber, Frames for Undergraduates, 2007 39 Alex Iosevich, A View from the Top, 2007 38 B. Fristedt, N. Jain, and N. Krylov, Filtering and Prediction: A Primer, 2007 37 Svetlana Katok, p-adic Compared with Real, 2007 36 Mara D. Neusel, Invariant Theory, 2007 SELECTED TITLES IN THIS SERIES

35 J¨org Bewersdorff, Galois Theory for Beginners, 2006 34 Bruce C. Berndt, Number Theory in the Spirit of Ramanujan, 2006 33 Rekha R. Thomas, Lectures in Geometric Combinatorics, 2006 32 Sheldon Katz, Enumerative Geometry and String Theory, 2006 31 John McCleary, A First Course in , 2006 30 Serge Tabachnikov, Geometry and Billiards, 2005 29 Kristopher Tapp, Groups for Undergraduates, 2005 28 Emmanuel Lesigne, Heads or Tails, 2005 27 Reinhard Illner, C. Sean Bohun, Samantha McCollum, and Thea van Roode, Mathematical Modelling, 2005 26 Steven J. Cox, Robin Forman, Frank Jones, Barbara Lee Keyfitz, Frank Morgan, and Michael WolfSix Themes on Variation, 2004 25 S. V. Duzhin and B. D. Chebotarevsky, Transformation Groups for Beginners, 2004 24 Bruce M. Landman and Aaron Robertson, Ramsey Theory on the Integers, 2004 23 S. K. Lando, Lectures on Generating Functions, 2003 22 Andreas Arvanitoyeorgos, An Introduction to Lie Groups and the Geometry of Homogeneous Spaces, 2003 21 W. J. Kaczor and M. T. Nowak, Problems in III, 2003 20 Klaus Hulek, Elementary , 2003 19 A. Shen and N. K. Vereshchagin, Computable Functions, 2003 18 V. V. Yaschenko, Editor, : An Introduction, 2002 17 A. Shen and N. K. Vereshchagin, Basic , 2002 16 Wolfgang Kuhnel, ¨ Differential Geometry, 2002 15 Gerd Fischer, Plane Algebraic Curves, 2001 14 V. A. Vassiliev, Introduction to Topology, 2001 13 Frederick J. Almgren, Jr., Plateau’s Problem, 2001 12 W. J. Kaczor and M. T. Nowak, Problems in Mathematical Analysis II, 2001 11 Mike Mesterton-Gibbons, An Introduction to Game-Theoretic Modelling, 2001 10 John Oprea, The Mathematics of Soap Films: Explorations with Maple, 2000 9 David E. Blair, Inversion Theory and Conformal Mapping, 2000

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.

What can we compute—even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoreti- cally? These questions are at the heart of computability theory. The goal of this book is to give the reader a fi rm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recur- sive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, exam- ples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites.

For additional information and updates on this book, visit www.ams.org/bookpages/stml-62

AMS on the Web STML/62 www.ams.org