View This Volume's Front and Back Matter

Total Page:16

File Type:pdf, Size:1020Kb

View This Volume's Front and Back Matter http://dx.doi.org/10.1090/mbk/063 FAMOUS PUZZLES of Great Mathematicians Miodrag S. Petkovi´c A MERICAN M ATHEMATICAL S OCIETY Providence, Rhode Island 2000 Mathematics Subject Classification. Primary 00A08, 97A20, 01A05, 01A70, 05A05, 05C45, 05C90, 11D04, 11D09, 51E10, 51M16, 52C15, 52C22, 97D40. For additional information and updates on this book, visit www.ams.org/bookpages/mbk-63 Library of Congress Cataloging-in-Publication Data Petkovi´c, Miodrag. Famous puzzles of great mathematicians / Miodrag S. Petkovi´c. p. cm. Includes bibliographical references and index. ISBN 978-0-8218-4814-2 (alk. paper) 1. Mathematical recreations. 2. Mathematics–Popular works. I. Title. QA95.P4358 2009 510–dc22 2009011018 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. ⃝c 2009 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ⃝∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 141312111009 To my family CONTENTS Preface xiii Art and Photo Credits xvii 1. RECREATIONAL MATHEMATICS 1 2. ARITHMETICS 9 Diophantus’ age (Diophantus)10 Number of arrows (Mah¯avira)11 How many rabbits? (Fibonacci, p. 11)12 Fibonacci’s sequence 13 Chessboard paradox 14 Square numbers problem (Fibonacci)15 Money in a pile (Fibonacci)16 Magicconfiguration(Hui )17 Triangle with integral sides (Bachet)17 Weights problem (Fibonacci, Tartaglia, Bachet)20 MacMahon’s general approach 23 Division of 17 horses (Tartaglia, p. 23)24 Wine and water (Tartaglia)25 Coins in hands (Recorde)25 Sides of two cubes (Vi`ete, p. 25)26 Animals on a field (Newton)27 P´olya’s solution 28 D¨orrie’s variant 28 Other variants 29 v vi Contents Gathering an army (Alcuin of York)29 Answers to Problems 30 3. NUMBER THEORY 37 Cattle problem (Archimedes, p. 38)41 Dividing the square (Diophantus)44 Wine problem (Diophantus)45 Amicable numbers (ibn Qorra)45 Qorra’s formula 47 Euler’s rule 47 How many soldiers? (Bh¯askara)48 Horses and bulls – a Diophantine equation (Euler)50 The sailors, the coconuts, and the monkey (P. Dirac)52 Dirac’s solution 56 General solution 56 Unknown address (Ramanujan)57 Stamp combinations (Frobenius, Sylvester, p. 60)61 Generalized problem 62 Answers to Problems 64 4. GEOMETRY 67 Arbelos problem (Archimedes)68 Archimedean circles 69 Perpendicular distance 70 Two touching circles 73 Minimal distance (Heron)73 A fly and a drop of honey 75 Peninsula problem 76 The same distance of traversed paths (Brahmagupta)77 Broken bamboo (Brahmagupta)78 Height of a suspended string (Mah¯avira)78 The diameter of the material sphere (ibn Qorra)80 Dissection of three squares (Abu’l-Wafa)81 Dudeney’s six-cut dissection 82 Contents vii Dissection of four triangles (Abu’l-Wafa)83 Billiard problem (Alhazen)83 Distance of the optimal viewpoint (Regiomontanus)86 Rugby football problem 88 Saturn problem 89 The minimal sum of distances in a triangle (Steiner, Fermat, Torricelli, Cavalieri)91 Volumes of cylinders and spheres (Kepler, p. 93)94 Dido’s problem (Steiner, p. 95)96 Division of space by planes (Steiner)98 Division of plane 99 Number of bounded regions 101 Road system in a square (Steiner) 101 Kissing circles (Soddy, Descartes, Kowa) 104 Kazayuki’s problem 108 Five kissing spheres 109 -dimensional kissing spheres 110 The shortest bisecting arc of area (Polya) 110 Answers to Problems 112 5. TILING AND PACKING 119 Mosaics (Kepler) 121 Escher’s mosaics 124 Nonperiodictiling ( Penrose, Conway) 126 Penrose’s kite-dart tiling 126 Conway’s pinwheel tiling 128 Maximum area by pentaminoes (Knuth) 129 Pentamino tilings 131 Squaring the square 132 Kissing spheres (D. Gregory, Newton) 134 The densest sphere packing (Kepler, Gauss) 137 Kepler’s conjecture 137 Circle packing 138 Hales’ solution 141 viii Contents Cube-packing puzzles (Conway) 142 Answers to Problems 144 6. PHYSICS 151 The gold crown of King Hiero (Archimedes) 152 The length of traveled trip (Oresme) 153 Meeting of ships (Lucas, p. 155) 156 A girl and a bird (Von Neumann, p. 157) 158 Von Neumann’s easy series 158 More difficult problems 160 The lion and the man (Littlewood, Besicovitch, R. Rado) 161 Answers to Problems 166 7. COMBINATORICS 171 Combination with flavors (Mah¯avira) 172 Married couples cross the river (Bachet) 173 Four married couples cross the river 175 Josephus problem (Bachet and others) 176 Dudeney’s version 177 Japanese version 177 Graham-Knuth-Patasnik’s version 178 Rings puzzle (Cardano, p. 180) 181 Gray-code numbers 182 The problem of the misaddressed letters (N. (II) Bernoulli, Euler) 184 Eulerian squares (Euler) 186 Latin squares 187 Graeco-Latin squares 187 Euler’s officers problem 188 Euler’s conjecture 188 Parker’s square of order 10 189 Kirkman’s schoolgirls problem (Kirkman, Steiner, Sylvester, Cayley) 189 Steiner triple system 190 General problem 192 Sylvester’s problem 192 Contents ix Counting problem (Cayley) 193 Races with ties 194 The Tower of Hanoi (Lucas) 196 Benares temple 198 Interchanging the checkers (I) (Lucas) 199 Interchanging the checkers (II) (Lucas) 200 Shunting problem (Lucas) 200 Problem of married couples (probl`eme des m´enages) (Lucas) 201 The tree planting problem (Sylvester) 202 Dudeney’s military puzzle 203 Dudeney’s four planting problem 204 Different distances (Erd¨os, p. 205) 206 Answers to Problems 206 8. PROBABILITY 209 The problem of the points (Fermat, Pascal, p. 211) 212 Pascal-Fermat’s general problem 213 Gambling game with dice (Huygens) 215 Gambler’s ruin problem (Pascal, Fermat, Huygens) 217 General problem 218 The Petersburg paradox (N. (III) Bernoulli, D. Bernoulli, Cramer) 220 Bernoulli’s moral expectation 221 Cramer’s variant 222 The probability problem with the misaddressed letters (N. (II) Bernoulli, Euler) 222 Matchbox problem (Banach) 224 Combinatorial sum 225 Answers to Problems 225 9. GRAPHS 229 The problem of K¨onigsberg’s bridges (Euler) 230 Diagram-tracing puzzle 231 Euler’s theorem 231 Euler’s path 231 x Contents Crossing over 15 bridges 232 Tait’s net 233 Hamilton’s game on a dodecahedron (Hamilton, p. 233) 234 Icosian puzzle 234 Hamiltonian cycles and the Tower of Hanoi 236 Hamiltonian cycles on the Platonic solids 237 Dirac’s theorem 238 Ore’s theorem 238 King Arthur’s knights 239 A man, a wolf, a goat and a cabbage (Alcuin of York) 240 A stout family crosses the river (Alcuin of York) 242 Explorers and cannibals 243 Seven towns and one-way roads (Erd¨os) 244 Poinsot’s diagram-tracing puzzle (Poinsot) 245 Complete graph 7 and dominoes 246 Milk puzzle (Poisson) 247 Graph solution 248 Listing’s diagram-tracing puzzle (Listing) 249 Answers to Problems 250 10. CHESS 257 Knight’s re-entrant route (de Moivre, de Montmort, Vandermonde, Euler) 258 De Moivre’s re-entrant route 259 Euler’s re-entrant route 260 Vandermonde’s approach 260 Schwenk’s theorem 262 Semi-magicre-entrant route 262 Non-attacking rooks (Euler) 265 The eight queens problem (Gauss, p. 268) 269 -queens problem 271 Number of solutions 272 The longest uncrossed knight’s tour (Knuth) 273 Guarini’s knight-switching problem 274 A variant of the knight-switching problem 276 Contents xi Answers to Problems 276 11. MISCELLANY 283 Problems from Alcuin of York 283 Problems from Abu’l-Wafa 283 Amusing problems from Fibonacci 284 Problems from Bachet 285 Huygens’ probability problems 285 Problems from Newton 286 Problems from Euler 286 APPENDIX A: Method of continued fractions for solving Pell’s equation 289 APPENDIX B: Geometrical inversion 293 APPENDIX C: Some basicfactsfrom graph theory 294 APPENDIX D: Linear difference equations with constant coefficients 296 Biographies – a chronological order 299 Bibliography 311 Name index 319 PREFACE Mathematics is too serious and, therefore, no opportunity should be missed to make it amusing. Blaise Pascal Mathematical puzzles and games have been in evidence ever since man first began posing mathematical problems. The history of mathematics is replete with examples of puzzles, games, and entertaining problems that have fostered the development of new disciplines and sparked further research. Important connections exist between problems originally meant to amuse and mathematical concepts critical to graph theory, geometry, optimization theory, combinatorics, and number theory, to name only a few. As a motivating force, then, the inclination to seek diversion and enter- tainment has resulted in the unintended revelation of mathematical truths while also tempering mathematical logic. In fact, Bertrand Russell (1872– 1970) once noted: “A logical theory may be tested by its capacity for dealing with puzzles, and it is a wholesome plan, in thinking about logic, to stock the mind with as many puzzles as possible, since these serve much the same purpose as is served by experiments in physical science.” Perhaps the popularity of mathematical puzzles and games endures be- cause they fulfill the need for diversion, the desire to achieve mastery over challenging subject matter or simply to test our intellectual capacities. Of equal importance, mathematical amusements also offer an ample playing field to both the amateur and the professional mathematician.
Recommended publications
  • The 'Crisis of Noosphere'
    The ‘crisis of noosphere’ as a limiting factor to achieve the point of technological singularity Rafael Lahoz-Beltra Department of Applied Mathematics (Biomathematics). Faculty of Biological Sciences. Complutense University of Madrid. 28040 Madrid, Spain. [email protected] 1. Introduction One of the most significant developments in the history of human being is the invention of a way of keeping records of human knowledge, thoughts and ideas. The storage of knowledge is a sign of civilization, which has its origins in ancient visual languages e.g. in the cuneiform scripts and hieroglyphs until the achievement of phonetic languages with the invention of Gutenberg press. In 1926, the work of several thinkers such as Edouard Le Roy, Vladimir Ver- nadsky and Teilhard de Chardin led to the concept of noosphere, thus the idea that human cognition and knowledge transforms the biosphere coming to be something like the planet’s thinking layer. At present, is commonly accepted by some thinkers that the Internet is the medium that brings life to noosphere. Hereinafter, this essay will assume that the words Internet and noosphere refer to the same concept, analogy which will be justified later. 2 In 2005 Ray Kurzweil published the book The Singularity Is Near: When Humans Transcend Biology predicting an exponential increase of computers and also an exponential progress in different disciplines such as genetics, nanotechnology, robotics and artificial intelligence. The exponential evolution of these technologies is what is called Kurzweil’s “Law of Accelerating Returns”. The result of this rapid progress will lead to human beings what is known as tech- nological singularity.
    [Show full text]
  • Kissing Numbers: Surprises in Dimension Four Günter M
    Kissing numbers: Surprises in Dimension Four Günter M. Ziegler, TU Berlin The “kissing number problem” is a basic geometric problem that got its name from billards: Two balls “kiss” if they touch. The kissing number problem asks how many other balls can touch one given ball at the same time. If you arrange the balls on a pool ta- ble, it is easy to see that the answer is exactly six: Six balls just perfectly surround a given ball. Graphic: Detlev Stalling, ZIB Berlin and at the same time Vladimir I. Levenstein˘ in Russia proved that the correct, exact maximal numbers for the kissing number prob- lem are 240 in dimension 8, and 196560 in dimension 24. This is amazing, because these are also the only two dimensions where one knows a precise answer. It depends on the fact that mathemati- cians know very remarkable configurations in dimensions 8 and 24, which they call the E8 lattice and the Leech lattice, respectively. If, however, you think about this as a three-dimensional problem, So the kissing number problem remained unsolved, in particular, the question “how many balls can touch a given ball at the same for the case of dimension four. The so-called 24-cell, a four- time” becomes much more interesting — and quite complicated. In dimensional “platonic solid” of remarkable beauty (next page), fact, The 17th century scientific genius Sir Isaac Newton and his yields a configuration of 24 balls that would touch a given one in colleague David Gregory had a controversy about this in 1694 — four-dimensional space.
    [Show full text]
  • Jean-Baptiste Charles Joseph Bélanger (1790-1874), the Backwater Equation and the Bélanger Equation
    THE UNIVERSITY OF QUEENSLAND DIVISION OF CIVIL ENGINEERING REPORT CH69/08 JEAN-BAPTISTE CHARLES JOSEPH BÉLANGER (1790-1874), THE BACKWATER EQUATION AND THE BÉLANGER EQUATION AUTHOR: Hubert CHANSON HYDRAULIC MODEL REPORTS This report is published by the Division of Civil Engineering at the University of Queensland. Lists of recently-published titles of this series and of other publications are provided at the end of this report. Requests for copies of any of these documents should be addressed to the Civil Engineering Secretary. The interpretation and opinions expressed herein are solely those of the author(s). Considerable care has been taken to ensure accuracy of the material presented. Nevertheless, responsibility for the use of this material rests with the user. Division of Civil Engineering The University of Queensland Brisbane QLD 4072 AUSTRALIA Telephone: (61 7) 3365 3619 Fax: (61 7) 3365 4599 URL: http://www.eng.uq.edu.au/civil/ First published in 2008 by Division of Civil Engineering The University of Queensland, Brisbane QLD 4072, Australia © Chanson This book is copyright ISBN No. 9781864999211 The University of Queensland, St Lucia QLD JEAN-BAPTISTE CHARLES JOSEPH BÉLANGER (1790-1874), THE BACKWATER EQUATION AND THE BÉLANGER EQUATION by Hubert CHANSON Professor, Division of Civil Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072, Australia Ph.: (61 7) 3365 3619, Fax: (61 7) 3365 4599, Email: [email protected] Url: http://www.uq.edu.au/~e2hchans/ REPORT No. CH69/08 ISBN 9781864999211 Division of Civil Engineering, The University of Queensland August 2008 Jean-Baptiste BÉLANGER (1790-1874) (Courtesy of the Bibliothèque de l'Ecole Nationale Supérieure des Ponts et Chaussées) Abstract In an open channel, the transition from a high-velocity open channel flow to a fluvial motion is a flow singularity called a hydraulic jump.
    [Show full text]
  • Biography Paper – Georg Cantor
    Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies.
    [Show full text]
  • Elementary Functions: Towards Automatically Generated, Efficient
    Elementary functions : towards automatically generated, efficient, and vectorizable implementations Hugues De Lassus Saint-Genies To cite this version: Hugues De Lassus Saint-Genies. Elementary functions : towards automatically generated, efficient, and vectorizable implementations. Other [cs.OH]. Université de Perpignan, 2018. English. NNT : 2018PERP0010. tel-01841424 HAL Id: tel-01841424 https://tel.archives-ouvertes.fr/tel-01841424 Submitted on 17 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par l’Université de Perpignan Via Domitia Préparée au sein de l’école doctorale 305 – Énergie et Environnement Et de l’unité de recherche DALI – LIRMM – CNRS UMR 5506 Spécialité: Informatique Présentée par Hugues de Lassus Saint-Geniès [email protected] Elementary functions: towards automatically generated, efficient, and vectorizable implementations Version soumise aux rapporteurs. Jury composé de : M. Florent de Dinechin Pr. INSA Lyon Rapporteur Mme Fabienne Jézéquel MC, HDR UParis 2 Rapporteur M. Marc Daumas Pr. UPVD Examinateur M. Lionel Lacassagne Pr. UParis 6 Examinateur M. Daniel Menard Pr. INSA Rennes Examinateur M. Éric Petit Ph.D. Intel Examinateur M. David Defour MC, HDR UPVD Directeur M. Guillaume Revy MC UPVD Codirecteur À la mémoire de ma grand-mère Françoise Lapergue et de Jos Perrot, marin-pêcheur bigouden.
    [Show full text]
  • 21-110: Problem Solving in Recreational Mathematics Project Assigned Wednesday, March 17, 2010
    21-110: Problem Solving in Recreational Mathematics Project Assigned Wednesday, March 17, 2010. Due Friday, April 30, 2010. This assignment is a group project. You will work in a group of up to four people (i.e., the maximum group size is four). The project is due on Friday, April 30, 2010. Your assignment is to address one of the projects outlined here, and write up your report in a paper. All group members should sign the final report (one report for the whole group). When you sign, you are certifying that you made a fair and honest contribution to the group and that you understand what has been written. I expect to be told of anyone trying to get a free ride. All group members will receive the same grade. You do not necessarily need to address every one of the questions in the project you choose. Conversely, you are welcome to consider additional questions besides the ones listed here. The most important thing is to think critically, creatively, and mathematically about the topic of the project, and to cover it in sufficient depth and detail. Have fun with it! A paper of sufficient length will probably be 8 to 10 pages long (not counting pictures, diagrams, tables, etc.), though longer papers are certainly fine. Note that correct grammar, spelling, readability, and mathematical content all count. Any graphs, diagrams, or other illustrations should be neat, accurate, and appropriately labeled. Start with an introductory paragraph, organize your report in a sensible way, walk your reader through what you are doing, and end with a conclusion.
    [Show full text]
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • Gazette Des Mathématiciens
    JUILLET 2018 – No 157 la Gazette des Mathématiciens • Autour du Prix Fermat • Mathématiques – Processus ponctuels déterminantaux • Raconte-moi... le champ libre gaussien • Tribune libre – Quelle(s) application(s) pour le plan Torossian-Villani la GazetteComité de rédaction des Mathématiciens Rédacteur en chef Sébastien Gouëzel Boris Adamczewski Université de Nantes Institut Camille Jordan, Lyon [email protected] [email protected] Sophie Grivaux Rédacteurs Université de Lille [email protected] Thomas Alazard École Normale Supérieure de Paris-Saclay [email protected] Fanny Kassel IHÉS Maxime Bourrigan [email protected] Lycée Saint-Geneviève, Versailles [email protected] Pauline Lafitte Christophe Eckès École Centrale, Paris Archives Henri Poincaré, Nancy [email protected] [email protected] Damien Gayet Romain Tessera Institut Fourier, Grenoble Université Paris-Sud [email protected] [email protected] Secrétariat de rédaction : smf – Claire Ropartz Institut Henri Poincaré 11 rue Pierre et Marie Curie 75231 Paris cedex 05 Tél. : 01 44 27 67 96 – Fax : 01 40 46 90 96 [email protected] – http://smf.emath.fr Directeur de la publication : Stéphane Seuret issn : 0224-8999 À propos de la couverture. Cette image réalisée par Alejandro Rivera (Institut Fourier) est le graphe de la partie positive du champ libre gaussien sur le tore plat 2=(2á2) projeté sur la somme des espaces propres du laplacien de valeur propre plus petite que 500. Les textures et couleurs ajoutées sur le graphe sont pure- ment décoratives. La fonction a été calculée avec C++ comme une somme de polynômes trigonométriques avec des poids aléatoires bien choisis, le graphe a été réalisé sur Python et les textures et couleurs ont été réalisées avec gimp.
    [Show full text]
  • Art and Recreational Math Based on Kite-Tiling Rosettes
    Bridges 2018 Conference Proceedings Art and Recreational Math Based on Kite-Tiling Rosettes Robert W. Fathauer Tessellations Company, Phoenix, AZ 85044, USA; [email protected] Abstract We describe here some properties of kite-tiling rosettes and the wide range of artistic and recreational mathematics uses of kite-tiling rosettes. A kite-tiling rosette is a tiling with a single kite-shaped prototile and a singular point about which the tiling has rotational symmetry. A tiling with n-fold symmetry is comprised of rings of n kites of the same size, with kite size increasing with distance away from the singular point. The prototile can be either convex or concave. Such tilings can be constructed over a wide range of kite shapes for all n > 2, and for concave kites for n = 2. A finite patch of adjacent rings of tiles can serve as a scaffolding for constructing knots and links, with strands lying along tile edges. Such patches serve as convenient templates for attractive graphic designs and Escheresque artworks. In addition, these patches can be used as grids for a variety of puzzles and games and are particularly well suited to pandiagonal magic squares. Three-dimensional structures created by giving the tiles thickness are also explored. Introduction Broadly defined, rosettes are designs or objects that are flowerlike or possess a single point of rotational symmetry. They often contain lines of mirror symmetry through the rotation center as well. Rhombus- based tiling rosettes with n-fold rotational symmetry of the type shown in Fig. 1a are relatively well known and can be constructed for any n greater than 2.
    [Show full text]
  • GYRODYNAMICS Introduction to the Dynamics of Rigid Bodies
    2 GYRODYNAMICS Introduction to the dynamics of rigid bodies Introduction. Though Newton wrote on many topics—and may well have given thought to the odd behavior of tops—I am not aware that he committed any of that thought to writing. But by Euler was active in the field, and it has continued to bedevil the thought of mathematical physicists. “Extended rigid bodies” are classical abstractions—alien both to relativity and to quantum mechanics—which are revealed to our dynamical imaginations not so much by commonplace Nature as by, in Maxwell’s phrase, the “toys of Youth.” That such toys behave “strangely” is evident to the most casual observer, but the detailed theory of their behavior has become notorious for being elusive, surprising and difficult at every turn. Its formulation has required and inspired work of wonderful genius: it has taught us much of great worth, and clearly has much to teach us still. Early in my own education as a physicist I discovered that I could not understand—or, when I could understand, remained unpersuaded by—the “elementary explanations” of the behavior of tops & gyros which are abundant in the literature. So I fell into the habit of avoiding the field, waiting for the day when I could give to it the time and attention it obviously required and deserved. I became aware that my experience was far from atypical: according to Goldstein it was in fact a similar experience that motivated Klein & Sommerfeld to write their 4-volume classic, Theorie des Kreisels (–). In November I had occasion to consult my Classical Mechanics II students concerning what topic we should take up to finish out the term.
    [Show full text]
  • From Arthur Cayley Via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and Superstrings to Cantorian Space–Time
    Available online at www.sciencedirect.com Chaos, Solitons and Fractals 37 (2008) 1279–1288 www.elsevier.com/locate/chaos From Arthur Cayley via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and superstrings to Cantorian space–time L. Marek-Crnjac Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, P.O. Box 2964, SI-1001 Ljubljana, Slovenia Abstract In this work we present a historical overview of mathematical discoveries which lead to fundamental developments in super string theory, super gravity and finally to E-infinity Cantorian space–time theory. Cantorian space–time is a hierarchical fractal-like semi manifold with formally infinity many dimensions but a finite expectation number for these dimensions. The idea of hierarchy and self-similarity in science was first entertain by Right in the 18th century, later on the idea was repeated by Swedenborg and Charlier. Interestingly, the work of Mohamed El Naschie and his two contra parts Ord and Nottale was done independently without any knowledge of the above starting from non- linear dynamics and fractals. Ó 2008 Published by Elsevier Ltd. 1. Introduction Many of the profound mathematical discovery and dare I say also inventions which were made by the mathemati- cians Arthur Cayley, Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan and Emmy Noether [1] are extremely important for high energy particles in general [2] as well as in the development of E-infinity, Cantorian space–time the- ory [3,4]. The present paper is dedicated to the historical background of this subject. 2. Arthur Cayley – beginner of the group theory in the modern way Arthur Cayley was a great British mathematician.
    [Show full text]
  • LMS – EPSRC Durham Symposium
    LMS – EPSRC Durham Symposium Anthony Byrne Grants and Membership Administrator 12th July 2016, Durham The work of the LMS for mathematics The charitable aims of the Society: Funding the advancement of mathematical knowledge Encouraging mathematical research and collaboration ’, George Legendre Celebrating mathematical 30 Pieces achievements Publishing and disseminating mathematical knowledge Advancing and promoting mathematics The attendees of the Young Researchers in Mathematics Conference 2015, held at Oxford Historical Moments of the London Mathematical Society 1865 Foundation of LMS at University College London George Campbell De Morgan organised the first meeting, and his father, Augustus De Morgan became the 1st President 1865 First minute book list of the 27 original members 1866 LMS moves to Old Burlington House, Piccadilly J.J. Sylvester, 2nd President of the Society. 1866 Julius Plûcker Thomas Hirst Plûcker Collection of boxwood models of quartic surfaces given to Thomas Archer Hirst, Vice- President of LMS, and donated to the Society 1870 Move to Asiatic Society, 22 Albemarle Street William Spottiswoode, President 1874 Donation of £1,000 from John William Strutt (Lord Rayleigh) Generous donation enabled the Society to publish volumes of the Proceedings of the London Mathematical Society. J.W. Strutt (Lord Rayleigh), LMS President 1876-78 1881 First women members Charlotte Angas Scott and Christine Ladd 1884 First De Morgan medal awarded to Arthur Cayley 1885 Sophie Bryant First woman to have a paper published in LMS Proceedings 1916 Return to Burlington House the home of LMS until 1998 1937 ACE ’s Automatic Turing LMS Proceedings, 1937 Computing Engine, published Alan Turing’s first paper 1950 On Computable Numbers 1947 Death of G.H.
    [Show full text]