Presentation on TERATOLOGY Veterinary Obstetrics (VGO- 421)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Do Humans Possess the Capability to Regenerate?
The Science Journal of the Lander College of Arts and Sciences Volume 12 Number 2 Spring 2019 - 2019 Do Humans Possess the Capability to Regenerate? Chasha Wuensch Touro College Follow this and additional works at: https://touroscholar.touro.edu/sjlcas Part of the Biology Commons, and the Pharmacology, Toxicology and Environmental Health Commons Recommended Citation Wuensch, C. (2019). Do Humans Possess the Capability to Regenerate?. The Science Journal of the Lander College of Arts and Sciences, 12(2). Retrieved from https://touroscholar.touro.edu/sjlcas/vol12/ iss2/2 This Article is brought to you for free and open access by the Lander College of Arts and Sciences at Touro Scholar. It has been accepted for inclusion in The Science Journal of the Lander College of Arts and Sciences by an authorized editor of Touro Scholar. For more information, please contact [email protected]. Do Humans Possess the Capability to Regenerate? Chasha Wuensch A Chasha Wuensch graduated in May 2018 with a Bachelor of Science degree in Biology and will be attending pharmacy school. Abstract Urodele amphibians, including newts and salamanders, are amongst the most commonly studied research models for regenera- tion .The ability to regenerate, however, is not limited to amphibians, and the regenerative process has been observed in mammals as well .This paper discusses methods by which amphibians and mammals regenerate to lend insights into human regenerative mechanisms and regenerative potential .A focus is placed on the urodele and murine digit tip models, -
Repair, Regeneration, and Fibrosis Gregory C
91731_ch03 12/8/06 7:33 PM Page 71 3 Repair, Regeneration, and Fibrosis Gregory C. Sephel Stephen C. Woodward The Basic Processes of Healing Regeneration Migration of Cells Stem cells Extracellular Matrix Cell Proliferation Remodeling Conditions That Modify Repair Cell Proliferation Local Factors Repair Repair Patterns Repair and Regeneration Suboptimal Wound Repair Wound Healing bservations regarding the repair of wounds (i.e., wound architecture are unaltered. Thus, wounds that do not heal may re- healing) date to physicians in ancient Egypt and battle flect excess proteinase activity, decreased matrix accumulation, Osurgeons in classic Greece. The liver’s ability to regenerate or altered matrix assembly. Conversely, fibrosis and scarring forms the basis of the Greek myth involving Prometheus. The may result from reduced proteinase activity or increased matrix clotting of blood to prevent exsanguination was recognized as accumulation. Whereas the formation of new collagen during the first necessary event in wound healing. At the time of the repair is required for increased strength of the healing site, American Civil War, the development of “laudable pus” in chronic fibrosis is a major component of diseases that involve wounds was thought to be necessary, and its emergence was not chronic injury. appreciated as a symptom of infection but considered a positive sign in the healing process. Later studies of wound infection led The Basic Processes of Healing to the discovery that inflammatory cells are primary actors in the repair process. Although scurvy (see Chapter 8) was described in Many of the basic cellular and molecular mechanisms necessary the 16th century by the British navy, it was not until the 20th for wound healing are found in other processes involving dynamic century that vitamin C (ascorbic acid) was found to be necessary tissue changes, such as development and tumor growth. -
Wound Healing: a Paradigm for Regeneration
SYMPOSIUM ON REGENERATIVE MEDICINE Wound Healing: A Paradigm for Regeneration Victor W. Wong, MD; Geoffrey C. Gurtner, MD; and Michael T. Longaker, MD, MBA From the Hagey Laboratory for Pediatric Regenerative Medi- CME Activity cine, Department of Surgery, Stanford University, Stanford, Target Audience: The target audience for Mayo Clinic Proceedings is primar- relationships with any commercial interest related to the subject matter ily internal medicine physicians and other clinicians who wish to advance of the educational activity. Safeguards against commercial bias have been CA. their current knowledge of clinical medicine and who wish to stay abreast put in place. Faculty also will disclose any off-label and/or investigational of advances in medical research. use of pharmaceuticals or instruments discussed in their presentation. Statement of Need: General internists and primary care physicians must Disclosure of this information will be published in course materials so maintain an extensive knowledge base on a wide variety of topics covering that those participants in the activity may formulate their own judgments all body systems as well as common and uncommon disorders. Mayo Clinic regarding the presentation. Proceedings aims to leverage the expertise of its authors to help physicians In their editorial and administrative roles, William L. Lanier, Jr, MD, Terry L. understand best practices in diagnosis and management of conditions Jopke, Kimberly D. Sankey, and Nicki M. Smith, MPA, have control of the encountered in the clinical setting. content of this program but have no relevant financial relationship(s) with Accreditation: College of Medicine, Mayo Clinic is accredited by the Accred- industry. itation Council for Continuing Medical Education to provide continuing med- The authors report no competing interests. -
Live Imaging and Computational Modelling of Tissue Growth and Tissue Regeneration in Drosophila
Live Imaging and Computational Modelling of Tissue Growth and Tissue Regeneration in Drosophila Jamie Rickman 19th January 2015 Abstract Wound healing in the epithelium of the Drosophila wing imaginal disc is a regenerative process which is known to proceed via the assembly of a contractile actin cable that circumscribes the wound drawing the leading edge cells together in a characterstic rosette formation. Here we computation- ally explore various other biological and mechanical processes that are involved in tissue repair in Drosophila; the formation of dynamic actin protrusions that pull each other forward to close the wound; the active extrusion of dead cells from the wound site; and the effect of a global tension force operating on the tissue. In silico simulation results, using the vertex model of epithelial tissue, and in vivo data are compared. It is found that patterning of line tensions in wounded cells and cells neighbouring the wound can drive rosette formation and wound closure. Results from simulating a global tension force indicate this could recapitulate the initial expansion phase of wound healing seen in experiment. Contents 1 Introduction 2 1.1 Tissue regeneration . 2 1.2 Regenerative healing in Drosophila wing imaginal discs . 2 1.3 The mechanical drivers of epithelial wound healing in Drosophila . 3 2 The Vertex Model 4 3 Current work and results 5 3.1 Wound closure in vivo ...................................... 5 3.1.1 Wound closure rate . 5 3.1.2 Rosette formation . 5 3.1.3 Inital expansion of wound following ablation . 6 3.2 Wound Closure in silico ..................................... 7 3.2.1 Implementation of the vertex model . -
Guidelines for Conducting Birth Defects Surveillance
NATIONAL BIRTH DEFECTS PREVENTION NETWORK HTTP://WWW.NBDPN.ORG Guidelines for Conducting Birth Defects Surveillance Edited By Lowell E. Sever, Ph.D. June 2004 Support for development, production, and distribution of these guidelines was provided by the Birth Defects State Research Partnerships Team, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention Copies of Guidelines for Conducting Birth Defects Surveillance can be viewed or downloaded from the NBDPN website at http://www.nbdpn.org/bdsurveillance.html. Comments and suggestions on this document are welcome. Submit comments to the Surveillance Guidelines and Standards Committee via e-mail at [email protected]. You may also contact a member of the NBDPN Executive Committee by accessing http://www.nbdpn.org and then selecting Network Officers and Committees. Suggested citation according to format of Uniform Requirements for Manuscripts ∗ Submitted to Biomedical Journals:∗ National Birth Defects Prevention Network (NBDPN). Guidelines for Conducting Birth Defects Surveillance. Sever, LE, ed. Atlanta, GA: National Birth Defects Prevention Network, Inc., June 2004. National Birth Defects Prevention Network, Inc. Web site: http://www.nbdpn.org E-mail: [email protected] ∗International Committee of Medical Journal Editors. Uniform requirements for manuscripts submitted to biomedical journals. Ann Intern Med 1988;108:258-265. We gratefully acknowledge the following individuals and organizations who contributed to developing, writing, editing, and producing this document. NBDPN SURVEILLANCE GUIDELINES AND STANDARDS COMMITTEE STEERING GROUP Carol Stanton, Committee Chair (CO) Larry Edmonds (CDC) F. John Meaney (AZ) Glenn Copeland (MI) Lisa Miller-Schalick (MA) Peter Langlois (TX) Leslie O’Leary (CDC) Cara Mai (CDC) EDITOR Lowell E. -
Serotonin Signaling Regulates Insulin-Like Peptides for Growth, Reproduction, and Metabolism in the Disease Vector Aedes Aegypti
Serotonin signaling regulates insulin-like peptides for growth, reproduction, and metabolism in the disease vector Aedes aegypti Lin Linga,b and Alexander S. Raikhela,b,1 aDepartment of Entomology, University of California, Riverside, CA 92521; and bInstitute for Integrative Genome Biology, University of California, Riverside, CA 92521 Contributed by Alexander S. Raikhel, September 6, 2018 (sent for review May 15, 2018; reviewed by Christen Mirth, Michael R. Strand, and Marc Tatar) Disease-transmitting female mosquitoes require a vertebrate individuals have completed adequate growth to enter the next de- blood meal to produce their eggs. An obligatory hematophagous velopmental stage (5, 6). Although other DILPs promote growth, lifestyle, rapid reproduction, and existence of a large number of their specific expression patterns suggest that they might carry out transmittable diseases make mosquitoes the world’s deadliest an- distinct physiological functions (2). In Drosophila larvae, dilps1,-2, imals. Attaining optimal body size and nutritional status is critical -3,and-5 are expressed predominantly in neurosecretory cells for mosquitoes to become reproductively competent and effective (IPCs, insulin producing cells) of the brain; ablation of larval IPCs disease vectors. We report that blood feeding boosts serotonin reduces body size with delayed metamorphosis (7). These DILPs concentration and elevates the serotonin receptor Aa5HT2B regulate growth by means of the canonical insulin/insulin-like (Aedes aegypti 5-hydroxytryptamine receptor, type 2B) transcript growth factor (IGF) pathway. Single gene mutations in insulin/ level in the fat-body, an insect analog of the vertebrate liver and IGF components have been shown to cause a reduction in growth adipose tissue. -
Particular Reference to the Development of Theneural
The role of embryology in teratological research, with particular reference to the development of the neural tube and heart M. H. Kaufman Department ofAnatomy, University of Cambridge, Cambridge CB2 3DY, U.K. Introduction There are many intriguing questions that the experimental embryologist can attempt to answer which could provide insight into the pathogenesis of many of the commoner types of congenital abnormalities that affect the human population. I should like to draw attention to certain areas of embryological interest, and make some general and personal observations on teratological research. I shall concentrate on two particular areas of interest, namely studies into the pathogenesis of neural tube closure defects and cardiovascular anomalies because these are the topics of my special interests. Two quite different, but complementary approaches may be employed in experimental teratological research to investigate how certain agents act on specific organs or tissues of the embryo or fetus to induce their abnormal development. The first approach takes cognizance of the nature and chemical structure of the agent under investigation, in order to determine at the biochemical level what the underlying mechanism and principal sites of action are likely to be. The primary effect of the agent may be to disrupt maternal metabolism, and the effect on the embryo or fetus may be secondary to the effect on the mother. In these latter circumstances it is not uncommon for an embryotoxic effect to be produced before any toxic manifestation becomes apparent in the mother. The second approach takes cognizance of the morphological abnormalities which may be induced by embryonic exposure to a teratogenic agent, in order to determine in the first instance at which stage of gestation the teratogenic insult is likely to have occurred, and, also, its site of action at the cellular and tissue level. -
Directing Human Embryonic Stem Cells to Generate Vascular Progenitor Cells
Gene Therapy (2008) 15, 89–95 & 2008 Nature Publishing Group All rights reserved 0969-7128/08 $30.00 www.nature.com/gt REVIEW Directing human embryonic stem cells to generate vascular progenitor cells H Bai and ZZ Wang Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA Pluripotent human embryonic stem cells (hESCs) differenti- it is also possible that endothelial cells and SMCs derived ate into most of the cell types of the adult human body, from hESCs can be used to engineer artificial vessels to including vascular cells. Vascular cells, such as endothelial repair damaged vessels and form vessel networks in cells and vascular smooth muscle cells (SMCs) are engineered tissues. Here we review the current status of significant contributors to tissue repair and regeneration. In directing hESCs to differentiate to vascular cells. addition to their potential applications for treatment of Gene Therapy (2008) 15, 89–95; doi:10.1038/sj.gt.3303005; vascular diseases and stimulation of ischemic tissue growth, published online 16 August 2007 Keywords: human embryonic stem cells; endothelial cells; smooth muscle cells Introduction which give rise to hematopoietic stem cells and vascular endothelial cells.10–12 Even both of them give rise to Some degenerative diseases are caused by the loss of hematopoietic and endothelial cells, it is unclear whether tissue-specific cells in organs, examples include: (i) type I hemangioblasts are the same as hemogenic endothelial diabetes, in which insulin-producing b cells are de- cells. For easy to discuss, we will use the term stroyed by an autoimmune disorder; (ii) Parkinson’s hemangioblast for both of them. -
Promoting Longevity by Maintaining Metabolic and Proliferative
© 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 109-118 doi:10.1242/jeb.089920 REVIEW Promoting longevity by maintaining metabolic and proliferative homeostasis Lifen Wang*, Jason Karpac* and Heinrich Jasper‡ ABSTRACT preventing or counteracting this decline have evolved. Aging is characterized by a widespread loss of homeostasis in Understanding the integration of these diverse processes, and thus biological systems. An important part of this decline is caused by age- gaining comprehensive insight into the causes and mechanisms of related deregulation of regulatory processes that coordinate cellular the aging process, remains a challenge. In recent years, however, the responses to changing environmental conditions, maintaining cell and study of aging has progressed from the identification of single-gene tissue function. Studies in genetically accessible model organisms mutations that influence lifespan toward more complex integrative have made significant progress in elucidating the function of such analysis of the aging process. This work has also been facilitated by regulatory processes and the consequences of their deregulation for genetically accessible model systems and includes detailed analysis tissue function and longevity. Here, we review such studies, focusing of the interaction between environmental factors and genetics in the on the characterization of processes that maintain metabolic and control of longevity, as well as assessment of tissue-specific proliferative homeostasis in the fruitfly Drosophila melanogaster. The contributions to lifespan regulation (Guarente and Kenyon, 2000; primary regulatory axis addressed in these studies is the interaction Tissenbaum and Guarente, 2002; Kenyon, 2005; Greer and Brunet, between signaling pathways that govern the response to oxidative 2008; Mair and Dillin, 2008; Broughton and Partridge, 2009; stress, and signaling pathways that regulate cellular metabolism and Panowski and Dillin, 2009; Toivonen and Partridge, 2009; Taylor growth. -
Malformation Syndromes: a Review of Mouse/Human Homology
J Med Genet: first published as 10.1136/jmg.25.7.480 on 1 July 1988. Downloaded from Joalrn(ll of Medical Genetics 1988, 25, 480-487 Malformation syndromes: a review of mouse/human homology ROBIN M WINTER Fromii the Kennetivdy Galton Centre, Clinlicail Research Centre, Northiwick Park Hospital, Harrow, Middlesex HAI 3UJ. SUMMARY The purpose of this paper is to review the known and possible homologies between mouse and human multiple congenital anomaly syndromes. By identifying single gene defects causing similar developmental abnormalities in mouse and man, comparative gene mapping can be carried out, and if the loci in mouse and man are situated in homologous chromosome segments, further molecular studies can be performed to show that the loci are identical. This paper puts forward tentative homologies in the hope that some will be investigated and shown to be true homologies at the molecular level, thus providing mouse models for complex developmental syndromes. The mouse malformation syndromes are reviewed according to their major gene effects. X linked syndromes are reviewed separately because of the greater ease of establishing homology for these conditions. copyright. The purpose of this paper is to review the known even phenotypic similarity would be no guarantee and possible homologies between mouse and human that such genes in man and mouse are homologous". genetic malformation syndromes. Lalley and By identifying single gene defects causing similar following criteria for developmental abnormalities in mouse and man, McKusick' recommend the http://jmg.bmj.com/ identifying gene homologies between species: comparative gene mapping can be carried out, and if (1) Similar nucleotide or amino acid sequence. -
BREAKTHROUGHS in BIOSCIENCE/ ADVISORY COMMITTEE REGENERATIVE MEDICINE CHAIR» AUTHOR» Paula H
/ FALL 2016 Regenerative Medicine Advances from the Convergence of Biology & Engineering WHAT'S INSIDE » EXCEPTIONAL REGENERATION IN NATURE 2 / NATURAL REGENERATION IN HUMAN TISSUES 3 TISSUE ENGINEERING 4 / CONSTRUCTING SKIN 7 / TUBULAR ORGANS 8 / BONE ENGINEERING 8 MENDING BROKEN HEARTS 8 / REAWAKENING THE HUMAN HEART 10 / THE ROAD AHEAD 11 BREAKTHROUGHS IN BIOSCIENCE/ ADVISORY COMMITTEE REGENERATIVE MEDICINE CHAIR» AUTHOR» Paula H. Stern, PhD Cathryn M. Delude, of Santa Fe, New Mexico, writes about Northwestern University Feinberg School of Medicine science and medicine for magazines, newspapers, and COMMITTEE MEMBERS» research institutes. Her articles have appeared in Nature Aditi Bhargava, PhD Outlook, The Journal of the National Cancer Association University of California, San Francisco (JNCI), AACR’s Cancer Discovery, Proto: Dispatches from David L. Brautigan, PhD the Frontiers of Medicine, Los Angeles Times, Boston Globe, University of Virginia School of Medicine New York Times, Scientific American, and The Scientist. She has also written for the Howard Hughes Medical Institute, David B. Burr, PhD Harvard Health Publications, Harvard School of Public Health, Indiana University School of Medicine Massachusetts General Hospital, Massachusetts Institute of Blanche Capel, PhD Technology, Dana Farber Cancer Center, Stowers Institute Duke University Medical Center for Medical Research, and the National Institutes of Health Rao L. Divi, PhD Office of Science Education. This is her fifth article in FASEB’s National Cancer Institute, National Institutes of Health Breakthroughs in Bioscience series. Marnie Halpern, PhD SCIENTIFIC ADVISOR» Carnegie Institution for Science Henry J. Donahue, PhD is the School of Engineering Foun- dation Professor and Chair of the Department of Biomedical Loraine Oman-Ganes, MD, FRCP(C), CCMG, FACMG Engineering at the Virginia Commonwealth University. -
Fetal Pathology of Neural Tube Defects – an Overview of 68 Cases Fetalpathologie Der Neuralrohrdefekte – Ein Überblick Über 68 NTD-Fälle
GebFra Science | Original Article Fetal Pathology of Neural Tube Defects – An Overview of 68 Cases Fetalpathologie der Neuralrohrdefekte – ein Überblick über 68 NTD-Fälle Authors Deutsche Version unter: Katharina Schoner 1,RolandAxt-Fliedner2, Rainer Bald 3, https:/doi.org/10.1055/s-0043-103459 Barbara Fritz 4,JuergenKohlhase5, Thomas Kohl 6, Supporting Information: Helga Rehder 1, 7 https://doi.org/10.1055/s-0043-103459 Affiliations ABSTRACT 1 Institute of Pathology, WG Fetal Pathology, University Introduction The prevalence of neural tube defects world- of Gießen and Marburg, Philipps University of Marburg, wide is 1–2 per 1000 neonates. Neural tube defects result Marburg, Germany from a disturbance of neurulation in the 3rd or 4th week of 2 Department of Prenatal Medicine, University Hospital development and thus represent the earliest manifestation of Gießen and Marburg, Gießen, Germany of organ malformation. Neural tube defects (NTD) are classi- 3 Department of Gynecology and Obstetrics, Klinikum fied into cranial dysraphism leading to anencephaly or menin- Leverkusen, Leverkusen, Germany goencephalocele and spinal dysraphism with or without me- 4 Center of Human Genetics, University of Gießen and ningomyelocele. In isolated form they have multifactorial Marburg, Philipps University of Marburg, Marburg, causes, and the empirical risk of recurrence in Central Europe Germany is 2%. As associated malformations they tend to occur sporad- – 5 Praxis for Human Genetics Center of Preimplantation ically, and in monogenic syndromes they follow Mendelian in- Genetic Diagnosis, Freiburg, Germany heritance patterns with a high risk of recurrence. 6 German Center for Fetal Surgery & minimal-invasive Patients Autopsies were performed on 68 fetuses following a Therapy, University Hospital of Gießen and Marburg, prenatal diagnosis of NTD and induced abortion.