Die Satellitengeodäsie Als Tanzdisziplin?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Determination of a Geoid Model for Ghana Using the Stokes-Helmert Method
DETERMINATION OF A GEOID MODEL FOR GHANA USING THE STOKES-HELMERT METHOD MICHAEL ADJEI KLU August 2015 TECHNICAL REPORT NO. 298 DETERMINATION OF A GEOID MODEL FOR GHANA USING THE STOKES- HELMERT METHOD Michael Adjei Klu Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton, N.B. Canada E3B 5A3 August, 2015 © Michael Adjei Klu, 2015 PREFACE This technical report is a reproduction of a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering in the Department of Geodesy and Geomatics Engineering, August 2015. The research was supervised by Dr. Peter Dare, and funding was provided by the Ministry of Lands & Natural Resources, Ghana. As with any copyrighted material, permission to reprint or quote extensively from this report must be received from the author. The citation to this work should appear as follows: Klu, Michael Adjei (2015). Determination of a Geoid Model for Ghana Using the Stokes-Helmert Method. M.Sc.E. thesis, Department of Geodesy and Geomatics Engineering Technical Report No. 298, University of New Brunswick, Fredericton, New Brunswick, Canada, 91 pp. ABSTRACT One of the greatest achievements of humankind with regard to positioning is Global Navigation Satellite System (GNSS). Use of GNSS for surveying has made it possible to obtain accuracies of the order of 1 ppm or less in relative positioning mode depending on the software used for processing the data. However, the elevation obtained from GNSS measurement is relative to an ellipsoid, for example WGS84, and this renders the heights from GNSS very little practical value to those requiring orthometric heights. -
The First Measurement of the Deflection of the Vertical in Longitude
Eur. Phys. J. H. DOI: 10.1140/epjh/e2014-40055-2 The first measurement of the deflection of the vertical in longitude The figure of the earth in the early 19th century Andreas Schrimpfa Philipps-Universit¨atMarburg, Fachbereich Physik, Renthof 5, D-35032 Marburg, Germany Abstract. During the summer of 1837 Christian Ludwig Gerling, a for- mer student of Carl Friedrich Gauß’s, organized the world wide first de- termination of the deflection of the vertical in longitude. From a mobile observatory at the Frauenberg near Marburg (Hesse) he measured the astronomical longitude difference between C.F. Gauß’s observatory at G¨ottingenand F.G.B. Nicolai's observatory at Mannheim within an er- ror of 000: 4. To achieve this precision he first used a series of light signals for synchronizing the observatory clocks and, second, he very carefully corrected for the varying reaction time of the observers. By comparing these astronomical results with the geodetic{determined longitude dif- ferences he had recently measured for the triangulation of Kurhessen, he was able to extract a combined value of the deflection of the vertical in longitude of G¨ottingenand Mannheim. His results closely agree with modern vertical deflection data. 1 Introduction The discussion about the figure of the earth and its determination was an open ques- tion for almost two thousand years, the sciences involved were geodesy, geography and astronomy. Without precise instruments the everyday experience suggested a flat, plane world, although ideas of a spherically shaped earth were known and ac- cepted even in the ancient world. Assuming that the easily observable daily motion of the stars is due to the rotation of the earth, the rotational axis can be used to define a celestial sphere; a coordinate system, where the stars' position is given by two angles. -
Reference Systems for Surveying and Mapping Lecture Notes
Delft University of Technology Reference Systems for Surveying and Mapping Lecture notes Hans van der Marel ii The front cover shows the NAP (Amsterdam Ordnance Datum) ”datum point” at the Stopera, Amsterdam (picture M.M.Minderhoud, Wikipedia/Michiel1972). H. van der Marel Lecture notes on Reference Systems for Surveying and Mapping: CTB3310 Surveying and Mapping CTB3425 Monitoring and Stability of Dikes and Embankments CIE4606 Geodesy and Remote Sensing CIE4614 Land Surveying and Civil Infrastructure February 2020 Publisher: Faculty of Civil Engineering and Geosciences Delft University of Technology P.O. Box 5048 Stevinweg 1 2628 CN Delft The Netherlands Copyright ©20142020 by H. van der Marel The content in these lecture notes, except for material credited to third parties, is licensed under a Creative Commons AttributionsNonCommercialSharedAlike 4.0 International License (CC BYNCSA). Third party material is shared under its own license and attribution. The text has been type set using the MikTex 2.9 implementation of LATEX. Graphs and diagrams were produced, if not mentioned otherwise, with Matlab and Inkscape. Preface This reader on reference systems for surveying and mapping has been initially compiled for the course Surveying and Mapping (CTB3310) in the 3rd year of the BScprogram for Civil Engineering. The reader is aimed at students at the end of their BSc program or at the start of their MSc program, and is used in several courses at Delft University of Technology. With the advent of the Global Positioning System (GPS) technology in mobile (smart) phones and other navigational devices almost anyone, anywhere on Earth, and at any time, can determine a three–dimensional position accurate to a few meters. -
Download This Article in PDF Format
MATEC Web of Conferences 336, 09032 (2021) https://doi.org/10.1051/matecconf/202133609032 CSCNS2020 The causal relationship k Ilija Barukciˇ c´1,? 1Internist, Horandstrasse, DE-26441-Jever, Germany Abstract. Aim: A detailed and sophisticated analysis of causal relationships and chains of causation in medicine, life and other sciences by logically consistent statistical meth- ods in the light of empirical data is still not a matter of daily routine for us. Methods: In this publication, the relationship between cause and e↵ect is characterized while using the tools of classical logic and probability theory. Results: Methods how to determine conditions are developed in detail. The causal rela- tionship k has been derived mathematically from the axiom +1 =+1. Conclusion: Non-experimental and experimental data can be analysed by the methods presented for causal relationships. 1 Introduction Before we try to describe the relationship between a cause and an e↵ect mathematically in a logically consistent way, it is vital to consider whether it is possible to achieve such a goal in principle. In other words, why should we care about the nature of causation at all? Causation seemed painfully important to some[1–11], but not to others. The trial to establish a generally accepted mathemati- cal concept of causation is aggravated especially by the countless attacks [12] on the principle of causality[1, 7, 13–16] by many authors which even tried to get rid of this concept altogether and by the very long and rich history of the denialism of causality in Philosophy, Mathematics, Statistics, Physics and a number of other disciplines too. -
The Meridian Arc Measurement in Peru 1735 – 1745
The Meridian Arc Measurement in Peru 1735 – 1745 Jim R. SMITH, United Kingdom Key words: Peru. Meridian. Arc. Triangulation. ABSTRACT: In the early 18th century the earth was recognised as having some ellipsoidal shape rather than a true sphere. Experts differed as to whether the ellipsoid was flattened at the Poles or the Equator. The French Academy of Sciences decided to settle the argument once and for all by sending one expedition to Lapland- as near to the Pole as possible; and another to Peru- as near to the Equator as possible. The result supported the view held by Newton in England rather than that of the Cassinis in Paris. CONTACT Jim R. Smith, Secretary to International Institution for History of Surveying & Measurement 24 Woodbury Ave, Petersfield Hants GU32 2EE UNITED KINGDOM Tel. & fax + 44 1730 262 619 E-mail: [email protected] Website: http://www.ddl.org/figtree/hsm/index.htm HS4 Surveying and Mapping the Americas – In the Andes of South America 1/12 Jim R. Smith The Meridian Arc Measurement in Peru 1735-1745 FIG XXII International Congress Washington, D.C. USA, April 19-26 2002 THE MERIDIAN ARC MEASUREMENT IN PERU 1735 – 1745 Jim R SMITH, United Kingdom 1. BACKGROUND The story might be said to begin just after the mid 17th century when Jean Richer was sent to Cayenne, S. America, to carry out a range of scientific experiments that included the determination of the length of a seconds pendulum. He returned to Paris convinced that in Cayenne the pendulum needed to be 11 lines (2.8 mm) shorter there than in Paris to keep the same time. -
Bibliographie Friedrich Robert Helmert (1843 - 1917)
Bibliographie Friedrich Robert Helmert (1843 - 1917) Von Joachim Höpfner, Potsdam Prof. Dr. phil. Dr.-Ing. e. h. Friedrich Robert Helmert war Direktor des Königlich-Preußischen Geodätischen Instituts und des Zentralbureaus der Internationalen Erdmessung von 1886 bis 1917 in Berlin, ab 1892 in Potsdam. Helmert wurde der Nachfolger von Generallieutenant z. D. Dr. h. c. Johann Jacob Baeyer (1794-1885) in dessen Funktionen. Er war der Begründer der mathematischen und physikalischen Theorien der modernen Geodäsie. Bis 1917 war das Geodätische Institut unter dem Direktorat von F. R. Helmert wissenschaftliches und organisatorisches Zentrum für die klassische Internationale Erdmessung. Von 1859 bis 1863 hatte F. R. Helmert am Polytechnikum Dresden Geodäsie und von 1866 bis 1868 an der Universität Leipzig Mathematik, Physik und Astronomie studiert. Nach seiner Promotion war er etwa eineinhalb Jahre als Observator an der Hamburger Sternwarte tätig. Im Jahre 1870 wurde Helmert ordentl. Lehrer für Geodäsie am neu gegründeten Polytechnikum in Aachen. 1872 zum Professor ernannt, hat Helmert sein Lehramt noch bis April 1867 ausgeübt. Helmert erzielte bedeutsame Resultate auf den Forschungsgebieten Fehlertheorie, Ausgleichungsrechnung nach der Methode der kleinsten Quadrate, Methoden der Netzausgleichung, Theorie des geometrischen und trigonometrischen Nivellements, Geoidbestimmung, absolute und relative Schweremessungen, Reduktionen von Schwerebeschleunigungen, Lotabweichungen, Aufbau der Erdkruste, Isostasie und Massenverteilung der Erde sowie Dimensionen der Erde und des Erdellipsoids. Friedrich Robert Helmert ist einer der größten Geodäten des 19. und 20. Jahrhunderts. Publikationen von F. R. Helmert Helmert, F. R. Studien über rationelle Vermessungen im Gebiet der höheren Geodäsie. Diss. Leipzig 1868. In: Z. Math. u. Phys. 13 (1868). p. 73-120 und 163-186. Helmert, F. -
The New Structure of the International Association of Geodesy (IAG) Viewed from the Perspective of History
The new structure of the International Association of Geodesy (IAG) viewed from the perspective of history G. Beutler1, H. Drewes2, A. Verdun1 (1) Astronomical Institute, University of Bern, Sidlerstrasse 5, CH – 3012 Bern, Switzerland e-mail: [email protected], [email protected] (2) Deutsches Geodätisches Forschungsinstitut, Marstallplatz 8, D – 80539 Munich, Germany e-mail: [email protected] Abstract. The IAG Executive Committee and the IAG tion (containing specialized concepts) and with dedicated Council decided to invoke a thorough review of the IAG observation methods. In the 1880s, Friedrich Robert Hel- and its structure with the goal to create a new, hopefully mert (see Fig.1) compiled and refined the mathematical and simpler structure, meeting the needs of the 21st century, at physical theories related to geodesy in his two-volume the IAG General Assembly in Birmingham in 1999. The oeuvre Helmert (1880). He defined the so-called higher new structure was implemented in 2003 at the XXIII-rd geodesy as the methods to determine the equipotential sur- IUGG General Assembly in Sapporo. The new structure faces and to measure parts of the Earth's surface of arbi- should trary size by horizontal projection and heights considering the shapes of the equipotential surfaces. − have a focus − be based on the three pillars of modern geodesy, According to Torge (2001) and (Torge1996), geodesy is namely the geometric shape of the Earth, the the science of the measurement of the Earth's surface and orientation of the Earth in space, and the Earth’s its external gravity field including temporal variations. -
PDF-Download
Veröffentlichungen der DGK Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften DGK Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften Jahrbuch 2017 München 2019 Verlag der Bayerischen Akademie der Wissenschaften ISSN 0938-846X ISBN 978-3-7696-8930-3 Veröffentlichungen der DGK Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften DGK Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften Jahrbuch 2017 München 2019 Verlag der Bayerischen Akademie der Wissenschaften ISSN 0938-846X ISBN 978-3-7696-8930-3 Adresse der DGK: Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften (DGK) Alfons-Goppel-Straße 11 ● D – 80 539 München Telefon +49 – 331 – 288 1685 ● Telefax +49 – 331 – 288 1759 E-Mail [email protected] ● http://www.dgk.badw.de Dieses Jahrbuch ist im Internet unter <http://dgk.badw.de> elektronisch publiziert. © 2019 Bayerische Akademie der Wissenschaften, München Alle Rechte vorbehalten. Ohne Genehmigung der Herausgeber ist es auch nicht gestattet, die Veröffentlichung oder Teile daraus auf photomechanischem Wege (Photokopie, Mikrokopie) zu vervielfältigen ISSN 0938-846X ISBN 978-3-7696-8930-3 3 Inhalt Vorwort……………………………………………………………………………………………………….………...…5 Berichte der Abteilungen………………………………………………………………………………………….……....7 Gesamtpublikationsliste………………………………………………………………………………………………….81 Mitglieder……………………………………………………………………………………………………………….115 DGK Sitzungen………………………………………………………………………………………………….……...129 DGK Nachrufe………………………………………………………………………………………………………….155 Veröffentlichungen durch die DGK -
The History of Geodesy Told Through Maps
The History of Geodesy Told through Maps Prof. Dr. Rahmi Nurhan Çelik & Prof. Dr. Erol KÖKTÜRK 16 th May 2015 Sofia Missionaries in 5000 years With all due respect... 3rd FIG Young Surveyors European Meeting 1 SUMMARIZED CHRONOLOGY 3000 BC : While settling, people were needed who understand geometries for building villages and dividing lands into parts. It is known that Egyptian, Assyrian, Babylonian were realized such surveying techniques. 1700 BC : After floating of Nile river, land surveying were realized to set back to lost fields’ boundaries. (32 cm wide and 5.36 m long first text book “Papyrus Rhind” explain the geometric shapes like circle, triangle, trapezoids, etc. 550+ BC : Thereafter Greeks took important role in surveying. Names in that period are well known by almost everybody in the world. Pythagoras (570–495 BC), Plato (428– 348 BC), Aristotle (384-322 BC), Eratosthenes (275–194 BC), Ptolemy (83–161 BC) 500 BC : Pythagoras thought and proposed that earth is not like a disk, it is round as a sphere 450 BC : Herodotus (484-425 BC), make a World map 350 BC : Aristotle prove Pythagoras’s thesis. 230 BC : Eratosthenes, made a survey in Egypt using sun’s angle of elevation in Alexandria and Syene (now Aswan) in order to calculate Earth circumferences. As a result of that survey he calculated the Earth circumferences about 46.000 km Moreover he also make the map of known World, c. 194 BC. 3rd FIG Young Surveyors European Meeting 2 150 : Ptolemy (AD 90-168) argued that the earth was the center of the universe. -
Alfonsi-Article Marine V5
1 Liliane ALFONSI Groupe d’Histoire et de Diffusion des Sciences d’Orsay (GHDSO ) Bât. 407. Université Paris Sud 11 91405 ORSAY Cédex [email protected] Un successeur de Bouguer : Étienne Bézout (1730–1783) commissaire et expert pour la marine Résumé : Entré à l’Académie Royale des Sciences dès 1758, Étienne Bézout, compte parmi ses tâches, l’obligation d’étudier différents ouvrages et outils présentés à l’Académie. Si dès le début il se voit confier l’étude d’instruments relatifs à la navigation, cela s’amplifiera à partir de 1764, date à laquelle Choiseul, ministre de la Marine, charge Bézout de réorganiser la formation des officiers de ce corps. Ses visites dans les ports pour faire passer les examens de la Marine, l‘amènent à appréhender concrètement les problèmes de la navigation. Cela lui vaudra d’être désigné pour juger la validité des critiques que l’hydrographe Blondeau énonce à l’encontre du traité de Pilotage de Bouguer. Par ailleurs cette situation amène Bézout à être membre de l’Académie de Marine de Brest et à être un des responsables de son association avec l’Académie des Sciences. Nous étudierons ces divers points. Enfin, Bézout écrit en 1769 un Traité de navigation que nous pourrons comparer à l’ouvrage de Bouguer sur le même sujet. Mots clés : Académie des Sciences, Marine, Académie de Marine, Traité de Navigation, Bézout, Bouguer. Abstract : Étienne Bézout, member of the Académie Royale des Sciences, have to study some works and books sended to this institution. In this article, we will look at his responsibility for Navy, before and after 1764, which is the year of Bézout’s nomination at the charge of Examinateur des Gardes du Pavillon et de la Marine. -
Eratosthenes' Map of the Oecumene Re Vie W
GEODESY AND CARTOGRAPHY ISSN 2029-6991 print / ISSN 2029-7009 online 2012 Volume 38(2): 81–85 doi:10.3846/20296991.2012.695332 REVIEW UDK 528.9 ERATOSTHENES’ MAP OF THE OECUMENE Viktoras Lukoševičius1, Tomas Duksa2 1Technology Faculty, Šiauliai University, Vilniaus g. 141, LT-76353 Šiauliai, Lithuania 2Lithuanian Cartographic Society, M. K. Čiurlionio g. 21/27, LT-03101 Vilnius, Lithuania E-mails: [email protected] (corresponding author); [email protected] Received 26 April 2012; accepted 21 June 2012 Abstract. Eratosthenes (circa 276 B.C.–194 B.C.) is considered a famous scientist of ancient Greece. He was a mathematician and geographer. Born in Cyrene, now Shahhat (Libya), he was appointed to teach the son of the Egyptian King Ptolemy III Euergetes. In 240 B.C., he became the third chief librarian the Great Library of Alexan- dria. Eratosthenes laid basics for mathematical geography. He was the first to calculate precisely in an original way the Earth meridian’s length between Syene and Alexandria. For this purpose he used perpendicular projection of the sun rays during summer solstice (06.22) near the town Syene, now Aswan. His estimation of the length of the Earth’s radius (6300 km) is close to present estimation (6371 km). He calculated that a year possesses 365.25 days. He also emphasized the significance of maps as the most important thing in geography. Eratosthenes was the first one to use the term “geographem” to describe the Earth. In this way he legitimized the term of geography. He also put into system geographical information from various sources in order to obtain a map of the world as precise as possible. -
Reference Systems for Surveying and Mapping Lecture Notes
Delft University of Technology Reference Systems for Surveying and Mapping Lecture notes Hans van der Marel ii The front cover shows the NAP (Amsterdam Ordnance Datum) ”datum point” at the Stopera, Amsterdam (picture M.M.Minderhoud, Wikipedia/Michiel1972). H. van der Marel Surveying and Mapping Lecture notes CTB3310 (Reference Systems for Surveying and Mapping) August 2014 Publisher: Faculty of Civil Engineering and Geosciences Delft University of Technology P.O. Box 5048 Stevinweg 1 2628 CN Delft The Netherlands Copyright ©2014 by H. van der Marel All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, scanning, recording or by any information storage and retrieval system, without written permission from the copyright owner. The text has been type set using the MikTex 2.9 implementation of LATEX. Graphs and diagrams were produced, if not mentioned otherwise, with Matlab and Inkscape. Contents 1 Introduction 1 2 2D Coordinate systems 3 2.1 2D Cartesian coordinates . 3 2.2 2D coordinate transformations . 4 3 3D Coordinate systems 7 3.1 3D Cartesian coordinates . 7 3.2 7-parameter similarity transformation . 9 4 Spherical and ellipsoidal coordinate systems 13 4.1 Spherical coordinates . 13 4.2 Geographic coordinates (ellipsoidal coordinates) . 14 4.3 Topocentric coordinates, azimuth and zenith angle . 18 4.4 Practical aspects of using latitude and longitude. 19 4.5 Spherical and ellipsoidal computations . 22 5 Map projections 25 6 Datum transformations and coordinate conversions 29 7 Vertical reference systems 33 8 Common reference systems and frames 37 8.1 International Terrestrial Reference System and Frames .