<<

Europaisches Patentamt J European Patent Office © Publication number: 0 298 408 B1 Office europeen des brevets

© EUROPEAN PATENT SPECIFICATION

© Date of publication of patent specification: 18.12.91 © Int. Cl.5: C07C 5/05, C07C 13/42, C07C 13/61, C07C 13/64 ® Application number: 88110651.2

© Date of filing: 04,07.88

The file contains technical information submitted after the application was filed and not included in this specification

Method for preparing norbornene structure compound.

® Priority: 06.07.87 JP 166868/87 ACADEMIC PRESS, 1985, London, pages 36-39; P.N. RYLANDER: "Hydrogenation @ Date of publication of application: methods" 11.01.89 Bulletin 89/02 © Proprietor: NIPPON OIL CO. LTD. © Publication of the grant of the patent: 3-12, Nishi Shinbashi 1-chome 18.12.91 Bulletin 91/51 Minato-ku Tokyo(JP)

© Designated Contracting States: @ Inventor: Yuasa, Hitoshi CH DE GB IT LI 2081-16, Kamigocho, Sakae-ku Yokohama-shi Kanagawa-ken(JP) © References cited: Inventor: Matsuno, Mitsuo DE-A- 2 825 238 1-12-14, Hino, Konan-ku DE-C- 3 242 042 Yokohama-shi Kanagawa-ken(JP) Inventor: Satoh, Tetsuo CHEMICAL ABSTRACTS, volume 71, no. 20, 2-12-2, Denenchofu, Ota-ku 17th November 1969, page 332, abstract no. Tokyo(JP) 95345u; W.R. KROLL: "Activity and selectivity of homogeneous Ziegler-type hydrogenation catalysts" Representative: Dipl.-lng. H. Hauck, Dipl.-lng. E. Graalfs, Dipl.-lng. W. Wehnert, Dr.-lng. W. JOURNAL OF THE AMERCICAN CHEMICAL Do CO ring SOCIETY, volume 85, no. 24, 24th December Mozartstrasse 23 00 1963, pages 4014-4018; M.F. SLOAN et al.: W-8000 Munchen 2(DE) o "Soluble catalysts for the hydrogenation of olefins" 00 O) CM Note: Within nine months from the publication of the mention of the grant of the European patent, any person Notice CL may give notice to the European Patent Office of opposition to the European patent granted. of opposition LJJ shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1 ) European patent convention). Rank Xerox (UK) Business Services EP 0 298 408 B1

Description

This invention relates to a method for preparing a norbornene structure compound that can be employed as an intermediate product for preparation of medical or agricultural chemicals or as a monomer 5 for preparation of polymers. The norbornene structure compound represented by the formula (2)

70 R1 R3 R4 i i i i - C - C ■R5 m I I (2) R2 H H n 75 I R6

wherein l, m and n are integers ofOSIS3, 0£ml8 and 11 n S 3, respectively, and each of R1 to Rs 20 is a hydrogen atom or a residue having 1 to 3 carbon atoms and R5 may form a ring with R4 or R5, has an active double bond of norbornene ring and can be converted into useful medicines or agricultural chemicals upon addition of a variety of organic or inorganic compounds to this double bond. Also the compound represented by the formula (2) may be employed alone or in combination with other olefins as a monomer for cationic or coordinated anionic polymerization or for ring-opening polymerization 25 employing metathesis catalysts. Recently, there is an increasing demand for polymers that are prepared from the above mentioned monomers and that may be useful for optical applications, such as optical disks, or for polymers prepared upon thermal or cationic polymerization which polymers exhibit superior weather- and heat-resistance, transparency and color on account of not having unsaturated bonds. However, the compounds (2) that can be used for these usage cannot be prepared without considerable difficulties. There 30 is so far known a method for preparing the compound of the formula (2) by the Diels-Alder reaction of or a compound capable of producing cyclopentadiene in the reaction system, such as , with monoolefins, such as butene-1, pentene-1, pentene-2, cyclopentene, hexene-1, hexene-2, hexene-3, 3-methyl-1-butene, 2-methyl-2-pentene, 3-methylcyclohexene, 2-methyl-2-hexene, 3- methyl-2-hexene, ethylnorbomene, n-propylnorbomene, isopropylnorbomene, ethyl-1 ,4,5,8-dimethano- 35 1 ,2,3,4,4a,5,8,8a -octahydronaphthalene, n-propyl-1 ,4,5,8-dimethano -1 ,2,3,4, 4a,5,8,8a-octahydronaph- thalene, isopropyl-1 ,4,5,8 -dimethano-1 ,2,3,4,4a,5,8,8a-octahydronaphthalene, 2,3,3a,4,7,7a-hexahydro-4,7- methano-1H-indene, 2,3,3a,4,4a,5,8,8a,9,10-decahydro-4,9,5,8-dimethano-1H -benzindene, as exemplified in the following equations (3) to (6).

40

+ (3

45 + (4

50 +

(6) 55 + EP 0 298 408 B1

The practical example of synthesis for ethylnorbornene and pentylnorbomene has been reported by Plate (Dokl. Akad. Nauk. SSSR, 105,989,991 (1955)) and that for endo- and exo-2,3,3a,4,7,7a-hexahydro-4,7- methano -1H-indene has been reported by Bruson et al. in Journal of American Chemical Society, vol. 67, pp723(1945) and vol. 70, pp2809(1948) et al.. However, in the Diels-Alder reaction between cyclopentadiene and monoolefin, the reaction rate is extremely low because no electron-withdrawing substituents are bonded to monoolefin, then the reaction has to be carried out at elevated temperature for a long time to raise the yield. To make matters worse, since the reaction is carried out under these hostile conditions, trimers, tetramers, pentamers or higher polymers of cyclopentadiene, or addition product of cyclopentadiene to the object compound represented 10 by the formula (2), are by-produced in larger quantities, thus adversely affecting the selectivity of the object compound. On the other hand, in the Diels-Alder reaction of cyclopentadiene and conjugated or non-conjugated polyene, double bonds not involved in the reaction with these polyenes act as electron-withdrawing groups, in a manner different from the aforementioned reaction of monoolefin as the reactant, such that the reaction 75 rate is increased and the compound having the formula (1)

R1 R3 R4 20 c > - c = c R5 Jm . (1) R2 n I R6 25

wherein I , m and n are the same as those for the formula(2),can be produced easily. For example, dimerization of cyclopentadiene according to the formula (7) 30

(7)

35

proceeds rapidly at an ambient temperature, while 5-vinyl bicyclo [2. 2. 1] hept-2-ene and tricyclopen- tadiene according to the formulae (8) and (9)

40

45

(9) 50

may be produced easily at 60 to 150 C. The same may be said of the reaction shown by the formula (10) 55 EP 0 298 408 B1

10)

It may be contemplated that the object compound represented by the formula (2) may be prepared by hydrogenation of the compound of the formula (1) that can be produced easily as described above. w However, it was not possible with the conventional methods to produce the compound of the formula (2) with high selectivity. According to East German Patent No. 106,343 or report of I.S. Kolominkov (Izv. Akad. Nauk. SSSR, Ser. Khim, 1972 (5)1180), 5-vinyl bicyclo [ 2. 2. 1] heptane (A) is selectively produced by hydrogenation of 5-vinyl bicyclo [ 2. 2. 1] hept-2-ene as shown by the formula (11)

75

H2 (11)

20 (A) (B)

but the object compound of 5-ethyI bicyclo[ 2. 2. 1] hept-2-ene (B) is not produced. According to Japanese Patent Publications Nos. 34811/1973 and 45391/1976, Japanese Laid-open Patent Publications 25 Nos.41 58/1 976 and 95648/1977 and reports by CABrown (J. Chem. Soc.,D,1 969(1 7).952), upon hy- drogenation of dicyclopentadiene or tricyclopentadiene, a mixture of 2,3,3a,4,7,7a-hexahydro-4,7-methano- 1H-indene (C) and 3a,4,5,6,7,7a-hexahydro-4,7-methano-1H-indene (D), as shown by the formula (12)

30 H2

(12

35 (C) (D)

is obtained, but the compound D accounts for the major portion of the product and the object compound (C) is produced only in minor quantities. 40 It is reported by Yu.G.Osokin et al in Dokl. Akad. Nauk. SSSR, 220 (4), 851(1975), Ser. Khim that, upon hydrogenation of 5-vinyl bicyclo [2. 2. 1 ] hept-2-ene, 5-ethyl bicyclo [2. 2. 1 ] hept-2-ene is produced in a slightly larger amount than 5-vinylbicyclo [2. 2. 1] heptane. It is also reported by W. Keim et al. in Chem. -Ing.- Tech., vol. 55, pp906(1983) that, with hydrogenation of dicyclopentadiene the yield ratio of (C)/(D) in the formula (12) of the order of 5/4 may be obtained, while it is reported by K.M. Nicholas in Journal of 45 American Chemical Society, vol. 97, pp3254 (1975) that the object compound (C) may be obtained by a method of protecting the highly reactive double bond at the 5 and 6 positions of dicyclopentadiene with an iron carbonyl compound. It is apparent that the methods shown in these reports provide improved selectivity in comparison with the preceding examples in consideration of the difference in reactivities between the two double bonds. However, it is still not possible with these methods to produce the so compound of the formula (2) with high selectivity or to produce the compound on an industrial scale. On the other hand, Ziegler type catalysts are known to exhibit hydrogenation acitivity, as reported in detail in "Homogeneous Hydrogenation", page 363, by B.R. James, J. Wiley & Sons, New York, 1973. However, it has not so far been known that the compound represented by the formula (1) may be hydrogenated to the compound represented by the formula (2) with high selectivity in the presence of the 55 Ziegler type catalyst.

SUMMARY OF THE INVENTION EP 0 298 408 B1

It is a principal object of the present invention to provide a method for preparing a norbornene structure compound represented by the formula (2) from the compound represented by the formula (1) easily and with higher selectivity. The above and other objects of the present invention will become apparent from the following description. In accordance with the present invention, there is provided a method for preparing a norbornene structure compound comprising hydrogenating a compound represented by the formula of

w R1 R3 R4 '1 ' ' C> - C = C - ■R5 Jm , (1 R2 15 s\ n 'R6

20 wherein I, m and n are integers of 0 ^ £ 5 3, 0 ^ m ^ 8 and 1 ^ n ^ 3, respectively, and each of R1 to R6 is a hydrogen atom or a hydrocarbon residue having 1 to 3 carbon atoms, with or without RG forming a ring with R4 or R5, in the presence of a Ziegler type catalyst containing in combination a compound of a transition metal of Groups IV to VI of the periodic table and an organometallic compound of Groups I to III of the periodic table, to thereby convert the compound of the formula (1) into a compound reprsented by 25 the following formula of

R1 R3 r4 30 Ml I C > - C - C R5 I Jm | | (2) R2 H H n I R6 35

wherein I , m and n and R1 to RG are the same as above.

40 DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will be explained in futher detail. According to the present invention, a compound represented by the formula (2)

45

50 (2

55 can be prepared by hydrogenation of a compound represented by the formula (1) EP 0 298 408 B1

R1 R3 R4 / ic) - c = c R5 (1 R2 n R6 w in the presence of a Ziegler type catalyst containing in combination an organic compound of a transition metal of the Groups IV to VI of the periodic table and an organometallic compound of the Groups I to IN of the periodic table. In the above formula, I, m and n are integers ofO^£^3, 0Sm^8 and 1 S n i 3, respectively, each of R1 to R6 is a hydrogen atom or a hydrocarbon residue having 1 to 3 carbon atoms, 75 and R6 may form a ring with R* or R5. The object compound for I > 3, m > 8 or n > 3 or with R1 to RB having not less than four carbon atoms cannot be provided because of difficulties in manufacture. The compounds employed in accordance with the present invention and represented by the formula (1) may be enumerated by dicyclopentadiene, tricyclopentadiene, tetracyclopentadiene, 5-vinylbicyclo [2. 2. 1] hept-2-ene, 2-vinyl-1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a octahydronaphthalene, 5-propenylbicyclo [2. 2. 1] 20 hept-2-ene, 2-propenyl-1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a -octahydronaphthalene, 5-isopropenyl bicyclo [2. 2. 1] hept-2-ene, 2-isopropenyl-1,4,5,8-dimethano -1, 2,3,4, 4a,5,8,8a-octahydronaphthalene 5-methyl-6-vinyl bicyclo [2. 2. 1 ] hept-2-ene, 2-methyl-3-vinyl-1 ,4,5,8 -dimethano-1 ,2,3,4,4a,5,8,8a-octahydronaphthalene, 5- (i-butenyl)-bicyclo [2. 2. 1] hept-2-ene 2-(1-butenyl) -1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a-octahydronaph- thalene, 5-(2-butenyl)-bicyclo [2. 2. 1] hept-2-ene, 2-(2-butenyl) -1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a-oc- 25 tahydronaphthalene, 5-methyl-6-propenyl bicyclo [2. 2. 1] hept-2-ene, 2-methyl-3-propenyl-1 ,4,5,8- dimethano-1 ,2,3,4,4a,5,8,8a -octahydronaphthalene, 1 ,4-methano-1 ,4,4a 7,8,8a -hexahydronaphthalene, 1,4- methano-1 ,4,4a,5,8,8a -hexahydronaphthalene, 1 ,4,5,1 0-dimethano -1 ,4,4a,5,5a,8,9,9a,1 0,1 Oa-decahydroan- thracene, and 1, 4,5,1 0-dimethano-1,4,4a,5,5a,6,9,9a,1 0,10a -decahydroanthracene. The Ziegler type catalyst employed in the present invention is of a system containing in combination a 30 compound of a transition metal of the Groups IV to VI of the periodic table and an organometallic compound of the Groups I to III of the periodic table. The compounds of the transition metal may be typified by organic and/or inorganic compounds of Ti, Zr, Hf, V, Cr, Mo or W and preferably of Ti, Zr, Hf or V. The compounds of the transition metal include alkoxides such as titanium ethoxide, titanium isopropox- ide, titanium butoxide, zirconium ethoxide, zirconium isopropoxide, zirconium butoxide, hafnium ethoxide, 35 hafnium butoxide, ethoxide, vanadium isopropoxide, vanadium butoxide, vanadyl ethoxide, vanadyl isopropoxide or vanadyl butoxide, and halides such as titanium trichloride, titanium tribromide, titanium triiodide, titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, zirconium tetrachloride, zirconium tetrabromide, zirconium tetraiodide, hafnium tetrachloride, hafnium tetrabromide, vanadium chlo- ride, vanadium tetrabromide, vanadyl chloride, vanadyl bromide, vanadyl monoethoxydichloride or vanadyl 40 diethoxymonochloride. Acetylacetonatoes such as titanium acetylacetonato, zirconium acetylacetonato, hafnium acetylacetonato, vanadium acetylacetonato, or vanadyl acetylacetonato, carbonyl compounds such as vanadium hexacarbonyl, cyclopentadienyl metal carbonyls such as bis-cyclopentadienyl titanium dicar- bonyl or cyclopentadienyl vanadium tetracarbonyl, bis-cyclopentadienyl compounds such as bis-cyclopen- tadienyl titanium dichloride, bis-cyclopentadienyl vanadium dichloride or a bis-cyclopentadienyl titanium 45 dimer, and alkyl complex compounds of methyltitanium trichloride, may also be emloyed as the transition metal compounds. These transition metal compounds may also be supported on suitable carriers such as AI2O3, MgO, MgCb or SiO2. It is also preferred that the carriers be previously processed with electron donors. The organometallic compounds of the Groups I to III may include for example organo-alkali metal 50 compounds, such as methyl lithium, ethyl lithium, n-propyl lithium, n-butyl lithium, sec-butyl lithium, cyclohexyl lithium, phenyl lithium, benzyl lithium, phenyl , benzyl sodium, sodium, triphenyl methyl sodium, phenyl potassium, potassium, styrene potassium or naphthalene potassium, organic compounds of an alkaline earth metal such as methyl magnesium chloride, ethyl magnesium bromide, n-butyl magnesium choride, butyl magnesium iodide, phenyl magnesium chloride, 55 vinyl magnesium chloride, allyl magnesium chloride, diethyl magnesium, dibutyl magnesium, methyl zinc iodide, ethyl zinc iodide, n-propyl zinc iodide, dimethyl zinc, diethyl zinc, dibutyl zinc, dimethyl cadmium, diethyl cadmium, dibutyl cadmium or diphenyl cadmium, and organic compounds of a Group III metal, such as trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tricyclohexyl aluminum, diethyl aluminum EP 0 298 408 B1

chloride, ethyl aluminum sesquichloride, ethyl aluminum dichloride or diethyl ethoxyaluminum. The present invention may be carried out in the absence of solvents or in the presence of solvents not interfering with the reaction. These solvents may include hydrocarbon solvents such as , heptane, octane, cyclohexane, decalin, , or xylene, ethers such as diethyl ether, diisopropyl ether, 5 dibutyl ether, tetrahydrofuran, tetrahydropyran, diphenyl ether, glyme or . Halogenated hydrocar- bons such as chlorobenzene may also be used depending on the kinds of the organometal compounds employed. Although indene and norbomadiene may be also used as solvents, these may be used more appropriately as ligands for improving the selectivity for the present reaction. The concentration of the substrate of the present reaction may be selected freely in the range of from 10 about 0.1 mol/liter to a value corresponding to the non-solvent state. It is preferred that the transition metal compound of the catalyst be used in a molar ratio ranging from 0.0001 to 0.10, and preferably from 0.001 to 0.05 based on one mole of the compound represented by the formula (1). With the use of the transition metal compound in excess of the above range, the reaction rate and heat evolution are increased such that it is difficult to control the reaction conditions and increased 75 costs are involved in the post-processing following the completion of the reaction. The molar ratio of the transition metal compound to the organometallic compound is preferably in the range of from 1:3 to 1:100, more preferably in the range of from 1:3 to 1:20, and most preferably 1:5 to 1:10. It is preferred that hydrogen of higher purity be employed, while the presence of oxidating impurities, such as oxygen, is desirably avoided. Although the hydrogen employed in the reaction may be at 20 subatmospheric pressure, the hydrogen pressure is preferably in the range of from 0 to 1 00 kg/cm2 G and more preferably in the range of from 1 to 20 kg/cm2 G. The reaction temperature may be in the range of from -30° to 200 °C and preferably from 0° to 100° C. The end point of the reaction may be selected freely. In general, the compound represented by the 25 formula (1) is difficult to isolate from the compound represented by the formula (2) since they differ from each other only by the presence or absence of two hydrogen atoms. Thus, one may proceed in such a fashion that the conversion be raised to the utmost so that the amount of the compound of the formula (1) is decreased and only the compound of the formula (2) is effectively obtained. Alternatively, the reaction may be stopped at an optionally selected conversion reaction of, for example 80 %, and the reaction product 30 may be used as a mixture of the compounds (1) and (2). Still alternatively, the unreacted feedstock may be converted into other compounds easy to separate by any known methods. Thus, the reaction may be stopped when the condition most favorable from economical considerations are satisfied.

EXAMPLES OF THE INVENTION 35 The description with reference to several specific examples of the present invention is given herein- below. It should be noted that the scope of the present invention is by no means limited to the specific examples but any other mode may be adopted insofar as they are pursuant to the object of the invention.

40 EXAMPLE 1

1.5 millimoles of titanocene dichloride, 100 cc of benzene, 350 millimoles of 5-vinyl bicyclo [2. 2. 1] hept-2-ene and 15 millimoles of triethyl aluminum were charged into a fully dried autoclave having a capacity of 500 cc and filled with nitrogen. The reaction was caried out at a controlled reaction temperature 45 of 50° C and with the addition of hydrogen at a constant hydrogen pressure of 4 kg/cm2 G. The results of analysis by gas chromatography after 6.5 hours have revealed that the conversion was 96.8 % and the selectivity for 5-ethyl bicyclo [2. 2. 1] hept-2-ene was 85.2 %. The catalyst was deactivated upon addition of methanol to the reactant and the solvent was distilled off, after which the remaining reactant was subjected to distillation under reduced pressure. It was found that there were no residues, which meant that there so occurred no secondary reactions, such as oligomerization or polymerization.

EXAMPLE 2

The reaction was carried out in the same way as in Example 1, except that TiCU was used as the 55 catalyst. It was found upon analysis that the conversion was 33.7 % and selectivity for 5-ethyl bicyclo [2. 2. 1] hept-2-ene was 62.3 %.

EXAMPLE 3 EP 0 298 408 B1

The reaction was carried out in the same way as in Example 1 except that n-butyl lithium was employed in place of triethyl aluminum. The conversion was 95.4 % and selectivity for 5-ethyl bicyclo [2. 2. 1] hept-2-ene was 83.7 %.

5 EXAMPLE 4

The reaction was carried out in the same way as in Example 1 except that 15 millimoles (7.5 cc) of n- butyl magnesium chloride having a concentration equal to 2M was used as the catalyst in place of triethyl aluminium and the reaction was continued for 1.5 hours. The conversion was 98.5 % and selectivity for 5- w ethyl bicyclo [2. 2. 1 ] hept-2-ene was 78 %.

EXAMPLE 5

The reaction was carried out in the same way as in Example 1 except that 10 wt. % of TiCU carried on 75 MgCI2 was used as the catalyst component and the reaction was continued at 94° C for nine hours. The conversion was 97 % and selectivity for 5-ethyl bicyclo [2. 2. 1] hept-2-ene was 59 %.

EXAMPLE 6

20 The reaction was carried out in the same way as in Example 1 except that zirconocene hydride chloride was used as the catalyst component and the raction was continued at 70° C for four hours. The conversion was 57 % and selectivity for 5-ethyl bicyclo [ 2. 2. 1] hept-2-ene was 43 %.

EXAMPLE 7 25 The reaction was carried out in the same way as in Example 1 except using vanadyl acetylacetonato as the catalyst. The conversion was 38 % and selectivity for 5-ethyl bicyclo [ 2. 2. 1] hept-2-ene was 47 %.

EXAMPLE 8 30 The reaction was carried out in the same way as in Example 1 except using a bicyclopentadienyl titanium dimer as the catalyst. The conversion was 97 % and selectivity for 5-ethyl bicyclo [2. 2. 1] hept-2- ene was 81 %.

35 EXAMPLE 9

The reaction was carried out in the same way as in Example 1 except that dicyclopentadiene was used as the substrate, 0.5 miilimole of titanocene dichloride and 8 millimoles of triethyl aluminum were used and the reaction was continued for 4.3 hours. The conversion was 89.9 % and selectivity for 2,3,3a,4,7,7a- 40 hexahydro-4,7-methano-1 H-indene was 66.3 %.

EXAMPLE 10

The reaction was carried out in the same way as in Example 1 except using tricyclopentadiene as the 45 substrate. The conversion was 63 % and selectivity for 2,3,3a,4,4a,5,8,8a,9,10-decahydro-4,g,5,8-dimethano- 1 H-benzindene was 57.1 %.

EXAMPLE 11 so The reaction was carried out in the same way as in Example 1 except that 17 millimoles of titanocene dichloride and 75 millimoles of triethyl aluminum was used and reacted at 40° C. The conversion was 93.4 % and selectivity for 5-ethyl bicyclo [2. 2. 1] hept-2-ene was 96.5 %. It will be seen that, by hydrogenating the compound of the formula (1) in the presence of a Ziegler catalyst, the compound of the formula (2) can be produced easily with improved selectivity. 55 Claims

1. A method for preparing a norbomene structure compound comprising hydrogenating a compound EP 0 298 408 B1

represented by the formula of

(i) w

wherein I, m and n are integers of 0^*5 3, 0 ^ m ^ 8 and 1 £ n ^ 3, respectively, and each of R1 to 75 R5 is a hydrogen atom or a hydrocarbon residue having 1 to 3 carbon atoms with or without Rs forming a ring with R4 or R5, in the presence of a Ziegler type catalyst containing in combination a compound of a transition metal of Groups IV to VI of the periodic table and an organometallic compound of Groups I to III of the periodic table, to thereby convert the compound of the formula (1) into a compound represented by the following formula of 20

R1 R3 R4

25 c\ - c - c • ■R- lJm I I (2 R2 H H R6 n

30

wherein I , m and n are the same as above.

2. The method according to claim 1 wherein the compound represented by the formula (1) is selected 35 from the group consisting of dicyclopentadiene, tricyclopentadiene, tetracyclopentadiene, 5-vinylbicyclo [ 2. 2. 1] hept-2-ene, 2-vinyl-1,4,5,8-dimethano-1,2,3,4,4a,5,8,8a-octahydronaphthalene, 5-propenyl- bicyclo [ 2. 2. 1] hept-2-ene, 2-propeny-1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a -octahydronaphthalene, 5- isopropenyl bicyclo [ 2. 2. 1] hept-2-ene, 2-isopropenyl-1 ,4,5,8-dimethano -1 ,2,3,4,4a,5,8,8a-oc- tahydronaphthalene, 5-methyl-6 -vinylbicyclo [ 2. 2.1] hept-2-ene, 2-methyl-3-vinyl -1 ,4,5,8-dimethano- 40 1 ,2,3,4,4a,5,8,8a -octahydronaphthalene, 5-(1-butenyl)-bicyclo [ 2. 2. 1] hept-2-ene, 2-(1-butenyl) - 1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a-octahydronaphthalene, 5-(2-butenyl)-bicyclo [ 2. 2. 1] hept-2-ene, 2- (2-butenyl)-1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a -octahydronaphthalene, 5-methyl-1-6-propenylbicyclo [ 2. 2. 1] hept-2-ene, 2-methyl-3-propenyl-1,4,5,8,-dimethano -1,2,3,4,4a,5,8,8a-octahydronaphtalene, 1,4- methano -1 ,4,4a,7,8,8a-hexahydronaphthalene, 1 ,4-methano -1 ,4,4a,5,8,8a-hexahydronaphthalene, 45 1, 4,5,1 0-dimethano -1,4,4a,5,5a,8,9,9a,10,10a-decahydroanthracene, 1 ,4,5,1 0-dimethano- 1,4,4a,5,5a,6,9,9a,1 0,10a -decahydroanthracene and mixtures thereof.

3. The method according to claim 1 wherein said compound of the transition metal is selected from the group consisting of titanium ethoxide, titanium isopropoxide, titanium butoxide, zirconium ethoxide, so zirconium isopropoxide, zirconium butoxide, hafnium ethoxide, hafnium butoxide, vanadium ethoxide, vanadium isopropoxide, vanadium butoxide vanadyl ethoxide, vanadyl isopropoxide, vanadyl butoxide, titanium trichloride, titanium tribromide, titanium triiodide, titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, zirconium tetrachloride, zirconium tetrabromide, zirconium tetraiodide, hafnium tetrachloride, hafnium tetrabromide, vanadium chloride, vanadyl tetrabromide, vanadyl chloride, vanadyl 55 bromide, vanadyl monoethoxydichloride, vanadyl diethoxymonochloride, titanium acetylacetonato, zirco- nium acetylacetonato, hafnium acetylacetonato, vanadium acetylacetonato, vanadyl acetylacetonato, vanadium hexacarbonyl, bis-cyclopentadienyl titanium dicarbonyl, cyclopentadienyl vanadium tetracar- bonyl, bis-cyclopentadienyl titanium dichloride, bis-cyclopentadienyl vanadium dichloride, a bis- EP 0 298 408 B1

cyclopentadienyl titanium dimer, methyltitanium trichloride and mixtures thereof.

4. The method according to claim 1 wherein said organometallic compound of the Groups I to III is selected from the group consisting of methyl lithium, ethyl lithium, n-propyl lithium, n-butyl lithium, sec- 5 butyl lithium, cyclohexyl lithium, phenyl lithium, benzyl lithium, phenyl sodium, benzyl sodium, naph- thalene sodium, triphenyl methyl sodium, phenyl potassium, butadiene potassium, styrene potassium, naphthalene potassium, methyl magnesium chloride, ethyl magnesium bromide, n-butyl magnesium choride, butyl magnesium iodide, phenyl magnesium chloride, vinyl magnesium chloride, allyl magne- sium chloride, diethyl magnesium, dibutyl magnesium, methyl zinc iodide, ethyl zinc iodide, n-propyl io zinc iodide, dimethyl zinc, diethyl zinc, dibutyl zinc, dimethyl cadmium, diethyl cadmium, dibutyl cadmium, diphenyl cadmium, trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tricyclohexyl aluminum, diethyl aluminum chloride, ethyl aluminum sesquichloride, ethyl aluminum dichloride, diethyl ethoxyaluminum and mixtures thereof.

75 5. The method according to claim 1 wherein the molar ratio of said transition metal compound to the compound of the formula(1) ranges from 0.0001:1 to 0.10:1.

6. The method according to claim 1 wherein the molar ratio of said transition metal compound to said organometallic compound ranges from 1:3 to 1:100. 20 7. The method according to claim 1 wherein the hydrogenation is carried out under a hydrogen pressure of 0 to 100 kg/cm2 G. ° ° 8. The method according to claim 1 wherein the hydrogenation is carried out at -30 to 200 C. 25 Revendications

1. Un procede pour preparer un compose a structure de norbomene, consistant a hydrogener un compose represents par la formule 30

35 (1)

/

40

dans laquelle I, m et n sont des nombres entiers tels que 0^1^3, 0SmS8et1 5 n ^ 3, respectivement, et chacun de R1 a Rs est un atome d'hydrogene ou un residu hydrocarbone ayant 1 a 3 atomes de carbone, R5 formant ou non un cycle avec R4- ou R5, en presence d'un catalyseur du type 45 de Ziegler contenant conjointement un compose d'un metal de transition des Groupes IV a VI du Tableau Periodique et un compose organometallique des Groupes I a III du Tableau Periodique, pour convertir ainsi le compose de la formule (1) en un compose represents par la formule suivante

50

55 (2) n

10 EP 0 298 408 B1

dans laquelle I, m et n sont les memes que ci-dessus.

2. Le procede selon la revendication 1, dans lequel le compose represents par la formule (1) est choisi dans ie groupe forme par le dicyclopentadiene, le tricyclopentadiene, le tetracyclopentadiene, le 5- 5 vinylbicyclo[2.2.1]hept-2-ene, le 2-vinyI-1,4,5,8-dimethano-1,2,3,4,4a,5,8,8a-octahydronaphtalene, le 5- propenylbicyclo[2.2.1]hept-2-ene, le 2-propenyl-1 ,4,5,8-dimethano-1 ,2,3,4, 4a,5,8,8a-octahydronaphtale- ne, le 5-isopropenylbicyclo[2.2.1]hept-2-ene, le 2-isopropenyl-1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a-octa- hydronaphtalene, le 5-methyI-6-vinylbicyclo[2.2.1]hept-2-ene, le 2-methyl-3-vinyl-1,4,5,8-dimethano- 1,2,3,4,4a,5,8,8a-octahydronaphtalene, le 5-(1-butenyl)-bicycIo[2.2.1]hept-2-ene, le 2-(1-butenyl)-1 ,4,5,8- w dimethano-1,2,3,4,4a,5,8,8a-octahydronaphtalene, le 5-(2-butenyl)-bicyclo[2.2.1]hept-2-ene, le 2-(2-bute- nyl)-1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a-octahydronaphtalene, le 5-methyl-6-propenylbicyclo[2.2.1 ]hept- 2-ene, le 2-methyl-3-propenyl-1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a-octahydronaphtalene, le 1 ,4-methano- 1,4,4a,7,8,8a-hexahydronaphtalene, le 1 ,4-methano-1 ,4,4a,5,8,8a-hexahydronaphtalene, le 1,4,5,10- dimethano-1 ,4,4a,5,5a,8,9,9a,10,10a-decahydroanthracene, le 1 ,4,5,1 0-dimethano- 75 1,4,4a,5,5a,6,9,9a,10,10a-decahydroanthracene et leurs melanges.

3. Le procede selon la revendication 1 , dans lequel ledit compose du metal de transition est choisi dans le groupe forme par I'ethylate de titane, I'isopropylate de titane, le butylate de titane, I'ethylate de zirconium, I'isopropylate de zirconium, le butylate de zirconium, I'ethylate de hafnium, le butylate de 20 hafnium, I'ethylate de vanadium, I'isopropylate de vanadium, le butylate de vanadium, I'ethylate de vanadyle, I'isopropylate de vanadyle, le butylate de vanadyle, le trichlorure de titane, le tribromure de titane, le triiodure de titane, le tetrachlorure de titane, le tetrabromure de titane, le tetraiodure de titane, le tetrachlorure de zirconium, le tetrabromure de zirconium, le tetraiodure de zirconium, le tetrachlorure de hafnium, le tetrabromure de hafnium, le chlorure de vanadium, le tetrabromure de vanadyle, le 25 chlorure de vanadyle, le bromure de vanadyle, le monoethoxydichlorure de vanadyle, le diethoxymo- nochlorure de vanadyle, I'acetylacetonate de titane, I'acetylacetonate de zirconium, I'acetylacetonate de hafnium, I'acetylacetonate de vanadium, I'acetylacetonate de vanadyle, le vanadium-hexacarbonyle, le biscyclopentadienyle-titane-dicarbonyie, le cyclopentadienylvanadium-tetracarbonyle, le dichlorure de bis-cyclopentadienyl-titane, le dichlorure de bis-cyclopentadienyl-vanadium, un dimere de bis- 30 cyclopentadienyl-titane, le trichlorure de methyltitane et leurs melanges.

4. Le procede selon la revendication 1, dans lequel ledit compose organometallique des Groupes I a III est choisi dans le groupe forme par Ie methyl-lithium, I'ethyl-lithium, le n-propyl-lithium, le n-butyl- lithium, le sec.-butyl-lithium, le cyclohexyl-lithium, le phenyl-lithium, le benzyl-lithium, le phenylsodium, 35 le benzylsodium, le naphtalene-sodium, le triphenylmethylsodium, le phenylpotassium, le butadienepo- tassium, le styrene-potassium, le naphtalene-potassium, le chlorure de methylmagnesium, le bromure d'ethylmagnesium, le chlorure de n-butylmagnesium, I'iodure de butylmagnesium, le chlorure de phenylmagnesium, le chlorure de vinylmagnesium, le chlorure d'allylmagnesium, le diethylmagnesium, le dibutylmagnesium, I'iodure de methylzinc, I'iodure d'ethylzinc, I'iodure de n-propylzinc, le dimethyl- 40 zinc, le diethylzinc, le dibutylzinc, le dimethylcadmium, le diethylcadmium, le dibutylcadmium, le diphenylcadmium, le trimethylaluminium, le triethylaluminium, Ie triisobutylaluminium, le tricyclohexyla- luminium, le chlorure de diethylaluminium, le sesquichlorure d'ethylaluminium, le dichlorure d'ethylalu- minium, le diethylethoxyaluminium et leurs melanges.

45 5. Le procede selon la revendication 1, dans lequel le rapport molaire dudit compose de metal de transition au compose de la formule (1) est compris entre 0,0001:1 et 0,10:1.

6. Le procede selon la revendication 1, dans lequel le rapport molaire dudit compose de metal de transition audit compose organometallique est compris entre 1:3 et 1:100. 50 7. Le procede selon la revendication 1, dans lequel I'hydrogenation est effectuee sous une pression d'hydrogene de 0 a 100 kg/cm2 au manometre.

8. Le procede selon la revendication 1, dans lequel I'hydrogenation est effectuee entre -30° C et 200° C. 55 Patentanspruche

1. Verfahren zum Herstellen einer Verbindung mit Norbornen-Struktur, bei dem eine durch die Formel

11 EP 0 298 408 B1

(1

-> R6 10

bei der 1 , m und n ganze Zahlen von 0^1 S3,0^mi8 und 1 i n £ 3 sind und R1 bis RG jeweils ein Wasserstoffatom Oder einen Kohlenwasserstoffrest mit 1 bis 3 C-Atomen, wobei R6 mit R4 oder R5 einen Ring bildet oder auch nicht, bedeuten, wiedergegebene Verbindung in Gegenwart eines Katalysa- 75 tors vom Zieglertyp hydriert wird, der in Kombination eine Verbindung eines Ubergangsmetalles der Gruppen IV bis VI des Periodensystems und eine Organometallverbindung der Gruppen I bis ill des Periodensystems enthalt, urn auf diese Weise die Verbindung der Formel (1) in eine durch die nachfolgende Formel

20

R1 R3 RR4 r I 1 I I (2) }." C - C -r5 25 I l R2 H H R6 n

30 bei der 1, m und n die gleiche Bedeutung wie oben besitzen, wiedergegebene Verbindung zu uberfuhren.

2. Verfahren nach Anspruch 1, bei dem die durch die Formel (1) wiedergegebene Verbindung aus der 35 Gruppe ausgewahlt wird, die aus folgenden Verbindungen besteht: Dicyclopentadien, Tricyclopenta- dien, Tetracyclopentadien, 5-Vinylbicycio[2.2.1 ]hept-2-en, 2-Vinyl-1 ,4,5,8,dimethano-1 ,2,3,4,4a,5,8,8a- octahydronaphthalin, 5-PropenylbicycIo[2.2.1 ]hept-2-en, 2-Propenyl-1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a- octahydronaphthalin, 5-lsopropenylbicyclo[2.2.1] hept-2-en, 2-lsopropenyl-1,4,5,8-dimethano- 1 ,2,3,4,4a,5,8,8a-octahydronaphthalin, 5-Methyl-6-vinylbicyclo[2.2.1 ] hept-2-en, 2-Methyl-3-Vinyl-1 ,4,5,8- 40 dimethano-1,2,3,4,4a,5,8,8a-octahydronaphthalin, 5-(1-Butenyl)-bicyclo[2.2.1]hept-2-en, 2(1-ButenyI)- 1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a-octahydronaphthalin, 5-(2-Butenyl)-bicyclo[2.2.1 ]hept-2-en, 2-(2-Bu- tenyl)-1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a-octahydronaphthalin, 5-Methyl-6-propenylbicyclo[2.2.1 ] hept- 2-en, 2-Methyl-3-propenyl-1 ,4,5,8-dimethano-1 ,2,3,4,4a,5,8,8a-octahydronaphthalin, 1 ,4-methano- 1 ,4,4a,7,8,8a-hexahydronaphthalin, 1 ,4-Methano-1 ,4,4a,5,8,8a-hexahydronaphthalin, 1 ,4,5,1 0-Dimethano- 45 1 ,4,4a,5,5a,8,9,9a,10,10a-decahydroanthracen, 1 ,4,5,1 0-Dimethano-1 ,4,4a,5,5a,6,9,9a,10,10a-decahydro- anthracen und Gemischen davon.

3. Verfahren nach Anspruch 1, bei dem die Verbindung des Ubergangsmetalls aus der Gruppe ausge- wahlt wird, die aus den folgenden Verbindungen besteht: Titanathoxid, Titanisopropoxid, Titanbutoxid, 50 Zirconathoxid, Zirconisopropoxid, Zirconbutoxid, Hafniumathoxid, Hafniumbutoxid, Vanadiumathoxid, Vanadiumisopropoxid, Vanadiumbutoxid, Vanadylathoxid, Vanadylisopropoxid, Vandylbutoxid, Titantri- chlorid, Titantribromid, Titantrijodid, Titantetrachlorid, Titantetrabromid, Titantetrajodid, Zircontetrachlo- rid, Zircontetrabromid, Zircontetrajodid, Hafniumtetrachlorid, Hafniumtetrabromid, Vanadiumchlorid, Va- nadyltetrabromid, Vanadylchlorid, Vanadylbromid, Vanadylmonoathoxydichlorid, Vanadyldiathoxymono- 55 chlorid, Titanacetylacetonat, Zirconacetylacetonat, Hafniumacetylacetonat, Vanadiumacetylacetonat, Va- nadylacetylacetonat, Vanadiumhexacarbonyl, Bis-cyclopentadienyltitandicarbonyl, Cyclopentadienylva- nadiumtetracarbonyl, Bis-cyclopentadienyltitandichlorid, Bis-cyclopentadienylvanadiumdichlorid, Bis- cyclopentadienyltitan-Dimer, Methyltitantrichlorid und Gemischen davon.

12 EP 0 298 408 B1

4. Verfahren nach Anspruch 1 , bei dem die Organometallverbindung der Gruppen I bis III aus der Gruppe ausgewahlt wird, die aus den folgenden Verbindungen besteht: Methyllithium, Athyllithium, n-Propyllithi- um, n-Butyllithium, sec-Butyllithium, Cyclohexyllithium, Phenyllithium, Benzyllithium, Phenylnatrium, Benzylnatrium, Naphthalinnatrium, Triphenylmethylnatrium, Phenylkalium, Butadienkalium, Styrolkalium 5 oder Naphthalinkalium, Methylmagnesiumchlorid, Athylmagnesiumbromid, n-Butylmagnesiumchlorid, Butylmagnesiumjodid, Phenylmagnesiumchlorid, Vinylmagnesiumchlorid, Allylmagnesiumchlorid, Di- athylmagnesium, Dibutylmagnesium, Methylzinkjodid, Athylzinkjodid, n-Propylzinkjodid, Dimethylzink, Diathylzink, Dibutylzink, Dimethylcadmium, Diathylcadmium, Dibutylcadmium, Trimethylaluminium, Tri- athylaluminium, Triisobutylaluminium, Tricyclohexylaluminium, Diathylaluminiumchlorid, Athylalumi- 70 niumsesquichlorid, Athylaluminiumdichlorid oder Diathylethoxyaluminium und Gemischen davon.

5. Verfahren nach Anspruch 1, bei dem das Molekularverhaltnis der Ubergangsmetallverbindung zur Verbindung der Formel (1) von 0,0001:1 bis 0,10:1 reicht.

75 6. Verfahren nach Anspruch 1, bei dem das Molekularverhaltnis der Ubergangsmetallverbindung zur Organometallverbindung von 1:3 bis 1:100 reicht.

7. Verfahren nach Anspruch 1, bei dem die Hydrierung unter einem Wasserstoffdruck von 0 bis 100 kg/cm2 G durchgefuhrt wird. ° ° 8. Verfahren nach Anspruch 1, bei dem die Hydrierung bei -30 bis 200 C durchgefuhrt wird.

25

30

35

40

45

50

55

13