bioRxiv preprint doi: https://doi.org/10.1101/471672; this version posted November 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Wolf-Hirschhorn Syndrome-associated genes are enriched in motile neural crest cells and affect craniofacial development in Xenopus laevis Short Title: WHS-affected genes shape craniofacial morphology Alexandra Mills#, Elizabeth Bearce#, Rachael Cella, Seung Woo Kim, Megan Selig, Sangmook Lee, and Laura Anne Lowery* Biology Department, Boston College, Chestnut Hill, MA, USA * Corresponding author Email:
[email protected] #These authors contributed equally to this work. Keywords craniofacial development | developmental disorders | 4p- | Wolf-Hirschhorn Syndrome | WHSC1 | WHSC2 | LETM1 | TACC3 | neural crest | disease model bioRxiv preprint doi: https://doi.org/10.1101/471672; this version posted November 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Abstract 2 Wolf-Hirschhorn Syndrome (WHS) is a human developmental disorder arising from a 3 hemizygous perturbation, typically a microdeletion, on the short arm of chromosome four. In 4 addition to pronounced intellectual disability, seizures, and delayed growth, WHS presents with 5 a characteristic facial dysmorphism and varying prevalence of microcephaly, micrognathia, 6 cartilage malformation in the ear and nose, and facial asymmetries. These affected craniofacial 7 tissues all derive from a shared embryonic precursor, the cranial neural crest, inviting the 8 hypothesis that one or more WHS-affected genes may be critical regulators of neural crest 9 development or migration.