(4 Points Apiece): 1. During Strenuous Exercise, the NADH Form
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Construction and Enzymatic Characterization of E
1 Minimizing acetate formation in E. coli fermentations 2 Marjan De Mey*, Sofie De Maeseneire, Wim Soetaert and Erick Vandamme 3 Ghent University, Laboratory of Industrial Microbiology and Biocatalysis, Department of 4 Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Coupure links 5 653, B-9000 Ghent, Belgium 6 7 * Correspondence address: Marjan De Mey 8 Laboratory of Industrial Microbiology and Biocatalysis 9 Department of Biochemical and Microbial Technology 10 Faculty of Bioscience Engineering 11 Ghent University 12 Coupure links 653 13 B-9000 Gent 14 Tel: +32-9-264-60-28 15 Fax: +32-9-264-62-31 16 [email protected] 17 Keywords: acetate reduction, Escherichia coli, metabolic engineering 1 18 Abstract 19 Escherichia coli remains the best established production organisms in industrial 20 biotechnology. However, during aerobic fermentation runs at high growth rates, considerable 21 amounts of acetate are accumulated as by-product. This by-product has negative effects on 22 growth and protein production. Over the last 20 years, substantial research efforts have been 23 spent to reduce acetate accumulation during aerobic growth of E. coli on glucose. From the 24 onset it was clear that this quest should not be a simple nor uncomplicated one. Simple 25 deletion of the acetate pathway, reduced the acetate accumulation, but instead other by- 26 products were formed. This minireview gives a clear outline of these research efforts and the 27 outcome of them, including bioprocess level approaches and genetic approaches. Recently, 28 the latter seems to have some promising results. 29 30 1 Introduction 31 Escherichia coli was the first and is still one of the most commonly used production 32 organisms in industrial biotechnology. -
Tbamitchodral L Alizaion of the 4Aminobutyrate-2-&Oxoglutarate
5d.em. J. (lWg77) 161,9O.-307 3O1 Printed in Great Britain Tbamitchodral L alizaion of the 4Aminobutyrate-2-&Oxoglutarate Transminase from Ox Brait By INGER SCHOUSDOE,* BIRGIT 1MO* and ARNE SCHOUSBOEt Department ofBDahemistry At andC*, University ofCopenhagen, 2200 Copenhagen M, Denark (Receved 4 June 1976) In order to determine the intramitochondrial location of 4-aminobutyrate transaminase, mitochondria were prepared from ox brain and freed from myelin and syiaptosomes by using conventional demitygradient-centrifugation techniques, and the purity was checked electron-microscopically. Iner and outer mimbrenes and matrix were prepared from the mitochondria by large-amplitude sweling and subsequent density-gradient centrfugationt The fractions were characterized by using both electron microscopy and differnt marker enzymes. From the specific activity of the 4-aminobutyrate transaminase in the submitochondrial fractions it was concluded that this enzyme is associated with the inner mitochondrial membrane. It is generally agreed that the 4-aminobutyrate-2- pyridoxal phosphate were from Sigma Chemical oxoglutarate transaminase (EC2.6.1.19) from brain is Co., St. Louis, MO, U.S.A. Ficoll was from mainly associated with free mitochondria (Salganicoff Pharmacia, Uppsala, Sweden, and crystallized & De Robertis, 1963, 1965; van den Berget al., 1965; bovine serum albumin was from BDH Biochemicals, van Kempen et at., 1965; Balazs et al., 1966; Poole, Dorset, U.K. 4-Amino[1-'4C]butyrate (sp. Waksman et al., 1968; Reijnierse et al., 1975), radioactivity 50mCi/mmol) and [1-14qtyramine (sp. and a preparation of a crude mitochondrial fraction radioactivity 9mCi/mmol) were obtained from was used by Schousboe et al. (1973) and Maitre et al. -
Alternative Acetate Production Pathways in Chlamydomonas Reinhardtii During Dark Anoxia and the Dominant Role of Chloroplasts in Fermentative Acetate Productionw
This article is a Plant Cell Advance Online Publication. The date of its first appearance online is the official date of publication. The article has been edited and the authors have corrected proofs, but minor changes could be made before the final version is published. Posting this version online reduces the time to publication by several weeks. Alternative Acetate Production Pathways in Chlamydomonas reinhardtii during Dark Anoxia and the Dominant Role of Chloroplasts in Fermentative Acetate ProductionW Wenqiang Yang,a,1 Claudia Catalanotti,a Sarah D’Adamo,b Tyler M. Wittkopp,a,c Cheryl J. Ingram-Smith,d Luke Mackinder,a Tarryn E. Miller,b Adam L. Heuberger,e Graham Peers,f Kerry S. Smith,d Martin C. Jonikas,a Arthur R. Grossman,a and Matthew C. Posewitzb a Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305 b Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, Colorado 80401 c Stanford University, Department of Biology, Stanford, California 94305 d Clemson University, Department of Genetics and Biochemistry, Clemson, South Carolina 29634 e Colorado State University, Proteomics and Metabolomics Facility, Fort Collins, Colorado 80523 f Colorado State University, Department of Biology, Fort Collins, Colorado 80523 ORCID ID: 0000-0001-5600-4076 (W.Y.) Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria. -
Altered Expression and Function of Mitochondrial Я-Oxidation Enzymes
0031-3998/01/5001-0083 PEDIATRIC RESEARCH Vol. 50, No. 1, 2001 Copyright © 2001 International Pediatric Research Foundation, Inc. Printed in U.S.A. Altered Expression and Function of Mitochondrial -Oxidation Enzymes in Juvenile Intrauterine-Growth-Retarded Rat Skeletal Muscle ROBERT H. LANE, DAVID E. KELLEY, VLADIMIR H. RITOV, ANNA E. TSIRKA, AND ELISA M. GRUETZMACHER Department of Pediatrics, UCLA School of Medicine, Mattel Children’s Hospital at UCLA, Los Angeles, California 90095, U.S.A. [R.H.L.]; and Departments of Internal Medicine [D.E.K., V.H.R.] and Pediatrics [R.H.L., A.E.T., E.M.G.], University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213, U.S.A. ABSTRACT Uteroplacental insufficiency and subsequent intrauterine creased in IUGR skeletal muscle mitochondria, and isocitrate growth retardation (IUGR) affects postnatal metabolism. In ju- dehydrogenase activity was unchanged. Interestingly, skeletal venile rats, IUGR alters skeletal muscle mitochondrial gene muscle triglycerides were significantly increased in IUGR skel- expression and reduces mitochondrial NADϩ/NADH ratios, both etal muscle. We conclude that uteroplacental insufficiency alters of which affect -oxidation flux. We therefore hypothesized that IUGR skeletal muscle mitochondrial lipid metabolism, and we gene expression and function of mitochondrial -oxidation en- speculate that the changes observed in this study play a role in zymes would be altered in juvenile IUGR skeletal muscle. To test the long-term morbidity associated with IUGR. (Pediatr Res 50: this hypothesis, mRNA levels of five key mitochondrial enzymes 83–90, 2001) (carnitine palmitoyltransferase I, trifunctional protein of -oxi- dation, uncoupling protein-3, isocitrate dehydrogenase, and mi- Abbreviations tochondrial malate dehydrogenase) and intramuscular triglycer- CPTI, carnitine palmitoyltransferase I ides were quantified in 21-d-old (preweaning) IUGR and control IUGR, intrauterine growth retardation rat skeletal muscle. -
Supplement 1 Overview of Dystonia Genes
Supplement 1 Overview of genes that may cause dystonia in children and adolescents Gene (OMIM) Disease name/phenotype Mode of inheritance 1: (Formerly called) Primary dystonias (DYTs): TOR1A (605204) DYT1: Early-onset generalized AD primary torsion dystonia (PTD) TUBB4A (602662) DYT4: Whispering dystonia AD GCH1 (600225) DYT5: GTP-cyclohydrolase 1 AD deficiency THAP1 (609520) DYT6: Adolescent onset torsion AD dystonia, mixed type PNKD/MR1 (609023) DYT8: Paroxysmal non- AD kinesigenic dyskinesia SLC2A1 (138140) DYT9/18: Paroxysmal choreoathetosis with episodic AD ataxia and spasticity/GLUT1 deficiency syndrome-1 PRRT2 (614386) DYT10: Paroxysmal kinesigenic AD dyskinesia SGCE (604149) DYT11: Myoclonus-dystonia AD ATP1A3 (182350) DYT12: Rapid-onset dystonia AD parkinsonism PRKRA (603424) DYT16: Young-onset dystonia AR parkinsonism ANO3 (610110) DYT24: Primary focal dystonia AD GNAL (139312) DYT25: Primary torsion dystonia AD 2: Inborn errors of metabolism: GCDH (608801) Glutaric aciduria type 1 AR PCCA (232000) Propionic aciduria AR PCCB (232050) Propionic aciduria AR MUT (609058) Methylmalonic aciduria AR MMAA (607481) Cobalamin A deficiency AR MMAB (607568) Cobalamin B deficiency AR MMACHC (609831) Cobalamin C deficiency AR C2orf25 (611935) Cobalamin D deficiency AR MTRR (602568) Cobalamin E deficiency AR LMBRD1 (612625) Cobalamin F deficiency AR MTR (156570) Cobalamin G deficiency AR CBS (613381) Homocysteinuria AR PCBD (126090) Hyperphelaninemia variant D AR TH (191290) Tyrosine hydroxylase deficiency AR SPR (182125) Sepiaterine reductase -
82870547.Pdf
ORIGINAL RESEARCH published: 06 March 2017 doi: 10.3389/fpls.2017.00291 Integrated Transcriptome and Metabolic Analyses Reveals Novel Insights into Free Amino Acid Metabolism in Huangjinya Tea Cultivar Qunfeng Zhang 1, 2, Meiya Liu 1, 2 and Jianyun Ruan 1, 2* 1 Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China, 2 Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of Agriculture, Hangzhou, China The chlorotic tea variety Huangjinya, a natural mutant, contains enhanced levels of free amino acids in its leaves, which improves the drinking quality of its brewed tea. Consequently, this chlorotic mutant has a higher economic value than the non-chlorotic Edited by: varieties. However, the molecular mechanisms behind the increased levels of free amino Basil J. Nikolau, Iowa State University, USA acids in this mutant are mostly unknown, as are the possible effects of this mutation Reviewed by: on the overall metabolome and biosynthetic pathways in tea leaves. To gain further John A. Morgan, insight into the effects of chlorosis on the global metabolome and biosynthetic pathways Purdue University, USA Vinay Kumar, in this mutant, Huangjinya plants were grown under normal and reduced sunlight, Central University of Punjab, India resulting in chlorotic and non-chlorotic leaves, respectively; their leaves were analyzed *Correspondence: using transcriptomics as well as targeted and untargeted metabolomics. Approximately Jianyun Ruan 5,000 genes (8.5% of the total analyzed) and ca. 300 metabolites (14.5% of the total [email protected] detected) were significantly differentially regulated, thus indicating the occurrence of Specialty section: marked effects of light on the biosynthetic pathways in this mutant plant. -
Nutritional Vitamin B6 Deficiency Impairs Lipid Me Tabolism and Leads
J Nutr Sci Vitaminol, 47, 306-310, 2001 Xanthurenic Acid Inhibits Metal Ion-Induced Lipid Peroxidation and Protects NADP-Isocitrate Dehydrogenase from Oxidative Inactivation Keiko MURAKAMI,Masae ITO and Masataka YOSHINO* Department of Biochemistry, Aichi Medical University School of Medicine,Nagakute, Aichi 480-1195, Japan (ReceivedJanuary 26, 2001) Summary Vitamin B6 deficiency increases the lipid peroxidation and the synthesis of xanthurenic acid from tryptophan. Antioxidant properties of xanthurenic acid were exam ined in relation to the coordination of transition metals. Xanthurenic acid inhibited the for mation of thiobarbituric acid-reactive substances as a marker of iron-mediated lipid peroxi dation and copper-dependent oxidation of low density lipoprotein. NADP-isocitrate dehydro genase (EC 1.1.1.42), a principal NADPH-generating enzyme for the antioxidant defense system, was inactivated by reduced iron and copper, and xanthurenic acid protected the en zyme from the Fe2+-mediated inactivation. Xanthurenic acid may participate in the en hanced regeneration of reduced glutathione by stimulating the NADPH supply. Xanthurenic acid further enhanced the autooxidation of Fe2+ ion. Other tryptophan metabolites such as kynurenic acid and various quinoline compounds did not inhibit the lipid peroxidation and the inactivation of NADP-isocitrate dehydrogenase, and they showed little or no effect on the Fe2+ autooxidation. The antioxidant properties of xanthurenic acid are related to the metal-chelating activity and probably to the enhanced oxidation of reduced transition met als as a prooxidant, and this action may be due to the electron deficient nature of this com pound. Key Words xanthurenic acid, antioxidant, LDL, NADP-isocitrate dehydrogenase, reactive oxygen species Nutritional vitamin B6 deficiency impairs lipid me Lipid peroxidation. -
ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T
Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T. Bourgeron,* D. Chretien,* J. Poggi-Bach, S. Doonan,' D. Rabier,* P. Letouze,I A. Munnich,* A. R6tig,* P. Landneu,* and P. Rustin* *Unite de Recherches sur les Handicaps Genetiques de l'Enfant, INSERM U393, Departement de Pediatrie et Departement de Biochimie, H6pital des Enfants-Malades, 149, rue de Sevres, 75743 Paris Cedex 15, France; tDepartement de Pediatrie, Service de Neurologie et Laboratoire de Biochimie, Hopital du Kremlin-Bicetre, France; IFaculty ofScience, University ofEast-London, UK; and IService de Pediatrie, Hopital de Dreux, France Abstract chondrial enzyme (7). Human tissue fumarase is almost We report an inborn error of the tricarboxylic acid cycle, fu- equally distributed between the mitochondria, where the en- marase deficiency, in two siblings born to first cousin parents. zyme catalyzes the reversible hydration of fumarate to malate They presented with progressive encephalopathy, dystonia, as a part ofthe tricarboxylic acid cycle, and the cytosol, where it leucopenia, and neutropenia. Elevation oflactate in the cerebro- is involved in the metabolism of the fumarate released by the spinal fluid and high fumarate excretion in the urine led us to urea cycle. The two isoenzymes have quite homologous struc- investigate the activities of the respiratory chain and of the tures. In rat liver, they differ only by the acetylation of the Krebs cycle, and to finally identify fumarase deficiency in these NH2-terminal amino acid of the cytosolic form (8). In all spe- two children. The deficiency was profound and present in all cies investigated so far, the two isoenzymes have been found to tissues investigated, affecting the cytosolic and the mitochon- be encoded by a single gene (9,10). -
Isocitrate Dehydrogenase Activity Assay Kit (MAK062)
Isocitrate Dehydrogenase Activity Assay Kit Catalog Number MAK062 Storage Temperature –20 C TECHNICAL BULLETIN Product Description Developer 1 vl Isocitrate dehydrogenase (IDH) catalyzes the Catalog Number MAK062E conversion of isocitrate to -ketoglutarate. In eukaryotes, there are three isozymes of IDH, the IDH Positive Control (NADP+) 20 L mitochondrial IDH2 and IDH3, and the cytoplasmic/ Catalog Number MAK062F peroxisomal IDH1. All three IDH family members require the presence of a divalent cation (Mg2+ or Mn2+) NADH Standard, 0.5 mole 1 vl and either the electron-accepting cofactor NADP+ (IDH1 Catalog Number MAK062G and IDH2) or NAD+ (IDH3) for their enzymatic activity. IDH1 and IDH2 mutations resulting in neomorphic Reagents and Equipment Required but Not enzymatic activity are found in certain cancers such as Provided. glioblastoma, acute myeloid leukemia, and colon 96 well flat-bottom plate – It is recommended to use cancer. This neoactivity shows a change in the clear plates for colorimetric assays. substrate specificity resulting in the conversion of Spectrophotometric multiwell plate reader -ketoglutarate to 2-hydroxyglutarate. Mutations in IDH family members are also associated with Ollier disease Precautions and Disclaimer and Maffucci syndrome. This product is for R&D use only, not for drug, household, or other uses. Please consult the Material The Isocitrate Dehydrogenase Activity Assay kit Safety Data Sheet for information regarding hazards provides a simple and direct procedure for measuring and safe handling practices. + + + NADP -dependent, NAD -dependent, or both NADP + and NAD -dependent IDH activity in a variety of Preparation Instructions samples. IDH activity is determined using isocitrate as Briefly centrifuge vials before opening. -
Targeting Pyruvate Carboxylase Reduces Gluconeogenesis and Adiposity and Improves Insulin Resistance Naoki Kumashiro,1,2 Sara A
ORIGINAL ARTICLE Targeting Pyruvate Carboxylase Reduces Gluconeogenesis and Adiposity and Improves Insulin Resistance Naoki Kumashiro,1,2 Sara A. Beddow,3 Daniel F. Vatner,2 Sachin K. Majumdar,2 Jennifer L. Cantley,1,2 Fitsum Guebre-Egziabher,2 Ioana Fat,2 Blas Guigni,2 Michael J. Jurczak,2 Andreas L. Birkenfeld,2 Mario Kahn,2 Bryce K. Perler,2 Michelle A. Puchowicz,4 Vara Prasad Manchem,5 Sanjay Bhanot,5 Christopher D. Still,6 Glenn S. Gerhard,6 Kitt Falk Petersen,2 Gary W. Cline,2 Gerald I. Shulman,1,2,7 and Varman T. Samuel2,3 – We measured the mRNA and protein expression of the key transcriptional factors and cofactors (8 12). Yet, despite gluconeogenic enzymes in human liver biopsy specimens and the high degree of transcription regulation for these found that only hepatic pyruvate carboxylase protein levels enzymes, the control they exert over gluconeogenic flux is related strongly with glycemia. We assessed the role of pyruvate relatively weak (13–16). We recently reported that hepatic carboxylase in regulating glucose and lipid metabolism in rats expression of PEPCK and G6PC mRNA was not related to through a loss-of-function approach using a specific antisense fasting hyperglycemia in two rodent models of type 2 di- oligonucleotide (ASO) to decrease expression predominantly in abetes and in patients with type 2 diabetes (17). Thus, we liver and adipose tissue. Pyruvate carboxylase ASO reduced hypothesized that other mechanisms must account for in- plasma glucose concentrations and the rate of endogenous glucose production in vivo. Interestingly, pyruvate carboxylase ASO also creased hepatic gluconeogenesis and fasting hyperglycemia reduced adiposity, plasma lipid concentrations, and hepatic in type 2 diabetes. -
Deficiency of Skeletal Muscle Succinate Dehydrogenase and Aconitase
Deficiency of skeletal muscle succinate dehydrogenase and aconitase. Pathophysiology of exercise in a novel human muscle oxidative defect. R G Haller, … , K Ayyad, C G Blomqvist J Clin Invest. 1991;88(4):1197-1206. https://doi.org/10.1172/JCI115422. Research Article We evaluated a 22-yr-old Swedish man with lifelong exercise intolerance marked by premature exertional muscle fatigue, dyspnea, and cardiac palpitations with superimposed episodes lasting days to weeks of increased muscle fatigability and weakness associated with painful muscle swelling and pigmenturia. Cycle exercise testing revealed low maximal oxygen uptake (12 ml/min per kg; healthy sedentary men = 39 +/- 5) with exaggerated increases in venous lactate and pyruvate in relation to oxygen uptake (VO2) but low lactate/pyruvate ratios in maximal exercise. The severe oxidative limitation was characterized by impaired muscle oxygen extraction indicated by subnormal systemic arteriovenous oxygen difference (a- v O2 diff) in maximal exercise (patient = 4.0 ml/dl, normal men = 16.7 +/- 2.1) despite normal oxygen carrying capacity and Hgb-O2 P50. In contrast maximal oxygen delivery (cardiac output, Q) was high compared to sedentary healthy men (Qmax, patient = 303 ml/min per kg, normal men 238 +/- 36) and the slope of increase in Q relative to VO2 (i.e., delta Q/delta VO2) from rest to exercise was exaggerated (delta Q/delta VO2, patient = 29, normal men = 4.7 +/- 0.6) indicating uncoupling of the normal approximately 1:1 relationship between oxygen delivery and utilization in dynamic exercise. Studies of isolated skeletal muscle mitochondria in our patient revealed markedly impaired succinate oxidation with normal glutamate oxidation implying a metabolic defect at […] Find the latest version: https://jci.me/115422/pdf Deficiency of Skeletal Muscle Succinate Dehydrogenase and Aconitase Pathophysiology of Exercise in a Novel Human Muscle Oxidative Defect Ronald G.