U N I V E R S IT Y O F C O P E N H a G E N Project

Total Page:16

File Type:pdf, Size:1020Kb

U N I V E R S IT Y O F C O P E N H a G E N Project UNIVERSITY OF COPENHAGEN FACULTY OF HEALTH AND MEDICAL SCIENCES BRIDGE- TRANSLATIONAL EXCELLENCE PROGRAMME PROJECT SYNOPSIS TEMPLATE 1 Project title The Neurophysiological Basis of Ultrafast Magnetic Resonance Encephalography Mentor 1 Gitte Moos Knudsen, Prof. Dr. Med., Neurobiology Research Unit, Rigshospitalet ([email protected]) Mentor 2 Maiken Nedergaard, Prof. Dr. Med., Center for Translational Neuromedicine, University of Copenhagen ([email protected]) Framework This project will be performed in a unique translational environment that will bridge applied and basic medical neuroimaging across two of Denmark forefront neuroscience units, The Section for Translational Neuroscience (STN) at the University of Copenhagen, and The Neurobiology Research Unit (NRU) at Copenhagen University Hospital, Rigshospitalet. This exclusive setting allows the selected candidate to collaborate with a committed NRU data-analysis and biostatisticians team while also granting access to dedicated data analysis server facilities, MR infrastructure and preliminary Magnetic Resonance Encephalography (MREG) data. Regular lab meetings in NRU and STN provides synergy and feedback both from neuroimaging and data-analysis as well as glymphatics experts, ensuring the projects continued progress. The collaboration with the world leading STN lab investigating the glymphatic system, will help guide the projects scientific relevance. Moreover, both STN and NRU have a strong scientific network for MREG data analysis, including collaborations with Prof. Kiviniemi who developed state-of-the-art MREG fluid dynamic imaging. Alongside personal mentoring by Prof. Knudsen and Nedergaard, the project setup ensures an excellent scientific environment for advanced MREG imaging analysis. Project Ultrafast Magnetic Resonance Encephalography (MREG), is a novel MR technique synopsis that enables image acquisition of the entire brain at 10 Hz, roughly 30 times faster than standard BOLD fMRI. This allows non-aliased imaging of cardiac and respiratory pulsations, hypothesized to be the driving force of intracranial pressure (ICP) fluctuations that propel cerebrospinal fluid (CSF) through the brain. MREG may have 1 The CV’s and project synopsis of each mentor team will be posted on the programme webpage in advance of the admissions process to the programme. wide-spread applications in basic and clinical research investigating CSF PAGEfluctuations 2 OF 2 , yet its underlying biological signal is not yet well understood. This project aims to characterize underlying properties of MREG. Data from different cognitive and neurophysiological states will be recorded in healthy subjects to investigate how changes in ICP and neuronal activity affects the MREG signal. These data will be collected as part of already ongoing studies. The BRIDGE-postdoc will be able to influence and assist in data collection, but his/her main responsibility will be to critically develop an MREG image-processing pipeline to accurately quantify CSF movements. Profile of Please outline the desired background and scientific qualifications of a potential potential fellow/mentee fellow Excellent MR data processing skills (e.g. FSL, SPM or Freesurfer) Preferably high quality first author publications in state-of-the-art MR imaging PhD in neuroscience Background in computer science, physics, or biomedical engineering UNIVERSITY OF COPENHAGEN FACULTY OF HEALTH AND MEDICAL SCIENCES BRIDGE- TRANSLATIONAL EXCELLENCE PROGRAMME MENTOR CV TEMPLATE 1 Name Gitte Moos Knudsen Title Professor, overlæge, dr.med. Current Neurobiology Research Unit (NRU) & NeuroPharm (The Center for department(s) Experimental Medicine Neuropharmacology), Dept of Neurology, The Neuroscience Center, Rigshospitalet Current position(s) Professor, overlæge, dr.med., Head of NRU and NeuroPharm Education/training MD from University of Copenhagen (UCPH), 24.1.1984. Board certified user of radioisotopes 1986. FMGEMS exam (US) 1989. Board certified in neurology January 1995. DMSc (dr.med.) from UCPH, 16.12.1994. Scientific career I am a translational neurobiologist and clinical neurologist with interest in profile advanced methodological developments that I subsequently apply in my research to address pertinent neurobiological and clinical issues. My scientific interests include blood-brain barrier transport, neurobiology of cerebral blood flow and metabolism and the neurobiology of cerebral neurotransmission with particular emphasis on molecular brain imaging. I have a particular focus on multimodality neuroimaging of neuro-transmission in healthy individuals and in patients with neurological or psychiatric disorders. NRU encompasses around 50 staff members and has an annual budget of roughly €3.5 million. NRU has extensive experience in organization and governance of large scale research collaborative projects, e.g., the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) and Center for Experimental Medicine Neuropharmacology (NeuroPharm) and has participated in many European collaborations most recently INMiND supported by EU FP7. NRU collaborate nationally and internationally and has expertise in molecular, functional and structural brain imaging in brain disorders. The NRU preclinical laboratory includes standard wet laboratory facilities and NRU also has two psychological/physiological test rooms equipped with all the required facilities. As of 2019, NRU will apart from a SPECT-scanner have its own brain research dedicated 3T MR-scanner and mock-up MR scanner installed in the North Wing at Rigshospitalet. Bibliometric Published 351 Medline indexed scientific papers and reviews as well as 28 summary books/book chapters. No. citations >13,500. H-index: 56 (Web of Science). ResearcherID: C-1368-2013, ORCID-ID: orcid.org/0000-0003-1508-6866 1 Do not exceed two pages. The CV’s and project synopsis of each mentor team will be posted on the programme webpage in advance of the admissions process to the programme Hansen HD, Mandeville JB et al. Functional characterization of 5-HT1B receptorPAGE 2 OFdrugs 2 in non-human primates using simultaneous PET-MR. J Neurosci. 2017 Nov 1;37(44):10671-10678 da Cunha-Bang S, Hjordt LV et al. Serotonin 1B receptor binding is associated with trait anger and level of psychopathy in violent offenders. Biol Psychiatry. 2017 Aug 15;82(4):267-274 Beliveau V, Ganz M et al. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System. J Neurosci. 2017 Jan 4;37(1):120-128 Mc Mahon B, Andersen SB et al. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder. Brain. 2016 May;139(Pt 5):1605-14 Knudsen GM, Jensen PS et al. The Center for Integrated Molecular Brain Imaging (Cimbi) Database. NeuroImage. 2016 Jan 1;124(Pt B):1213-1219 Frokjaer VG, Pinborg A et al. Role of Serotonin Transporter Changes in Depressive Responses to Sex-Steroid Hormone Manipulation: A Positron Emission Tomography Study. Biol Psychiatry. 2015 Oct 15;78(8):534-43 Haahr ME, Hansen DL et al. Central 5-HT neurotransmission modulates weight loss following gastric bypass surgery in obese individuals. J Neurosci. 2015 Apr 8;35(14):5884-9 Fisher PM, Haahr ME et al. Fluctuations in [11C]SB207145 PET binding associated with change in threat-related amygdala reactivity in humans. Neuropsychopharmacology. 2015 May;40(6):1510-8 Haahr ME, Fisher PM et al. Central 5-HT4 receptor binding as biomarker of serotonergic tonus in humans: a [11C]SB207145 PET study. Mol Psychiatry. 2014 Apr;19(4):427-32 Fisher PM, Madsen MK et al. Three-week bright-light intervention has dose-related effects on threat-related corticolimbic reactivity and functional coupling. Biol Psych. 2014 Aug 15;76(4):332-9 Contributions to My mentoring philosophy is that each student is unique and is entitled to be mentoring, mentored according to his/her skills, wishes, and personal ambitions. As the training, main supervisor of a substantial number of PhD-students and postdocs it supervision becomes natural and necessary to have a collaborative learning environment, where PhD-students have a daily supervisor in terms of either a more experienced PhD-student and/or a postdoc. PhD-students often get assistance from pregraduate students which means that at virtually every level of training, you get to teach and train people. In my view, this supports a vibrant collaborative team-work spirit. Since 1999, I have supervised a total of 24 PhD-students (hereof 14 females) who have defended their PhD degrees. After earning their PhD degree, they were recruited as post docs by different foreign institutions: Childrens Hospital Harvard Medical School (Cecilie Licht), Stanford University (Birgitte Kornum; Mikael Palner), Imperial College London (David Erritzøe), and Charité Berlin (Jan Kalbitzer). Of the remaining, eight became either senior researchers or post docs in Danish academic institutions, four went on to clinical training for specialization, and two became employed in drug companies in Denmark and Sweden. Currently, I am supervising 9 PhD students and mentoring 10 post docs. My laboratory supervises about 20 national and international pregraduate and PhD students every year. Regular teaching of pregraduate medical, pharmaceutical and human biology students and organizer of 1-2 PhD courses per year. Regularly teaching at international courses: annually at the PET Pharmacokinetic course (80 students) and at summer courses. UNIVERSITY OF COPENHAGEN FACULTY OF HEALTH AND MEDICAL SCIENCES BRIDGE- TRANSLATIONAL
Recommended publications
  • Professor Of
    CURRICULUM VITAE Name: ALEXEI VERKHRATSKY Date of birth: July 30, 1961 Citizenship: British Title: MD, PhD, Dr. Sci. Department: Professor of Neurophysiology Faculty of Life Sciences, The University of Manchester Michael Smith Building, Oxford Road, Manchester M13 9PT, UK e-mail: [email protected] Current appointments: Professor of Neurophysiology Higher Education and academic degrees: 1993: Doctor of Medical Sciences, Bogomoletz Institute of Physiology, Physiology, "Mechanisms of calcium signal generation in neurones and glial cells". 1983-1986: PhD, Bogomoletz Institute of Physiology: Physiology, "Tetrodotoxin sensitive ionic currents in the membrane of isolated cardiomyocytes" 1977 - 1983: MD, Kiev Medical Institute. Honours: 2003: Elected Member of Academia Europaea 2006 - 2013: Chairman of the Physiology and Medicine Section of the Academia Europaea; Member of the Council 2012: Elected member of Real Academia Nacional de Farmacia, Spain 2012: Research Award of German Purine Club 2012: Elected member of European Dana Alliance for the Brain Initiatives (since 2015 Dana Alliance for Brain Initiatives). 2013: Recipient of Dozor Visiting Scholar award, Ben Gurion University, Beer Sheva, Israel. 2013: Fellow of Japan Society for the Promotion of Science (JSPS). 2013: Elected member of Nationale Akademie der Wissenschaften Leopoldina (The German National Academy of Sciences Leopoldina). 2016 - present: Vice-Presidnet and Chairmen of the Class C (Life Science and Medicine) of the Academia Europaea. 2016: Copernicus Gold
    [Show full text]
  • OMB No. 0925-0046, Biographical Sketch Format Page
    BIOGRAPHICAL SKETCH NAME: Nedergaard, Maiken eRA COMMONS USER NAME (credential, e.g., agency login): mnedergaard POSITION TITLE: Professor EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.) DEGREE Completion (if Date FIELD OF STUDY INSTITUTION AND LOCATION applicable) MM/YYYY University of Copenhagen M.D. 1983 Medicine University of Copenhagen Ph.D. 1989 Neuroscience A. Personal statement The objective of my work is to understand the biological functions of astrocytes, their ability to interact with other cell types, and to use this knowledge to develop novel therapeutic strategies to treat, or perhaps cure, a variety of neurological diseases. In vivo explorations have radically challenged the classical dogma – that neurons are the sole substrate of higher brain function – and have led to a shift in paradigm by including astrocytes and other glial cells in higher cognitive functions. No current medications used in clinical medicine target glial cells – the most numerous cells in CNS. The premise for my work is that understanding the basic functions of glial cells offers extraordinary opportunities for combating disease. We have recently identified a fundamentally novel pathway for interstitial solute clearance from the brain consisting of a para-arterial cerebrospinal fluid (CSF) influx path and a para-venous interstitial fluid (ISF) clearance route, which are coupled through convective interstitial bulk flow supported by astrocytic AQP4 water channels. We designated it “the glymphatic system” based on its adoption of functions analogous to the peripheral lymphatic system and the dependence of CSF/ISF fluxes on astroglial AQP4.
    [Show full text]
  • The Role of the Serotonergic System and the Effects of Antidepressants During Brain Development Examined Using in Vivo Pet Imaging and in Vitro Receptor Binding
    From THE DEPARTMENT OF CLINICAL NEUROSCIENCE Karolinska Institutet, Stockholm, Sweden THE ROLE OF THE SEROTONERGIC SYSTEM AND THE EFFECTS OF ANTIDEPRESSANTS DURING BRAIN DEVELOPMENT EXAMINED USING IN VIVO PET IMAGING AND IN VITRO RECEPTOR BINDING Stal Saurav Shrestha Stockholm 2014 Cover Illustration: Voxel-wise analysis of the whole monkey brain using the PET radioligand, [11C]DASB showing persistent serotonin transporter upregulation even after more than 1.5 years of fluoxetine discontinuation. All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Universitetsservice-AB © Stal Saurav Shrestha, 2014 ISBN 978-91-7549-522-4 Serotonergic System and Antidepressants During Brain Development To my family Amaze yourself ! Stal Saurav Shrestha, 2014 The Department of Clinical Neuroscience The role of the serotonergic system and the effects of antidepressants during brain development examined using in vivo PET imaging and in vitro receptor binding AKADEMISK AVHANDLING som för avläggande av medicine doktorsexamen vid Karolinska Institutet offentligen försvaras i CMM föreläsningssalen L8:00, Karolinska Universitetssjukhuset, Solna THESIS FOR DOCTORAL DEGREE (PhD) Stal Saurav Shrestha Date: March 31, 2014 (Monday); Time: 10 AM Venue: Center for Molecular Medicine Lecture Hall Floor 1, Karolinska Hospital, Solna Principal Supervisor: Opponent: Robert B. Innis, MD, PhD Klaus-Peter Lesch, MD, PhD National Institutes of Health University of Würzburg Department of NIMH Department
    [Show full text]
  • Once Considered Mainly 'Brain Glue,' Astrocytes' Power Revealed 4 April 2012
    Once considered mainly 'brain glue,' astrocytes' power revealed 4 April 2012 A type of cell plentiful in the brain, long considered levels must come down immediately for the brain to mainly the stuff that holds the brain together and work properly. Scientists have long known that oft-overlooked by scientists more interested in that's a job for astrocytes - sopping up excess flashier cells known as neurons, wields more potassium, ending the nerve pulse, and restoring power in the brain than has been realized, the cells so they can fire again immediately. according to new research published in Science Signaling. In the paper in Science Signaling, Nedergaard's team discovered an expanded role for astrocytes. Neuroscientists at the University of Rochester The team learned that in addition to simply Medical Center report that astrocytes are crucial absorbing excess potassium, astrocytes for creating the proper environment for our brains themselves can cause potassium levels around the to work. The team found that the cells play a key neuron to drop, putting neuronal signaling to a stop. role in reducing or stopping the electrical signals that are considered brain activity, playing an active "Far from only playing a passive role, astrocytes role in determining when cells called neurons fire can initiate the uptake of potassium in a way that and when they don't. affects neuronal activity," said Nedergaard. "It's a simple, yet powerful mechanism for astrocytes to That is a big step forward from what scientists rapidly modulate neuronal activity." have long considered the role of astrocytes - to nurture neurons and keep them healthy.
    [Show full text]
  • University of Copenhagen, Copenhagen, Denmark
    Understanding the functions and relationships of the glymphatic system and meningeal lymphatics Louveau, Antoine; Plog, Benjamin A.; Antila, Salli; Alitalo, Kari; Nedergaard, Maiken; Kipnis, Jonathan Published in: The Journal of Clinical Investigation DOI: 10.1172/JCI90603 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: Unspecified Citation for published version (APA): Louveau, A., Plog, B. A., Antila, S., Alitalo, K., Nedergaard, M., & Kipnis, J. (2017). Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. The Journal of Clinical Investigation, 127(9), 3210-3219. https://doi.org/10.1172/JCI90603 Download date: 26. Sep. 2021 Understanding the functions and relationships of the glymphatic system and meningeal lymphatics Antoine Louveau, … , Maiken Nedergaard, Jonathan Kipnis J Clin Invest. 2017;127(9):3210-3219. https://doi.org/10.1172/JCI90603. Review Series Recent discoveries of the glymphatic system and of meningeal lymphatic vessels have generated a lot of excitement, along with some degree of skepticism. Here, we summarize the state of the field and point out the gaps of knowledge that should be filled through further research. We discuss the glymphatic system as a system that allows CNS perfusion by the cerebrospinal fluid (CSF) and interstitial fluid (ISF). We also describe the recently characterized meningeal lymphatic vessels and their role in drainage of the brain ISF, CSF, CNS-derived molecules, and immune cells from the CNS and meninges to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege and CNS drainage.
    [Show full text]
  • Annual Report 2004 Neurobiology R Esearch U
    Annual Report 2004 Neurobiology Research U nit Dept. Neurology, Neuroscience Centre Rigshospitalet The H ealth Science Faculty Copenhagen U niversity www.nru.dk F ront page: A 3D reconstruction of a hierarchical clustering. The central blue cluster matches well the spatial location of the cerebral venous vasculature. Liptrot et al., 2004. Preface This annual report provides an overview of the scientific activities that took place within the Neurobiology Research U nit (NRU ) in 2004. Two PhD-theses were defended in 2004: Karen H usted Adams defended her thesis on 5- H T 2A receptor binding measurements in a large healthy control group. H er thesis is the first of many theses to follow from NRU within the field of clinical molecular neuroimaging studies. Kristin Scheuer, MD, defended her thesis on patients with H ereditary Spastic Paraplegia (H SP). She studied cerebral affection in SPG4 linked H SP by employing functional and structural neuroimaging in combination with comprehensive neuropsychological testing. In April, Professor Gitte M. Knudsen was appointed a tenure position as professor at the U niversity of Copenhagen and in June, she replaced Olaf B. Paulson as chairman of NRU . This ‘generation change’ had been carefully planned over several years and consequently the transition went quite smoothly. Professor Olaf B. Paulson remains as professor at NRU and as chairman of the Danish Research Centre for Magnetic Resonance at H vidovre U niversity H ospital. At the Neuroreceptor Mapping Meeting (NRM) that took place in Vancouver, Canada, this summer NRU was selected as a host of NRM in 2006. The preparations are already in full progress (for more information see also www.nrm06.org) and we look very much forward to welcome our colleagues to Copenhagen in July 2006.
    [Show full text]
  • The Brain's Waste-Removal System
    Cerebrum August 2018 The Brain’s Waste-Removal System By Helene Benveniste, M.D., Ph.D. Source/Shutterstock Editor’s Note: The brain, like other parts of the body, needs to maintain “homeostasis” (a constant state) to function, and that requires continuous removal of metabolic waste. For decades, the brain’s waste-removal system remained a mystery to scientists. A few years ago, a team of researchers—with the help of our author—finally found the answer. This discovery—dubbed the glymphatic system— will help us understand how toxic waste accumulates in devastating disorders such as Alzheimer’s disease and point to possible strategies to prevent it. In early February 2012, I received a note from Maiken Nedergaard, a renowned neuroscientist at the University of Rochester whom I knew from our time as medical students at the University of 1 Cerebrum August 2018 Copenhagen. She explained that her team had discovered important features of a new system that transports the fluid that surrounds the brain—a substance called cerebrospinal fluid (CSF). The discovery of how this fluid was transported in the brain, she believed, was the key to understanding how waste is cleared from the brain. Nedergaard’s work with the non-neuronal brain cells called “astroglia” had led her to suspect that these cells might play a role in CSF transport and brain cleansing. She was inspired by an older study' which showed that CSF could rapidly penetrate into channels along the brain vasculature, and astroglial cells structurally help create these channels. Now she needed help with visualizing the system in the whole brain to confirm her suspicions.
    [Show full text]
  • Department of Clinical Physiology, Nuclear Medicine &
    Department of Clinical Physiology, Nuclear Medicine & PET Annual Report 2017 PET 1991 Scanditronix 32 MeV, 1991 GE4096 PET Scanner – – 25 1993 NMR Spectrometer years anniversary 1993 PET Advance Scanner June, 21st 1992-2017 2001 PET/CT Scanner 2005 PET/CT Scanner 2005 Cyclotron 2 The most grateful 2007 HRRT Scanner thank you to 2009 Radiochemistry Synthesizer the John and Birthe Meyer Foundation 2011 PET/MR Scanner 2017 PET/CT Scanner Rigshospitalet · University of Copenhagen Contents Preface ......................................................................................................................................2 Mission and objectives ...............................................................................................................4 Organisation and staff 2017.......................................................................................................6 Highlights 2017 .......................................................................................................................10 Medical secretaries ..................................................................................................................12 The KF Section ........................................................................................................................14 Water damages ........................................................................................................................16 Inauguration of new professor .................................................................................................19
    [Show full text]
  • Aquaporin-4 Dependent Glymphatic Solute Transport in Rodent Brain
    bioRxiv preprint doi: https://doi.org/10.1101/216499; this version posted November 9, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Aquaporin-4 dependent glymphatic solute transport in rodent brain Humberto Mestre1*, Benjamin T. Kress1*, Wenyan Zou2*, Tinglin Pu2*, Giridhar Murlidharan3*, Ruth M. Castellanos Rivera3*, Matthew J. Simon4*, Martin M. Pike6*, Benjamin A Plog1, Anna L. R. Xavier7, Alexander S. Thrane7,8 Iben Lundgaard9,1, John H. Thomas10, Ming Xiao2,±, Aravind Asokan3, ±, Jeffrey J. Iliff5,11,±, Maiken Nedergaard1, 2, ± 1Center for Translational Neuromedicine, University of Rochester Medical Center, Elmwood Avenue 601, Rochester, NY 14642, USA, 2Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, P. R. China, 3Gene Therapy Center, 5123 Thurston Building, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7352, USA, 5Department of Anesthesiology and Perioperative Medicine, 4Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Mail Code L458; Portland, OR 97229, USA, 6Advanced Imaging Research Center, Oregon Health & Science University, Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Mail Code L458; Portland, OR 97229, USA, 6 Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Denmark, Blegdamsvej 3B, 2200 Copenhagen N, Denmark,7Department of Ophthalmology, Haukeland University Hospital, Jonas Lies Vei 72, 5021 Bergen, Norway 0047 55974100, 8Department of Experimental Medical Science, Wallenberg Centre for Molecular Medicine, Lund University, Sölvegatan 19, 221 84 Lund, Sweden, 9Department of Mechanical Engineering and Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA, 10Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd.
    [Show full text]
  • Astrocytes Alive!
    ColloquiumColloquium Astrocytes alive! Maiken Nedergaard, M.D., D.M.Sc. Co-Director - Center for Translational Neuromedicine Professor - Center for Translational Neuromedicine Professor - Department of Biomedical Engineering Professor - Department of Neurobiology and Anatomy 3:00 pm, Monday, December 8, 2008 University of Rochester Sloan Auditorium, Goergen Building DMSc Neuroscience University of Copenhagen 1988 MD Medicine University of Copenhagen 1983 Refreshments provided The lecture will describe how advances in optical imaging allow us for the first time to study the function of electrically non-excitable cell types in brain. Astrocytes Alive! Maiken Nedergaard, M.D., D.M.Sc. University of Rochester Medical Center Abstract The lecture will describe how advances in optical imaging allow us for the first time to study the function of electrically non-excitable cell types in brain. Traditionally, neuroscience has used electrophysiology approaches and thereby overlooked astrocytes – the primary non-excitable cell type in brain. Astrocytes are more numerous than neurons in the adult human brain. It is therefore of considerable interest to define their roles in higher brain function and neurological diseases. Biography Current Appointments * Co-Director - Center for Translational Neuromedicine * Professor - Center for Translational Neuromedicine * Professor - Department of Biomedical Engineering * Professor - Department of Neurobiology and Anatomy Education DMSc Neuroscience University of Copenhagen 1988 MD Medicine University of Copenhagen
    [Show full text]
  • Postdoc Position in Braindrugs WP3: Neuroimaging in Depression A
    Postdoc Position in BrainDrugs WP3: Neuroimaging in depression A postdoc position is now available at BrainDrugs (https://braindrugs.nru.dk), at the Neurobiology Research Unit (NRU), Copenhagen University Hospital, Rigshospitalet. The expected starting date is 1st December 2020, or soon thereafter. The position is available for 2 years. There is currently an enormous unmet need for the development of effective precision medicine approaches for mood disorders. More precise prediction of risk and resilience as well as more precise treatment strategies are needed to replace the present “one-size-fits-all” and subsequent “trial-and- error” approach to prevention and treatment currently applied in our patients. An important step to achieve this goal is to uncover endophenotypes and biomarkers that characterize risk and resilience and can critically help to stratify patient cohorts in terms of predicting treatment outcomes longer-term. The postdoc will analyse neuroimaging and related data from large existing cohorts of healthy individuals, individuals at familial risk of mood disorders and patients with mood disorders that include structural and functional MRI (resting state and task-based fMRI), molecular brain imaging with Positron Emission Tomography (PET), neuropsychological test performance (emotional and non- emotional cognition) and blood tests and combine these with register-based follow-up data on brain health status and level of functioning. Follow-up time will vary between 2 and 20 years. The existing cohorts which will be available to the postdoc contain rich deep phenotyping data from a large number of healthy controls which serve as an important reference for our patient studies. They also uniquely enable us to conduct register-based follow-up studies to establish which features in clinically healthy individuals can predict later development of depressive episodes or related disorders; information which can be extracted from the national registries.
    [Show full text]
  • Central 5-HT Neurotransmission Modulates Weight Loss Following Gastric Bypass Surgery in Obese Individuals
    5884 • The Journal of Neuroscience, April 8, 2015 • 35(14):5884–5889 Neurobiology of Disease Central 5-HT Neurotransmission Modulates Weight Loss following Gastric Bypass Surgery in Obese Individuals M.E. Haahr,1,2 D.L. Hansen,3 P.M. Fisher,1,2 C. Svarer,1,2 D.S. Stenbæk,1,2 K. Madsen,1,2 J. Madsen,6 J.J. Holst,7 W.F.C. Baare´,2,4 L. Hojgaard,6 T. Almdal,5 and G.M. Knudsen1,2 1Neurobiology Research Unit, Rigshospitalet, 2100 Copenhagen, Denmark, 2Center for Integrated Molecular Brain Imaging, Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark, 3Department of Endocrinology and 4Danish Research Centre for Magnetic Resonance, Hvidovre Hospital, 2650 Hvidovre, Denmark, 5Steno Diabetes Center, 2820 Gentofte, Denmark, 6PET and Cyclotron Unit, Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark, and 7The NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark Thecerebralserotonin(5-HT)systemshowsdistinctdifferencesinobesitycomparedwiththeleanstate.Here,itwasinvestigatedwhether serotonergic neurotransmission in obesity is a stable trait or changes in association with weight loss induced by Roux-in-Y gastric bypass (RYGB) surgery. In vivo cerebral 5-HT2A receptor and 5-HT transporter binding was determined by positron emission tomography in 21 obese [four men; body mass index (BMI), 40.1 Ϯ 4.1 kg/m 2] and 10 lean (three men; BMI, 24.6 Ϯ 1.5 kg/m 2) individuals. Fourteen obese individuals were re-examined after RYGB surgery. First, it was confirmed that obese individuals have higher cerebral 5-HT2A receptor binding than lean individuals. Importantly, we found that higher presurgical 5-HT2A receptor binding predicted greater weight loss after RYGB and that the change in 5-HT2A receptor and 5-HT transporter binding correlated with weight loss after RYGB.
    [Show full text]