Spectroscopic Studies of Exciton Electronic Structure and Charge Recombination in Solution Processed Semiconductors for Photovoltaics Mark E

Total Page:16

File Type:pdf, Size:1020Kb

Spectroscopic Studies of Exciton Electronic Structure and Charge Recombination in Solution Processed Semiconductors for Photovoltaics Mark E Spectroscopic Studies of Exciton Electronic Structure and Charge Recombination in Solution Processed Semiconductors for Photovoltaics Mark E. Ziffer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2018 Reading Committee: David S. Ginger, Chair David J. Masiello Munira Khalil Program Authorized to Offer Degree: Chemistry © Copyright 2018 Mark E. Ziffer ii Abstract University of Washington Spectroscopic Studies of Exciton Electronic Structure and Charge Recombination in Solution Processed Semiconductors for Photovoltaics Mark E. Ziffer Chair of the Supervisory Committee: Professor David S. Ginger Department of Chemistry Understanding the fundamental photophysical processes that occur in solution processed semiconductors is the key to realizing their full potential in optoelectronic devices and uncovering new design strategies for materials. In this thesis we study the fundamental photophysics of promising classes of solution processed semiconductor systems for photovoltaics: hybrid organic- inorganic perovskites and π-conjugated polymers, along with blends of π-conjugated polymers and small molecules. In hybrid perovskites, we will gain an understanding of the initial photoexcitations that occur upon absorption of light at the semiconductor band edge using electroabsorption spectroscopy. Through detailed analysis of the electric field modulated optical response we will determine the fundamental nature of excitons that form upon band edge photoexcitation, including their binding energy, their ionization under an electric field, and their tendency to scatter into free charge continuum states at room temperature. In π-conjugated polymers, we will study how chemical interactions in the solid state dictate the electronic properties of excitons that form upon photoexcitation. We will use a variety of spectroscopic techniques to gain a deep understanding of the through-bond (intrachain) and through-space (interchain) chromophore interactions that dictate how excitons delocalize in aggregates of polymers with different chemical structure. Finally, in blends of π-conjugated polymers and small iii molecules, we will use time resolved spectroscopy methods to study the pathways that photogenerated charges take to recombine to the ground state. We will find that radiative recombination pathways can be accessed by photogenerated free charges in an efficient photovoltaic blend, which has largely been overlooked in the field of organic photovoltaics and is likely a key to improving the design of more efficient materials systems. We hope that the conclusions drawn from the studies provided in this thesis will help contribute to the fundamental understanding of the photophysics in these important emerging photovoltaic systems, and hopefully, provide inspiration for new avenues of investigation. iv Table of Contents Abstract .......................................................................................................................................... iii List of Figures .............................................................................................................................. viii Dedication ...................................................................................................................................... xi Acknowledgments......................................................................................................................... xii Chapter 1: Introduction ................................................................................................................... 1 Section 1.1 Materials Systems Studied ....................................................................................... 2 Section 1.2 Fundamentals of Excited States in Semiconductors ................................................ 4 Section 1.3 Charge Recombination in Semiconductors ............................................................ 10 References ................................................................................................................................. 12 Chapter 2: Electroabsorption Spectroscopy Measurements of the Exciton Binding Energy, Electron-Hole Reduced Effective Mass, and Band Gap in the Perovskite CH3NH3PbI3 ............. 15 Section 2.1 Overview ................................................................................................................ 15 Section 2.2 Introduction ............................................................................................................ 15 Section 2.3 Low-field FKA response of CH3NH3PbI3 at room temperature ............................ 17 Section 2.4. Field ionization of the Wannier exciton at low temperature ................................ 22 Section 2.5. Conclusion ............................................................................................................ 23 Appendix A ............................................................................................................................... 24 References ................................................................................................................................. 25 Chapter 3: H- and J- Aggregate Characteristics and Exciton Polarizability in π-Conjugated Polymers ....................................................................................................................................... 31 v Section 3.1 Overview ................................................................................................................ 31 Section 3.2 Introduction ............................................................................................................ 31 Section 3.3 Chemical structures of P1 and P2 .......................................................................... 33 Section 3.4 Characterization of Aggregation in Dilute Solution .............................................. 34 Section 3.5 Characterizing Solid State Interactions with Spectroscopic Ellipsometry ............ 36 Section 3.6 Characterizing H- and J- Like Coupling with Photoluminescence Spectroscopy . 37 Section 3.7 Electroabsorption Spectroscopy ............................................................................ 41 Section 3.8 Conclusion ............................................................................................................. 44 Appendix B ............................................................................................................................... 45 Acknowledgments .................................................................................................................... 45 References ................................................................................................................................. 46 Chapter 4: Long-lived, Non-Geminate, Radiative Recombination of Photogenerated Charges in a Polymer:Small-Molecule Acceptor Photovoltaic Blend ............................................................... 50 Section 4.1 Overview ................................................................................................................ 50 Section 4.2 Introduction ............................................................................................................ 50 Section 4.3 Molecular properties of PCE10 and FIDTT-2PDI ................................................ 53 Section 4.4 Low non-radiative loss and efficient charge generation in PCE10:FIDTT-2PDI . 54 Section 4.5 Photoluminescence from Radiative Nongeminate Charge Recombination ........... 56 Section 4.6 Molecular and Microstructural Aspects of Low Voltage Loss .............................. 61 Section 4.7 Conclusion ............................................................................................................. 63 Appendix C ............................................................................................................................... 65 Acknowledgments .................................................................................................................... 65 References ................................................................................................................................. 66 vi Conclusion .................................................................................................................................... 72 Appendix A Supporting Information for Chapter 2 ...................................................................... 75 Experimental Methods .............................................................................................................. 75 Supplementary Information ...................................................................................................... 78 Supplementary References ..................................................................................................... 110 Appendix B: Supporting Information for Chapter 3 ................................................................... 113 Experimental Methods ............................................................................................................ 113 Supplementary Information .................................................................................................... 115 Supplementary References ..................................................................................................... 125 Appendix C: Supporting Information for Chapter 4 ..................................................................
Recommended publications
  • Microscopic Theory of Linear and Nonlinear Terahertz Spectroscopy of Semiconductors
    Microscopic Theory of Linear and Nonlinear Terahertz Spectroscopy of Semiconductors Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Physik der Philipps-Universit¨at Marburg vorgelegt von Johannes Steiner aus Attendorn Marburg(Lahn), 2008 Vom Fachbereich Physik der Philipps-Universit¨at Marburg als Dissertation angenommen am 24.11.2008 Erstgutachter: Prof. Dr. M. Kira Zweitgutachter: Prof. Dr. F. Gebhard Externer Gutachter: Prof. Dr. I. Galbraith Tag der mundlichen¨ Prufung:¨ 09.12.2008 ii Zusammenfassung Seit der Entwicklung moderner Methoden des Kristallwachstums hat die Halbleitertech- nologie enorme Fortschritte gemacht. Dank neuer Verfahren k¨onnen sehr reine Halbleiter- heterostrukturen hergestellt werden, deren Beschaffenheit mit nahezu atomarer Pr¨azision kontrolliert werden kann. Dies hat zur Entwicklung vieler Anwendungen gefuhrt,¨ wie z.B. zur Herstellung von hochwertigen Computerchips, von Leuchtdioden (LEDs) und von Halbleiterlasern. Die Erforschung von Halbleitern ist vor allem aus zwei Grunden¨ von In- teresse fur¨ die theoretische Physik: Erstens erfordert die Weiterentwicklung und Verbes- serung elektronischer und optoelektronischer Bauelemente ein detailliertes Verst¨andnis der zugrundeliegenden mikroskopischen Prozesse und zweitens sind die hochwertigen Nanostrukturen, die heute kunstlich¨ hergestellt werden k¨onnen, ideale Modellsysteme, um fundamentale physikalische Anregungen in Festk¨orpern zu untersuchen. Experimentell k¨onnen die quantenmechanischen Prozesse in Halbleitern gut durch optische Experimente untersucht werden. Es liegt nahe, in diesen Experimenten Licht aus einem Frequenzbereich zu verwenden, dessen Energie ungef¨ahr der Bandluckenenergie¨ entspricht, da so Elektronen vom Valenz- ins Leitungsband angehoben werden k¨onnen, wobei ein positiv geladenes Loch im Valenzband zuruckbleibt.¨ Die Bandluckenenergie¨ in typischen Halbleitern betr¨agt ungef¨ahr ein Elektronenvolt (1 eV ˆ=1240 nmˆ=242 THz), so dass Experimente bisher vor allem sichtbares Licht bzw.
    [Show full text]
  • Molecule Signatures in Photoluminescence Spectra of Transition Metal Dichalcogenides
    Molecule signatures in photoluminescence spectra of transition metal dichalcogenides Downloaded from: https://research.chalmers.se, 2019-05-11 12:18 UTC Citation for the original published paper (version of record): Feierabend, M., Berghäuser, G., Selig, M. et al (2018) Molecule signatures in photoluminescence spectra of transition metal dichalcogenides Physical Review Materials, 2(1) http://dx.doi.org/10.1103/PhysRevMaterials.2.014004 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) PHYSICAL REVIEW MATERIALS 2, 014004 (2018) Molecule signatures in photoluminescence spectra of transition metal dichalcogenides Maja Feierabend,1 Gunnar Berghäuser,1 Malte Selig,1,2 Samuel Brem,1 Timur Shegai,1 Siegfried Eigler,3 and Ermin Malic1 1Chalmers University of Technology, Department of Physics, 412 96 Gothenburg, Sweden 2Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany 3Institiut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany (Received 1 November 2017; published 26 January 2018) Monolayer transition metal dichalcogenides (TMDs) show an optimal surface-to-volume ratio and are thus promising candidates for novel molecule sensor devices. It
    [Show full text]
  • Appendix a TWO-LEVEL SYSTEMS and RATE EQUATIONS
    Appendix A TWO-LEVEL SYSTEMS AND RATE EQUATIONS Chapters 2 and 3 show that for semiconductor laser purposes, the in­ teraction of light with a semiconductor medium can often be modeled in terms of electronic transitions between a valence and a conduction band. A spread of transition energies occur that depend on the value of the car­ rier momentum k. Elsewhere in physics such a range of transitions is known to occur, namely in ensembles of inhomogeneously broadened two­ level systems. These appear to good approximation in the interaction of light with atoms and with the magnetic dipoles of nuclear magnetic reso­ nance. Hence people have been led to model semiconductor laser media using the theory of two-level systems. In appropriate limits, the two-level approaches reduce to rate equation theory, also very popular in modeling aspects of semiconductor laser operation. On the other hand, Sec. 3-1 rev­ eals that the semiconductor medium is at the very least an inhomogene­ ously broadened four-level medium, all of whose levels have appreciable probability in a gain medium. Two of the four levels correspond to the levels in a two-level medium, but the other two are absent in the two-level medium. Hence the degree to which a two-level model can describe semi­ conductor response is disturbingly uncertain. One is really better off using a real semiconductor model, for which the approximations are well de­ fined. Nevertheless much of the physics of the two-level model has coun­ terparts in the semiconductor models and one can study this physics in a relatively simple context.
    [Show full text]
  • Luminescence and Absorption in Short Period Superlattices
    Editorially accepted for publication at Optical and Quantum Electronics, 4 April 2018. Luminescence and absorption in short period superlattices M.F. PEREIRA* Department of Condensed Matter Physics, Institute of Physics CAS Na Slovance 1999/2, 182 21 Prague 8, Czech Republic *email: [email protected] Abstract - This paper applies analytical approximations for the luminescence of short period semiconductor superlattices and analyses the low density regime, demonstrating that the theory clearly connects with low density absorption with ratios of oscillator strengths of bound and continuum states as expected from the Elliott formula. A numerical study illustrates in detail the bleaching of higher order bound state. The analytical expressions have potential for systematic studies of controlled excitonic pathways characterized by THz responses. Keywords: semiconductors superlattices, excitons, many body effects, absorption, luminescence, Terahertz, TERA-MIR 1 Introduction A full understanding of how photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Furthermore, these excitonic pathways are characterized by THz responses [1]. Consequently, systems where these effects can controlled per design have strong potential for applications. Furthermore, semiconductor materials are the required substrate for Photoconductive Antennas, for which novel efficient solutions are constantly being sought [2] and semiconductor superlattices may become a successful and efficient substrate. Semiconductor superlattices (SSLs) are media where the effective dimensionality of the electrons and holes can be controlled between two and three dimensions and are thus very important media to investigate transport and optical effects [3,4] from the GHz to the THz-Mid Infrared (TERA-MIR) range [5,6].
    [Show full text]
  • Read Full Text (PDF)
    Molecule signatures in photoluminescence spectra of transition metal dichalcogenides Downloaded from: https://research.chalmers.se, 2021-10-03 00:38 UTC Citation for the original published paper (version of record): Feierabend, M., Berghäuser, G., Selig, M. et al (2018) Molecule signatures in photoluminescence spectra of transition metal dichalcogenides Physical Review Materials, 2(1) http://dx.doi.org/10.1103/PhysRevMaterials.2.014004 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) PHYSICAL REVIEW MATERIALS 2, 014004 (2018) Molecule signatures in photoluminescence spectra of transition metal dichalcogenides Maja Feierabend,1 Gunnar Berghäuser,1 Malte Selig,1,2 Samuel Brem,1 Timur Shegai,1 Siegfried Eigler,3 and Ermin Malic1 1Chalmers University of Technology, Department of Physics, 412 96 Gothenburg, Sweden 2Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany 3Institiut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany (Received 1 November 2017; published 26 January 2018) Monolayer transition metal dichalcogenides (TMDs) show an optimal surface-to-volume ratio and are thus promising candidates for novel molecule sensor devices. It
    [Show full text]
  • Quantentheorie Zu Exzitonbildung Und Photolumineszenz in Halbleitern
    Quantentheorie zu Exzitonbildung und Photolumineszenz in Halbleitern Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Physik der Philipps-Universitat¨ Marburg vorgelegt von WALTER HOYER aus Herborn Marburg (Lahn) 2002 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivserver der Universitätsbibliothek Marburg Vom Fachbereich Physik der Philipps-Universitat¨ Marburg als Dissertation angenommen am 26.08.2002 Erstgutachter: Prof. Dr. S. W. Koch Zweitgutachter: Prof. Dr. F. P. Gebhard Tag der mundlichen¨ Prufung:¨ 19.09.2002 Zusammenfassung Die moderne Festkorperphysik¨ hat mit der Physik der Dreckeffekte“, wie Wolfgang Pauli ” sie in den zwanziger Jahren noch nannte, fast nichts mehr gemeinsam. Seit der Erfindung des Transistors im Jahre 1947 hat eine technologische Revolution stattgefunden, die fast je- den Bereich unseres taglichen¨ Lebens beeinflusst. Diese rasante Entwicklung ist das Ergeb- nis gemeinsamer Anstrengung von Experimentalphysikern und theoretischen Physikern, denen es gelungen ist, neue Materialien mit zuvor nicht gekannter Prazision¨ herzustellen, zu untersuchen und zu verstehen. Moderne epitaktische Verfahren haben es moglich¨ gemacht, einige der reinsten, kunst-¨ lich hergestellten Materialien zu fertigen, bei denen einzelne Atomlagen oder kleinste Ab- weichungen von der Kristallstruktur nach Wunsch kontrolliert werden konnen.¨ Dadurch hat die Entwicklung der Halbleiterphysik schon zu einer Vielzahl von Anwendungen ge- fuhrt¨ — als Beispiel seien nur die Laser in der optischen Telekommunikation oder unsere heutigen Computer in ihrem weltweiten Netzwerk genannt. Gleichzeitig erof¨ fnet die rasan- te Entwicklung der Halbleiterlaser neue Moglichkeiten,¨ ultraschnelle Phanomene¨ auf win- zigen Zeitskalen von nur wenigen Femtosekunden zu beobachten [1, 2]. Insgesamt bewegt sich die Forschung in Richtung der Physik von sehr kleinen Strukturen und außerst¨ kurz- en Zeitskalen, in denen die Gesetze der Quantenmechanik gelten.
    [Show full text]
  • Many-Body Correlations and Excitonic Effects in Semiconductor Spectroscopy
    ARTICLE IN PRESS Progress in Quantum Electronics 30 (2006) 155–296 www.elsevier.com/locate/pquantelec Review Many-body correlations and excitonic effects in semiconductor spectroscopy M. KiraÃ, S.W. Koch Department of Physics and Material Sciences Center, Philipps-University Marburg, Renthof 5, D-35032 Marburg, Germany Abstract The optically excited system of electronic excitations in semiconductor nanostructures is analyzed theoretically. A many-body theory based on an equation-of-motion approach for the interacting electron, hole, photon, and phonon system is reviewed. The infinite hierarchy of coupled equations for the relevant correlation functions is systematically truncated using a cluster-expansion scheme. The resulting system of equations describes the optical generation of semiconductor quasi-particle configurations with classical or quantum mechanical light sources, as well as their photon-assisted spontaneous recombination. The theory is evaluated numerically to study semiclassical and quantum excitation under different resonant and non-resonant conditions for a wide range of intensities. The generation of a correlated electron–hole plasma and exciton populations is investigated. It is shown how these states can be identified using direct quasi-particle spectroscopy with sources in the terahertz range of the electromagnetic spectrum. The concept of quantum–optical spectroscopy is introduced and it is predicted that semiconductor excitation with suitable incoherent light directly generates quantum-degenerate exciton states. The phase space for this exciton condensate is identified and its experimental signatures are discussed. r 2007 Elsevier Ltd. All rights reserved. PACS: 42.50.Àp; 78.55.Àm; 03.75.Kk; 42.25.Kb; 71.35.Ày; 78.47.+p Keywords: Semiconductor quantum optics; Many-body correlations; Excitons; Electron–hole plasma; Exciton condensate ÃCorresponding author.
    [Show full text]
  • Microscopic Theory of Linear and Nonlinear Response of Quantum
    Phillip Springer Mainzer Gasse 33, Buro¨ 02 001 35037 Marburg AG eoretische Halbleiterphysik Fachbereich Physik der Philipps-Universitat¨ Marburg Vom Fachbereich Physik der Philipps-Universitat¨ Marburg als Dissertation angenommen am Erstgutachter: Prof. Dr. Stephan W. Koch Zweitgutachter: PD Dr. Sangam Chatterjee Tag der mundlichen¨ Prufung:¨ 11. Mai 2016 Hochschulkennzi er 1180 Fur¨ meine Eltern, Joachim und Cornelia. Fur¨ meine Liebe, Patricia. Zusammenfassung Kaum ein Forschungsfeld pragt¨ unser heutiges Leben so sehr wie die Halbleiterphysik. Wir intera- gieren standig¨ mit unseren Smartphones, unseren Tabletcomputern oder Heimrechnern. Kurzum: mit Geraten,¨ die ohne Grundlagenforschung in der Festkorperphysik¨ nicht moglich¨ waren.¨ Neben den alltaglichen¨ Erfahrungen werden Halbleiter auch in der Medizintechnik, Materialbearbeitung, Umweltanalytik, Energieerzeugung oder der optischen Datenubertragung¨ eingesetzt. Das Streben nach Energieezienz bei gleichzeitig hoherer¨ Rechenleistung und kleineren Bauelementen treibt die Wissenscha bis heute an. So haben Halbleiter Einzug in unser Leben gefunden und stellen einen wesentlichen Bestandteil unserer Welt dar. Die rasante Entwicklungsumgebung hat dabei diverse Anwendungsmoglichkeiten¨ hervorgebracht. Diese reichen von Prozessoren (englisch: central-processing unit, CPU) bis hin zu Datenspeichern in Form von solid-state drives (SSDs). Die Vielfaltigkeit¨ von Halbleitern ist ihrer Kristallstruktur geschuldet, welche der Grund fur¨ die Bildung der Bandlucke¨ ist. Diese trennt be- setzte
    [Show full text]
  • Absorption and Emission Processes in Organometal Trihalide Perovskites
    UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI SCUOLA DI DOTTORATO IN FISICA XXVIII CICLO Absorption and Emission Processes in Organometal Trihalide Perovskites Supervisor: PhD Candidate: Prof. Michele Saba Michele Cadelano ANNO ACCADEMICO 2014/2015 Ad Anna e alla mia famiglia CONTENTS 1 Introduction 1 2 Optical spectroscopy 5 2.1 Introduction . .5 2.2 Light propagation in an optical medium . .5 2.2.1 Light absorption . .7 2.2.2 Rayleigh scattering . .8 2.3 Electronic bands in crystals . .9 2.4 Interband transitions in semiconductors . 11 2.4.1 Absorption in direct gap semiconductors . 12 2.5 Excitons . 14 2.6 Recombination in direct gap semiconductors . 17 2.6.1 Photoluminescence . 19 2.6.2 Amplified spontaneous emission . 20 3 Perovskites 23 3.1 Introduction . 23 3.2 Crystal structure . 23 3.3 Methylammonium lead trihalide perovskites . 24 3.3.1 Applications . 26 3.3.2 Sample fabrication . 28 4 Experimental techniques 31 4.1 Introduction . 31 4.2 Linear Absorption Spectroscopy . 31 4.2.1 UV-Vis absorption setup . 33 4.3 Photoluminescence Spectroscopy . 33 i 4.3.1 Ultrafast PL Spectroscopy setup . 35 4.3.2 PL Spectroscopy setup under cw pumping . 38 4.3.3 PL Spectroscopy setup under quasi-cw pumping . 38 5 Excitons vs free carriers 41 5.1 Introduction . 41 5.2 Radiative recombination processes . 42 5.3 Saha equation . 44 5.4 Quantum yield . 47 5.5 Analysis of the recombination processes . 49 5.6 Steady-state photoluminescence . 51 6 Exciton binding energy 55 6.1 Introduction .
    [Show full text]
  • Optics and Quantum Optics with Semiconductor Nanostructures
    Optics and Quantum Optics with Semiconductor Nanostructures Stephan W. Koch Department of Physics, Philipps University, Marburg/Germany and Optical Sciences Center, University of Arizona, Tucson/AZ Overview • background: optics with atoms • semiclassical semiconductor optics • semiconductor quantum optics: “which way” experiments and light – matter entanglement Collaborators theory: Kira, Hoyer et al., Marburg Hader, Moloney et al., Tucson experiments: Gibbs/Khitrova et al., Tucson, Stolz et al., Rostock Marburg Marburg You do not really understand something unless you can explain it to your grandmother (Albert Einstein) From Atoms to Solids … atom 4 3 2 optical absorption/emission = transitions between atomic levels n=1 From Atoms to Solids … (2 - 5) * 10-8cm atom solid unit cell energy states 4 3 2 bands n=1 Bandstructure E possible energy values of electrons in crystal Eg k intrinsic semiconductor: full valence band(s), empty conduction band Realistic Bandstructure GaAs 6 4 effective mass approximation 2 0 ) V -2 e ( y -4 g r -6 e n -8 E -10 -12 L Γ X often: photon momentum typical carrier momentum perpendicular transitions, Energy Gap in Semiconductors conduction band > > ω2 ω1 valence band gap energy determines frequency and therefore color (wavelength) of absorbed and/or emitted light LEDs based on group-III nitride materials (Fraunhofer-Institut Freiburg) Bandgaps of III-V Alloys (300 K) 2.5 GaP 0.517 AlAs 2.0 0.620 ) ) n V AlSb o r e ( 0.775 c i 1.5 p m ( a GaAs g InP h y 1.00 t g g r n e 1.0 e l n e E v GaSb 1.55 a 2.0 w 0.5
    [Show full text]
  • Near-Band-Edge Optical Responses of Ch3nh3pbcl3 Single Crystals: Photon Recycling of Excitonic Luminescence
    PHYSICAL REVIEW LETTERS 120, 057404 (2018) Near-Band-Edge Optical Responses of CH3NH3PbCl3 Single Crystals: Photon Recycling of Excitonic Luminescence Takumi Yamada, Tomoko Aharen, and Yoshihiko Kanemitsu* Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan (Received 12 July 2017; published 1 February 2018) The determination of the band gap and exciton energies of lead halide perovskites is very important from the viewpoint of fundamental physics and photonic device applications. By using photoluminescence excitation (PLE) spectra, we reveal the optical properties of CH3NH3PbCl3 single crystals in the near-band- edge energy regime. The one-photon PLE spectrum exhibits the 1s exciton peak at 3.11 eV. On the contrary, the two-photon PLE spectrum exhibits no peak structure. This indicates photon recycling of excitonic luminescence. By analyzing the spatial distribution of the excitons and photon recycling, we obtain 3.15 eV for the band gap energy and 41 meV for the exciton binding energy. DOI: 10.1103/PhysRevLett.120.057404 The lead halide perovskites MAPbX3 (MA ¼ CH3NH3 repetition between internal light emission and reabsorption and X ¼ I, Br, and Cl) are receiving considerable attention [28–30]. In contrast, a very sharp peak appears in the because they are cost effective and yet superior photo- absorption spectrum of the wide-gap semiconductor voltaic materials. Especially the solar cells based on MAPbCl3 [31], which means that excitons dominate its MAPbI3 have experienced a rapid development because optical properties even at room temperature, similar to other of its various advantageous properties such as a sharp wide-gap semiconductors [32]. So far, photon recycling of absorption edge, high luminescence efficiency, low trap excitonic luminescence has not been reported.
    [Show full text]