Optics and Quantum Optics with Semiconductor Nanostructures

Total Page:16

File Type:pdf, Size:1020Kb

Optics and Quantum Optics with Semiconductor Nanostructures Optics and Quantum Optics with Semiconductor Nanostructures Stephan W. Koch Department of Physics, Philipps University, Marburg/Germany and Optical Sciences Center, University of Arizona, Tucson/AZ Overview • background: optics with atoms • semiclassical semiconductor optics • semiconductor quantum optics: “which way” experiments and light – matter entanglement Collaborators theory: Kira, Hoyer et al., Marburg Hader, Moloney et al., Tucson experiments: Gibbs/Khitrova et al., Tucson, Stolz et al., Rostock Marburg Marburg You do not really understand something unless you can explain it to your grandmother (Albert Einstein) From Atoms to Solids … atom 4 3 2 optical absorption/emission = transitions between atomic levels n=1 From Atoms to Solids … (2 - 5) * 10-8cm atom solid unit cell energy states 4 3 2 bands n=1 Bandstructure E possible energy values of electrons in crystal Eg k intrinsic semiconductor: full valence band(s), empty conduction band Realistic Bandstructure GaAs 6 4 effective mass approximation 2 0 ) V -2 e ( y -4 g r -6 e n -8 E -10 -12 L Γ X often: photon momentum typical carrier momentum perpendicular transitions, Energy Gap in Semiconductors conduction band > > ω2 ω1 valence band gap energy determines frequency and therefore color (wavelength) of absorbed and/or emitted light LEDs based on group-III nitride materials (Fraunhofer-Institut Freiburg) Bandgaps of III-V Alloys (300 K) 2.5 GaP 0.517 AlAs 2.0 0.620 ) ) n V AlSb o r e ( 0.775 c i 1.5 p m ( a GaAs g InP h y 1.00 t g g r n e 1.0 e l n e E v GaSb 1.55 a 2.0 w 0.5 InAs 5.0 InSb 10.0 0.0 5.4 5.6 5.8 6.0 6.2 6.4 6.6 lattice constant (Angstrom) Quasi-Two Dimensional Structure TEM picture: quantum well structure band gap at Γ-point (direct semiconductor) discrete states (z direction) and continuous bands (x-y plane) Semiconductors as Designer Materials ° quantum well = two-dimensional electronic mobility ° quantum wire = one-dimensional electronic mobility ° quantum dot = no (zero-dimensional) electronic mobility self organized quantum dots Interband Light-Matter Interaction: Semiclassical Theory classical Maxwell’s wave equation macroscopic optical polarization semiconductor: Bloch basis Coulomb interaction of charge carriers → quantum mechanical many-body problem of interacting Fermions Semiconductor Bloch Equations (SBE) field renormalization energy renormalization • nonlinearities: phase space fillinging, gap renormalization, Coulomb attraction • correlation effects: scattering, dephasing, screening, … Wannier Excitons c • 2 parabolic bands electron-hole pair interband Coulomb v attraction • wavefunction • relative motion (Wannier equation) Coulomb potential • hydrogen atom like solutions, Wannier excitons = quasi atoms (finite lifetime < nanoseconds) Wannier Excitons • linear absorption Elliott formula • linear optics: excitonic resonances • INTERACTION induced resonances, not just transitions between bands Exciton Saturation F. Jahnke, M. Kira, and S.W. Koch, Z. Physik B 104, 559 (1997) Born-Markov approximation Detuning saturation via excitation induced dephasing (EID) = Coulomb induced destructive interference between different Exciton Saturation F. Jahnke, M. Kira, and S.W. Koch, Z. Physik B 104, 559 (1997) Detuning n o i t p r o s b A • experiment: InGaAs/GaAs QW • Khitrova, Gibbs, Jahnke, Kira, Koch, Rev. Mod. Phys. 71, 1591 (1999) • EID first observed in 4-wave mixing, Wang et al. PRL 71, 1261 (1993) Lineshape Problem 0.2 ] m c 0.0 / 3 0 dephasing rate approximation 1 [ n -0.2 o i t p r full calculation o s -0.4 b A -0.6 -20 -10 0 10 Detuning • • gain of two-band bulk material • nondiagonal scattering contributions → lineshape modification, no absorption below the gap Optical Gain in Semiconductors: Theory and Experiment 10nm (9.2nm) InGaAs/AlGaAs ] m ) c / m 1 c [ / 3 n i 0 a 1 g x / ( n n o i o t i t p r p r o o s s b b a a Detuning N=1.6, 2.2, 2.5, 3.0*1012/cm2 exp: D. Bossert et al., theory: A. Girndt et al., Marburg 8nm InGaAs/AlGaAs 6.8 nm In0.4Ga0.5P/(Al0.5Ga0.5)In0.51P0.49 n i a g / n o i t p r o s b a Detuning Photon Energy (eV) Current 0-20mA… Density 0.6-3.0x1012cm-2 Courtesy of W.W. Chow, P.M. Smowton, P. Blood, exp: C. Ellmers et al., theory: A. Girndt et al. Marburg A. Grindt, F. Jahnke, and S.W. Koch Summary of Semiclassical Phenomena • quantitative understanding of interaction phenomena • strong experiment – theory interactions • predictive capability of theory CHALLENGES: • modified photonic environment (nano optics with nano structures) • optimized design for specific applications • nonequilibrium phenomena …. Selected References: • Haug/Koch, “Quantum Theory of the Optical and Electronic Properties of Semiconductors” 4th ed., World Scientific Publ. (2004) • Khitrova et al., Rev. Mod. Phys. 71, 1591 (1999) Quantized Light-Matter Interaction where is proportional to dipole matrix element and mode strength at the QW position Kira et al., Prog. Quantum. Electron. 23, 189 (1999) Spontaneous Emission from Quantum Wells + -|qz| - +|qz| recombination in electron-hole system no translational invariance perpendicular to QW no momentum conservation emission occurs simultaneously to left and right, i.e. with and Non Resonantly Excited Photoluminescence Experiments non resonant excitation of QW ? (weak excitation) incoherent (random) emission at exciton resonance BS different emission directions collected in interferometer setup Path 1 Path 2 measurement combines emission QW t to the left and right directions (less than one photon in interferometer) AP AP control of phase via delay Experiments (I) QW perpendicular BS Path 1 Path 2 QW t AP AP Experiments (II) QW tilted ? BS Path 1 Path 2 QW t AP AP Experiments (II) QW tilted BS Path 1 Path 2 QW t AP AP Experiments (III) Oct. 2003 no tilt 0.4 | clear interferences visible 0.2 Contrast if QW NOT tilted with tilt 0.0 -2 0 2 t (ps) intensity (a.u.) PL interferences vanish single beam if QW tilted intensities 0 20 40 60 80 100 CCD pixels Hoyer et al. PRL 93, 067401 (2004) Summary of Experimental Observations interferences seen in incoherent (single photon) emission , but intensity shows interferences interference shows strong directional sensitivity Summary of Experimental Observations interferences seen in incoherent (single photon) emission , but intensity shows interferences interference shows strong directional sensitivity effects predicted in Prog. Quantum. El. 23, 189 (1999) origin of effects: light-matter entanglement & which-way interferences Spontaneous Emission from Quantum Wells q|| + -|qz| - +|qz| electron-hole recombination simultaneous emission in and directions photon emission with same recoil momentum transferred to carrier system Explanation of Interferences (I) CASE A: Emission with same q|| q|| photon emission to the left many-body wavefunction with recoil emission to the right paths not distinguishable with respect to carrier system (i.e. no entanglement) Explanation of Interferences (II) q|| q|| variable phase BL BR interferometry: emission intensity IL to the left IR to the right interference INTERFERENCE can be seen Explanation of Entanglement (I) CASE B: Emission with different photons q|| q'|| many-body wavefunction with recoil emission to the left emission to the right paths identified by entanglement Explanation of Entanglement (II) q|| q'|| emission to the left (BL) und to the right (BR) is combined in detector D = BL +BR emissions intensity IL to the left IR to the right interference NO interference pattern due to entanglement Theory of Entanglement-Interferences semiconductor luminescence equations PRL 97, 5170 (1997) photon-assisted correlations photon correlations in the presence of Coulomb interaction QUESTION: WHAT HAPPENS IF WE TAKE MANY QUANTUM WELLS ? Theory of Entanglement-Interferences Predictions for n quantum wells with spacing d perfect interferences for Bragg no interferences for anti-Bragg (n-even) Prog. Quantum. El. 23, 189 (1999) /2 /4 1.0 I d 0.5 0.0 0 1 2 3 4 5 6 7 8 9 Number of QWs Entanglement-Interference Experiment (IV) interferences seen in multiple QW system with λ/2 spacing interferences vanish in multiple QW system with λ/4 spacing λ/4 spacing leads to complete randomizing of emission to the left and to the right confirmation of theoretical predictions Summary of Entanglement-Interferences incoherent emission to the left and to the right are entangled with the many-body carrier system emission to the left and to the right with same q|| is not entangled emission to the left and to the right with same q|| is entangled description of entanglement via photon- carrier and photon-photon correlations of the type: more in: Hoyer et al. PRL 93, 067401 (2004) Summary • variety of novel quantum optical effects in semiconductors • strong experiment – theory interactions MANY CHALLENGES: • optimization and application of non-classical properties (quantum information science, …) • modified photonic environment (phot. x-tals, …) • role of incoherent excitons, biexcitons, …. Selected References: • Haug/Koch, “Quantum Theory of the Optical and Electronic Properties of Semiconductors” 4th ed., World Scientific Publ. (2004) • Khitrova et al., Rev. Mod. Phys. 71, 1591 (1999) • Kira et al., Prog. Quantum. Electron. 23, 189 (1999).
Recommended publications
  • General Formalism for Excitonic Absorption Edges in Confined Systems with Arbitrary Dimensionality P
    General formalism for excitonic absorption edges in confined systems with arbitrary dimensionality P. Lefebvre, Philippe Christol, H. Mathieu To cite this version: P. Lefebvre, Philippe Christol, H. Mathieu. General formalism for excitonic absorption edges in confined systems with arbitrary dimensionality. Journal de Physique IV Proceedings, EDP Sciences, 1993, 03 (C5), pp.C5-377-C5-380. 10.1051/jp4:1993579. jpa-00251666 HAL Id: jpa-00251666 https://hal.archives-ouvertes.fr/jpa-00251666 Submitted on 1 Jan 1993 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE IV Colloque C5,supplement au Journal de Physique 11, Volume 3, octobre 1993 General formalism for excitonic absorption edges in confined systems with arbitrary dimensionality P. LEFEBVRE, l? CHRISTOL and H. MATHIEU Groupe d'Etudes des Semiconducteurs, CNRS, Universitk Montpellier I& Case coum'er 074, 34095 Montpellier cedex 5, France A metric space with a noninteger dimension a (1 < a) is used to describe bound and unbound states of strongly anisotropic Wannier-Mott excitons, such as those confined in semiconductor superlattices, quantum wells and quantum-well wires. Indeed, the relative motion of the electron- hole pair which constitutes such excitons can never be considered strictly ID, 2D or 3D.
    [Show full text]
  • Microscopic Theory of Linear and Nonlinear Terahertz Spectroscopy of Semiconductors
    Microscopic Theory of Linear and Nonlinear Terahertz Spectroscopy of Semiconductors Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Physik der Philipps-Universit¨at Marburg vorgelegt von Johannes Steiner aus Attendorn Marburg(Lahn), 2008 Vom Fachbereich Physik der Philipps-Universit¨at Marburg als Dissertation angenommen am 24.11.2008 Erstgutachter: Prof. Dr. M. Kira Zweitgutachter: Prof. Dr. F. Gebhard Externer Gutachter: Prof. Dr. I. Galbraith Tag der mundlichen¨ Prufung:¨ 09.12.2008 ii Zusammenfassung Seit der Entwicklung moderner Methoden des Kristallwachstums hat die Halbleitertech- nologie enorme Fortschritte gemacht. Dank neuer Verfahren k¨onnen sehr reine Halbleiter- heterostrukturen hergestellt werden, deren Beschaffenheit mit nahezu atomarer Pr¨azision kontrolliert werden kann. Dies hat zur Entwicklung vieler Anwendungen gefuhrt,¨ wie z.B. zur Herstellung von hochwertigen Computerchips, von Leuchtdioden (LEDs) und von Halbleiterlasern. Die Erforschung von Halbleitern ist vor allem aus zwei Grunden¨ von In- teresse fur¨ die theoretische Physik: Erstens erfordert die Weiterentwicklung und Verbes- serung elektronischer und optoelektronischer Bauelemente ein detailliertes Verst¨andnis der zugrundeliegenden mikroskopischen Prozesse und zweitens sind die hochwertigen Nanostrukturen, die heute kunstlich¨ hergestellt werden k¨onnen, ideale Modellsysteme, um fundamentale physikalische Anregungen in Festk¨orpern zu untersuchen. Experimentell k¨onnen die quantenmechanischen Prozesse in Halbleitern gut durch optische Experimente untersucht werden. Es liegt nahe, in diesen Experimenten Licht aus einem Frequenzbereich zu verwenden, dessen Energie ungef¨ahr der Bandluckenenergie¨ entspricht, da so Elektronen vom Valenz- ins Leitungsband angehoben werden k¨onnen, wobei ein positiv geladenes Loch im Valenzband zuruckbleibt.¨ Die Bandluckenenergie¨ in typischen Halbleitern betr¨agt ungef¨ahr ein Elektronenvolt (1 eV ˆ=1240 nmˆ=242 THz), so dass Experimente bisher vor allem sichtbares Licht bzw.
    [Show full text]
  • Nanoplatelets As Material System Between Strong Confinement And
    Nanoplatelets as material system between strong confinement and weak confinement Marten Richter1, ∗ 1Institut f¨urTheoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universit¨atBerlin, Hardenbergstr. 36, EW 7-1, 10623 Berlin, Germany (Dated: October 18, 2018) Recently, the fabrication of CdSe nanoplatelets became an important research topic. Nanoplatelets are often described as having a similar electronic structure as 2D dimensional quantum wells and are promoted as colloidal quantum wells with monolayer precision width. In this paper, we show, that nanoplatelets are not ideal quantum wells, but cover depending on the size: the strong confinement regime, an intermediate regime and a Coulomb dominated regime. Thus, nanoplatelets are an ideal platform to study the physics in these regimes. Therefore, the exciton states of the nanoplatelets are numerically calculated by solving the full four dimensional Schr¨odingerequation. We compare the results with approximate solutions from semiconductor quantum well and quan- tum dot theory. The paper can also act as review of these concepts for the colloidal nanoparticle community. In quantum dots the wave function of the electron and is the correct approach, if confinement dominates com- hole, that form the optically created exciton are con- pared to Coulomb interaction. Treatments with a chem- fined in all three dimensions resulting in a quasi zero ical background22 used a Frenkel exciton ansatz, which dimensional system with discrete states1{5. The chemi- does not reflect the properties of the more Wannier type cal synthesis of colloidal quantum dots is a very active excitons in the nanoplatelets. research field6{9, since the controlled growths of these A detailed look at the typical model ansatz wavefunc- materials lead to many real life applications like dyes for tions for platelets, previously known from quantum wells e.g.
    [Show full text]
  • Modeling of Interlayer Excitons in Van Der Waals Heterostructures
    Modeling of interlayer excitons in van der Waals heterostructures Simon Ovesen Department of Physics CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2017 Master’s thesis 2017 Modeling of interlayer excitons in van der Waals heterostructures Simon Ovesen Department of Physics Division of Condensed Matter Theory Chalmers University of Technology Gothenburg, Sweden 2017 Modeling of interlayer excitons in van der Waals heterostructures Author: Simon Ovesen © Simon Ovesen, 2017. Supervisor: Ermin Malic, Department of Physics, Division of Condensed Matter Theory Examiner: Ermin Malic, Department of Physics, Division of Condensed Matter Theory Master’s Thesis 2017 Department of Physics Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Cover: Illustration of the formation and radiative decay of interlayer excitons. Taken from [1]. Typeset in LATEX Gothenburg, Sweden 2017 iv Modeling of interlayer excitons in van der Waals heterostructures Simon Ovesen Department of Physics Chalmers University of Technology Abstract The field of TMD (Transition Metal Dichalcogenide) monolayers is an active one due to certain interesting properties such as a direct band gap, strong spin-orbit coupling and a remarkably large Coulomb interaction leading to strongly bound excitons. For technical applications heterostructures composed of stacked monolayers are also a huge topic of interest. Recent experimental studies of the photoluminescence of these structures show evidence of the existence of interlayer excitons. The aim of this thesis is to propose a mechanism for the formation and dynamics of these interlayer excitons in a bilayer heterostructure. For this purpose the second quantization formalism and tight binding approach are employed. Aside from the free, optical, carrier-photon, carrier-phonon and Coulomb interactions that have already been studied for monolayers, a tunneling interaction that couples the two layers is also included.
    [Show full text]
  • Deviations of the Exciton Level Spectrum in Cuprous Oxide from The
    Deviations of the exciton level spectrum in Cu2O from the hydrogen series F. Sch¨one,S.-O. Kr¨uger,P. Gr¨unwald, H. Stolz, and S. Scheel Institut f¨urPhysik, Universit¨atRostock, Albert-Einstein-Strasse 23, D-18059 Rostock, Germany M. Aßmann, J. Heck¨otter,J. Thewes, D. Fr¨ohlich, and M. Bayer Experimentelle Physik 2, Technische Universit¨atDortmund, D-44221 Dortmund, Germany Recent high-resolution absorption spectroscopy on excited excitons in cuprous oxide [Nature 514, 343 (2014)] has revealed significant deviations of their spectrum from that of the ideal hydrogen- like series. Here we show that the complex band dispersion of the crystal, determining the kinetic energies of electrons and holes, strongly affects the exciton binding energies. Specifically, we show that the nonparabolicity of the band dispersion is the main cause of the deviation from the hydrogen series. Experimental data collected from high-resolution absorption spectroscopy in electric fields validate the assignment of the deviation to the nonparabolicity of the band dispersion. PACS numbers: 71.35.Cc, 78.20.-e, 32.80.Ee, 33.80.Rv I. INTRODUCTION the band dispersion. Fluorescence spectra of atomic systems are an ex- II. VALENCE BAND DISPERSIONS IN tremely rich source of information about the interactions CUPROUS OXIDE of electrons and the nuclei, and their study laid the foun- dations of the development of quantum mechanics. The Cuprous oxide (Cu O) was historically the first ma- basic hydrogen dependence of the electron binding ener- 2 2 terial in which excitons were observed [7{9]. Their dis- gies of 1=n already turns out to be insufficient for al- covery, combined with the availability of exceptionally kali, i.e.
    [Show full text]
  • Optical Properties of Yellow Excitons in Cuprous Oxide
    Optical Properties of yellow Excitons in Cuprous Oxide Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock vorgelegt von Dipl.-Phys. Florian Schöne, geboren am .. in Rostock Rostock, den .. ii Gutachter: Prof. Dr. Heinrich Stolz (Universität Rostock, Institut für Physik) Prof. Dr. Frank Jahnke (Universität Bremen, Institut für Theoretische Physik) Datum der Einreichung: .. Datum der Verteidigung: .. iii Abstract Cuprous oxide (Cu2O) has proven historically as well as contemporarily to be one of the most suitable materials for the research of excitons in bulk semiconductors. This thesis concerns itself with the theoretical description of some optical properties of the yellow exciton series in Cu2O and is divided into two parts. The first part aims at the determination of the basic excitonic properties by considering central-cell corrections. For large principal quan- tum numbers n the nonparabolicity of the highest valence band is treated and the concept of quantum defects is introduced. For the analysis of the yellow 1S paraexciton the additional coupling to LO phonons is addressed. The second part examines the absorption edge of the Γ3− phonon-assisted transition into the 1S yellow orthoexciton and determines the correspond- ing deformation potential. The deformation potential is further utilised to calculate the Auger coefficient of the phonon-assisted decay mechanism. Zusammenfassung Kupferoxydul (Cu2O) zeigte sowohl historisch als auch in der Neuzeit, dass es eines der am besten geeigneten Materialien für die Untersuchung von Exzitonen in Halbleitern ist. Die vorliegende Dissertation untersucht einige optische Eigenschaften der gelben Exzitonenserie in Cu2O und lässt sich in zwei Teile unterteilen.
    [Show full text]
  • Optical Near Field Interaction of Spherical Quantum Dots
    OPTICAL NEAR FIELD INTERACTION OF SPHERICAL QUANTUM DOTS A THESIS SUBMITTED TO THE DEPARTMENT OF PHYSICS AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF BILKENT UNIVERSITY IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE By Togay Amirahmadov July, 2012 I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science. Assoc. Prof. Hilmi Volkan Demir (Supervisor) I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science. Prof. Oğuz Gülseren I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science. Assoc. Prof. Azer Kerimov Approved for the Graduate School of Engineering and Sciences: Prof. Levent Onural Director of Graduate School of Engineering and Sciences ii ABSTRACT OPTICAL NEAR FIELD INTERACTION OF SPHERICAL QUANTUM DOTS Togay Amirahmadov M.S. in Physics Supervisor: Assoc. Prof. Hilmi Volkan Demir July, 2012 Nanometer-sized materials can be used to make advanced photonic devices. However, as far as the conventional far-field light is concerned, the size of these photonic devices cannot be reduced beyond the diffraction limit of light, unless emerging optical near-fields (ONF) are utilized. ONF is the localized field on the surface of nanometric particles, manifesting itself in the form of dressed photons as a result of light-matter interaction, which are bound to the material and not massless.
    [Show full text]
  • Molecule Signatures in Photoluminescence Spectra of Transition Metal Dichalcogenides
    Molecule signatures in photoluminescence spectra of transition metal dichalcogenides Downloaded from: https://research.chalmers.se, 2019-05-11 12:18 UTC Citation for the original published paper (version of record): Feierabend, M., Berghäuser, G., Selig, M. et al (2018) Molecule signatures in photoluminescence spectra of transition metal dichalcogenides Physical Review Materials, 2(1) http://dx.doi.org/10.1103/PhysRevMaterials.2.014004 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) PHYSICAL REVIEW MATERIALS 2, 014004 (2018) Molecule signatures in photoluminescence spectra of transition metal dichalcogenides Maja Feierabend,1 Gunnar Berghäuser,1 Malte Selig,1,2 Samuel Brem,1 Timur Shegai,1 Siegfried Eigler,3 and Ermin Malic1 1Chalmers University of Technology, Department of Physics, 412 96 Gothenburg, Sweden 2Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany 3Institiut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany (Received 1 November 2017; published 26 January 2018) Monolayer transition metal dichalcogenides (TMDs) show an optimal surface-to-volume ratio and are thus promising candidates for novel molecule sensor devices. It
    [Show full text]
  • Microscopic Theory of Coherent and Incoherent Optical Properties of Semiconductor Heterostructures
    Microscopic Theory of Coherent and Incoherent Optical Properties of Semiconductor Heterostructures Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Physik der Philipps-Universit¨at Marburg vorgelegt von Martin Sch¨afer aus Marburg Marburg(Lahn), 2008 Vom Fachbereich Physik der Philipps-Universit¨at Marburg als Dissertation angenommen am 25.08.2008 Erstgutachter: Prof. Dr. S.W. Koch Zweitgutachter: Prof. Dr. W. Stolz Tag der m¨undlichen Prfung: 02.09.2008 F¨ur Marianne Zusammenfassung W¨ahrend der letzten Jahrzehnte sind Halbleiter wegen ihrer interessanten elektrischen Eigenschaften zu einem wichtigen Grundmaterial f¨ur eine Vielzahl technologischer An- wendungen geworden. Halbleiter zeigen beispielsweise im Gegensatz zu Metallen eine mit der Temperatur ansteigende Leitf¨ahigkeit und es ist m¨oglich, die Leitf¨ahigkeit eines Halbleiters gezielt zu ver¨andern indem man ihn bewusst verunreinigt. Dieses soge- nannte Dotieren erlaubt es Bauteile mit genau definierten Leitf¨ahigkeitseigenschaften herzustellen. Beispiele f¨ur solche Bauteile sind Dioden und Transistoren. Letztere haben schließlich die Entwicklung moderner Computer erm¨oglicht. Ungl¨ucklicherweise f¨uhren dieselben physikalischen Prozesse, die eine gezielte Gestal- tung der elektronischen Charakteristika von Halbleiterbauelementen erlauben, dazu, dass Halbleitereigenschaften sehr sensitiv auf ungewollte Verunreinigungen reagieren. Deswegen bezeichnete Wolfgang Paul Anfang der 1920er Jahre die Halbleiterphysik als ”Dreckphysik”. Mit modernen Epitaxiemethoden ist es jedoch heute m¨oglich, Halblei- termaterialen auf einzelne Atomlagen genau zu wachsen und dabei eine sehr hohe Ma- terialreinheit zu erreichen [1]. Die interessanten elektrischen Eigenschaften von Halbleitern sind auf ihre spezielle Bandstruktur zur¨uckzuf¨uhren. Im Gegensatz zu Leitern und ¨ahnlich zu Isolatoren haben Halbleiter im Grundzustand ein g¨anzlich gef¨ulltes Valenzband und ein leeres Leitungs- band.
    [Show full text]
  • Appendix a TWO-LEVEL SYSTEMS and RATE EQUATIONS
    Appendix A TWO-LEVEL SYSTEMS AND RATE EQUATIONS Chapters 2 and 3 show that for semiconductor laser purposes, the in­ teraction of light with a semiconductor medium can often be modeled in terms of electronic transitions between a valence and a conduction band. A spread of transition energies occur that depend on the value of the car­ rier momentum k. Elsewhere in physics such a range of transitions is known to occur, namely in ensembles of inhomogeneously broadened two­ level systems. These appear to good approximation in the interaction of light with atoms and with the magnetic dipoles of nuclear magnetic reso­ nance. Hence people have been led to model semiconductor laser media using the theory of two-level systems. In appropriate limits, the two-level approaches reduce to rate equation theory, also very popular in modeling aspects of semiconductor laser operation. On the other hand, Sec. 3-1 rev­ eals that the semiconductor medium is at the very least an inhomogene­ ously broadened four-level medium, all of whose levels have appreciable probability in a gain medium. Two of the four levels correspond to the levels in a two-level medium, but the other two are absent in the two-level medium. Hence the degree to which a two-level model can describe semi­ conductor response is disturbingly uncertain. One is really better off using a real semiconductor model, for which the approximations are well de­ fined. Nevertheless much of the physics of the two-level model has coun­ terparts in the semiconductor models and one can study this physics in a relatively simple context.
    [Show full text]
  • Quantum Confined Rydberg Excitons in Reduced Dimensions
    Journal of Physics B: Atomic, Molecular and Optical Physics PAPER • OPEN ACCESS Quantum confined Rydberg excitons in reduced dimensions To cite this article: Annika Konzelmann et al 2020 J. Phys. B: At. Mol. Opt. Phys. 53 024001 View the article online for updates and enhancements. This content was downloaded from IP address 141.58.18.93 on 08/02/2020 at 01:26 Journal of Physics B: Atomic, Molecular and Optical Physics J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 024001 (7pp) https://doi.org/10.1088/1361-6455/ab56a9 Quantum confined Rydberg excitons in reduced dimensions Annika Konzelmann , Bettina Frank and Harald Giessen 4th Physics Institute and Research Center SCoPE, University of Stuttgart, D-70569 Stuttgart, Germany E-mail: [email protected] Received 7 August 2019, revised 30 September 2019 Accepted for publication 12 November 2019 Published 18 December 2019 Abstract In this paper we propose first steps towards calculating the energy shifts of confined Rydberg excitons in CuO2 quantum wells, wires, and dots. The macroscopic size of Rydberg excitons with high quantum numbers n implies that already μm sized lamellar, wire-like, or box-like structures lead to quantum size effects, which depend on the principal Rydberg quantum number n. Such structures can be fabricated using focused ion beam milling of cuprite crystals. Quantum confinement causes an energy shift of the confined object, which is interesting for quantum technology. We find in our calculations that the Rydberg excitons gain a potential energy in the μeV to meV range due to the quantum confinement. This effect is dependent on the Rydberg exciton size and, thus, the principal quantum number n.
    [Show full text]
  • Luminescence and Absorption in Short Period Superlattices
    Editorially accepted for publication at Optical and Quantum Electronics, 4 April 2018. Luminescence and absorption in short period superlattices M.F. PEREIRA* Department of Condensed Matter Physics, Institute of Physics CAS Na Slovance 1999/2, 182 21 Prague 8, Czech Republic *email: [email protected] Abstract - This paper applies analytical approximations for the luminescence of short period semiconductor superlattices and analyses the low density regime, demonstrating that the theory clearly connects with low density absorption with ratios of oscillator strengths of bound and continuum states as expected from the Elliott formula. A numerical study illustrates in detail the bleaching of higher order bound state. The analytical expressions have potential for systematic studies of controlled excitonic pathways characterized by THz responses. Keywords: semiconductors superlattices, excitons, many body effects, absorption, luminescence, Terahertz, TERA-MIR 1 Introduction A full understanding of how photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Furthermore, these excitonic pathways are characterized by THz responses [1]. Consequently, systems where these effects can controlled per design have strong potential for applications. Furthermore, semiconductor materials are the required substrate for Photoconductive Antennas, for which novel efficient solutions are constantly being sought [2] and semiconductor superlattices may become a successful and efficient substrate. Semiconductor superlattices (SSLs) are media where the effective dimensionality of the electrons and holes can be controlled between two and three dimensions and are thus very important media to investigate transport and optical effects [3,4] from the GHz to the THz-Mid Infrared (TERA-MIR) range [5,6].
    [Show full text]