President's Message
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Eosin Y Catalysed Photoredox Synthesis: a Review
RSC Advances REVIEW View Article Online View Journal | View Issue Eosin Y catalysed photoredox synthesis: a review a b Cite this: RSC Adv.,2017,7,31377 Vishal Srivastava and Praveen P. Singh * In recent years, photoredox catalysis using eosin Y has come to the fore front in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of organic dyes to convert visible light into chemical energy by engaging in single-electron Received 14th May 2017 transfer with organic substrates, thereby generating reactive intermediates. In this perspective, we Accepted 13th June 2017 highlight the unique ability of photoredox catalysis to expedite the development of completely new DOI: 10.1039/c7ra05444k reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the rsc.li/rsc-advances construction of challenging carbon–carbon and carbon–heteroatom bonds. 1. Introduction However, the transition metal based photocatalysts disadvantageously exhibit high cost, low sustainability and Visible light photoredox catalysis has recently received much potential toxicity. Recently, a superior alternative to transition Creative Commons Attribution 3.0 Unported Licence. attention in organic synthesis owing to ready availability, metal photoredox catalysts, especially metal-free organic dyes sustainability, non-toxicity and ease of handling of visible particularly eosin Y has been used as economically and 1–13 light but the general interest in the eld started much ecologically superior surrogates for Ru(II)andIr(II)complexes earlier.14 Unlike thermal reactions, photoredox processes occur in visible-light promoted organic transformations involving 18–21 under mild conditions and do not require radical initiators or SET (single electron transfer). -
(12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig. -
Hematoxylin and Eosin Stain (H&E)
Hematoxylin and Eosin Stain (H&E) TECHNIQUE: Formalin fixed, paraffin tissue sections REAGENTS: Mayer’s Hematoxylin (Source Medical, catalog# 9235360) 0.5% Acid Alcohol 70% Ethanol ----------------------------------------------------------------------995ml Hydrochloric Acid, (36.5% - 38%) ------------------------------------------- 5ml 1X PBS (pH 7.2-7.3) Alcoholic-Eosin 1.0% Eosin Y Eosin Y (CAS# 17372-87-1) -------------------------------------------------- 1.0 g Distilled water ------------------------------------------------------------------ 100 ml 1.0% Phloxine B Phloxine B (CAS# 18472-87-2) ---------------------------------------------- 0.5 g Distilled water ------------------------------------------------------------------ 50.0 ml Working Alcoholic-Eosin Solution 1.0% Eosin Y ------------------------------------------------------------------- 50.0 ml 1.0% Phloxine B --------------------------------------------------------------- 5.0 ml 95% Ethanol -------------------------------------------------------------------- 390.0 ml Acetic acid, glacial ------------------------------------------------------------- 4.0 ml 11/2018 Hematoxylin and Eosin Stain (H&E) 5 micron Paraffin Sections PROCEDURE: 1. Deparaffinize and rehydrate slides to distilled water 2. Stain in Mayers Hematoxylin for 1 minute 3. Wash with 4-5 changes of Tap water or until blue stops coming off slides 4. Blue nuclei in 1X PBS for 1 minute 5. Wash with 3 changes of distilled water 6. Counterstain in Alcoholic-Eosin for 1 minute (DO NOT RINSE) 7. Dehydrate through 3 -
Outcomes of Conservative Treatment of Giant Omphaloceles with Dissodic 2% Aqueous Eosin: 15 Years' Experience
Access this article online Website: Original Article www.afrjpaedsurg.org DOI: 10.4103/0189-6725.132825 PMID: *** Outcomes of conservative treatment of giant Quick Response Code: omphaloceles with dissodic 2% aqueous eosin: 15 years’ experience B. D. Kouame, T. H. Odehouri Koudou, J. B. Yaokreh, M. Sounkere, S. Tembely, K. G. S. Yapo, R. Boka, M. Koffi, A. G. Dieth, O. Ouattara, A. da Silva, R. Dick INTRODUCTION ABSTRACT Background: The surgical management of giant Surgical treatment of the giant omphaloceles leads to omphalocele is a surgical challenge with high several haemodynamic and respiratory complications mortality and morbidity in our country due to the which increase their mortality. To reduce the morbidity absence of neonatal resuscitation. This study evaluates conservative management of giant and the mortality of the surgical management of the giant omphalocele with dissodic 2% aqueous eosin. omphalocele, conservative’s treatments with antiseptic Materials and Methods: In the period from January solutions were carried out.[1-3] Povidone iodine and 1997 to December 2012, giant omphaloceles were merbromin have been used during several years due to their treated with dissodic 2% aqueous eosin. The capacity to promote escharification and epithelialization procedure consisted of twice a day application of of the omphalocele sac. However due to complications dissodic 2% aqueous eosin (sterile solution for topical application) on the omphalocele sac. The such as transient hypothyroidism with povidone iodine or procedure was taught to the mother to continue mercury poising with merbromin, there was the cessation at home with an outpatient follow-up to assess of their use for conservative treatment.[1-4] epithelialization. -
Eosin Staining
Science of H & E Andrew Lisowski, M.S., HTL (A.S.C.P.) 1 Hematoxylin and Eosin Staining “The desired end result of a tissue stained with hematoxylin and eosin is based upon what seems to be almost infinite factors. Pathologists have individual preferences for section thickness, intensities, and shades. The choice of which reagents to use must take into consideration: cost, method of staining, option of purchasing commercially-prepared or technician-prepared reagents, safety, administration policies, convenience, availability, quality, technical limitations, as well as personal preference.” Guidelines for Hematoxylin and Eosin Staining National Society for Histotechnology 2 Why Do We Stain? In order to deliver a medical diagnosis, tissues must be examined under a microscope. Once a tissue specimen has been processed by a histology lab and transferred onto a glass slide, it needs to be appropriately stained for microscopic evaluation. This is because unstained tissue lacks contrast: when viewed under the microscope, everything appears in uniform dull grey color. Unstained tissue H&E stained tissue 3 What Does "Staining" Do? . Contrasts different cells . Highlights particular features of interest . Illustrates different cell structures . Detects infiltrations or deposits in the tissue . Detect pathogens Superbly contrasted GI cells Placenta’s large blood H&E stain showing extensive vessels iron deposits There are different staining techniques to reveal different structures of the cell 4 What is H&E Staining? As its name suggests, H&E stain makes use of a combination of two dyes – hematoxylin and eosin. It is often termed as “routine staining” as it is the most common way of coloring otherwise transparent tissue specimen. -
(12) United States Patent (10) Patent No.: US 8,603,526 B2 Tygesen Et Al
USOO8603526B2 (12) United States Patent (10) Patent No.: US 8,603,526 B2 Tygesen et al. (45) Date of Patent: Dec. 10, 2013 (54) PHARMACEUTICAL COMPOSITIONS 2008. O152595 A1 6/2008 Emigh et al. RESISTANT TO ABUSE 2008. O166407 A1 7/2008 Shalaby et al. 2008/0299.199 A1 12/2008 Bar-Shalom et al. 2008/0311205 A1 12/2008 Habib et al. (75) Inventors: Peter Holm Tygesen, Smoerum (DK); 2009/0022790 A1 1/2009 Flath et al. Jan Martin Oevergaard, Frederikssund 2010/0203129 A1 8/2010 Andersen et al. (DK); Karsten Lindhardt, Haslev (DK); 2010/0204259 A1 8/2010 Tygesen et al. Louise Inoka Lyhne-versen, Gentofte 2010/0239667 A1 9/2010 Hemmingsen et al. (DK); Martin Rex Olsen, Holbaek 2010, O291205 A1 11/2010 Downie et al. (DK); Anne-Mette Haahr, Birkeroed 2011 O159100 A1 6/2011 Andersen et al. (DK); Jacob Aas Hoellund-Jensen, FOREIGN PATENT DOCUMENTS Frederikssund (DK); Pemille Kristine Hoeyrup Hemmingsen, Bagsvaerd DE 20 2006 014131 1, 2007 (DK) EP O435,726 8, 1991 EP O493513 7, 1992 EP O406315 11, 1992 (73) Assignee: Egalet Ltd., London (GB) EP 1213014 6, 2002 WO WO 89,09066 10, 1989 (*) Notice: Subject to any disclaimer, the term of this WO WO91,040 15 4f1991 patent is extended or adjusted under 35 WO WO95/22962 8, 1995 U.S.C. 154(b) by 489 days. WO WO99,51208 10, 1999 WO WOOOf 41704 T 2000 WO WO 03/024426 3, 2003 (21) Appl. No.: 12/701,429 WO WOO3,O24429 3, 2003 WO WOO3,O24430 3, 2003 (22) Filed: Feb. -
Photophysical and Antibacterial Activity of Light- Activated Quaternary Eosin Y
Open Chem., 2019; 17: 1244–1251 Research Article Desislava Staneva, Stanislava Yordanova*, Evgenia Vasileva-Tonkova, Stanimir Stoyanov, Ivo Grabchev Photophysical and antibacterial activity of light- activated quaternary eosin Y https://doi.org/10.1515/chem-2019-0135 received December 3, 2018; accepted May 9, 2019. Keywords: eosin Y, photophysics, antimicrobial activity, antibacterial textile Abstract: The functional characteristics of a new eosin dye with biocidal quaternary ammonium group (E) were studied in aqueous solution and in organic solvents of 1 Introduction different polarity. The spectral properties depend on the nature and polarity of the respective solvents. The Fluorescent compounds are often used in medicine, antimicrobial activity of compound E has been tested in pharmacy, biology and environmental protection [1,2]. vitro against Gram-negative bacteria (Escherichia coli, Among the known fluorophore structures used in these Acinetobacter johnsoni and Pseudomonas aeruginosa), fields, the eosin Y and its derivatives are very important. Gram-positive bacteria (Sarcina lutea and Bacillus cereus) They belong to the group of xanthene fluorescent dyes and the antifungal activity was tested against the yeasts with a wide range of photophysical and biological Candida lipolytica in solution and after treated on cotton applications, due to their low toxicity in vivo, and high fabric. Broth dilution test has been used for quantitative water solubility [3]. The utility of eosin derivatives is evaluation of the antimicrobial activity of compound E associated to their good spectral characteristics and the against the model strains. The ability of compound E to possibility to interact with different type of biomolecules inhibit the growth of model Gram-negative P. -
Basics of Hematology and Patho-Histology
Basics of Hematology and Patho-histology Practical Course in Molecular Pathology Winter Term 2015 Ernst Müllner MFPL (Max F Perutz Laboratories) Department of Medical Biochemistry Medical University of Vienna [email protected] www.mfpl.ac.at/mfpl-group/group/muellner.html (Müllner homepage / research) E. coli + macrophages medicalschool.tumblr.com/post/43914024728/sem-image-of-e-coli-bacteria-and-macrophages medicalschool.tumblr.com/post/18256087351/r ed-blood-cells-erythrocytes-trapped-by-fibrin Overview on main white blood cell (WBC) types – (Wikipedia) Mature white blood cell types I White Blood cells (WBCs) are frequently also referred to as peripheral blood mononuclear cells (PBMCs). Granulocytes in general are part of the innate immune system. Names derive from staining with hematoxylin and eosin. Whereas basophils stain dark blue and eosinophils are bright red, neutrophils stain neutral to pink. Basophil granulocytes Eosinophil granulocytes Neutrophil granulocytes Least common granulocyte type About 1-6% of WBCs; component Most abundant WBC type (40- (0.01- 0.3% of WBCs. Large of innate immune system to com- 75%) and essential part of the cytoplasmic granules obscure the bat parasites and certain infec- innate immune system. A patho- nucleus under the microscope. tions; also associated with allergy gen is likely to first encounter a When unstained, the nucleus is and asthma. Following activation, neutrophil. Normally contain a nu- visible and usually has 2 lobes. eosinophils effector functions in- cleus of 2-5 lobes. Neutrophils Basophils appear in inflammatory clude production and release (de- quickly congregate at a infection reactions, particularly those granulation) of cytotoxic substan- site, attracted by cytokines from causing allergies, mainly via the ces (granule proteins, reactive activated endothelium, mast cells, vasodilator histamine (antihistami- oxygen species …) and production or macrophages. -
(12) United States Patent (10) Patent No.: US 9,636.405 B2 Tamarkin Et Al
USOO9636405B2 (12) United States Patent (10) Patent No.: US 9,636.405 B2 Tamarkin et al. (45) Date of Patent: May 2, 2017 (54) FOAMABLE VEHICLE AND (56) References Cited PHARMACEUTICAL COMPOSITIONS U.S. PATENT DOCUMENTS THEREOF M (71) Applicant: Foamix Pharmaceuticals Ltd., 1,159,250 A 1 1/1915 Moulton Rehovot (IL) 1,666,684 A 4, 1928 Carstens 1924,972 A 8, 1933 Beckert (72) Inventors: Dov Tamarkin, Maccabim (IL); Doron 2,085,733. A T. 1937 Bird Friedman, Karmei Yosef (IL); Meir 33 A 1683 Sk Eini, Ness Ziona (IL); Alex Besonov, 2,586.287- 4 A 2/1952 AppersonO Rehovot (IL) 2,617,754. A 1 1/1952 Neely 2,767,712 A 10, 1956 Waterman (73) Assignee: EMY PHARMACEUTICALs 2.968,628 A 1/1961 Reed ... Rehovot (IL) 3,004,894. A 10/1961 Johnson et al. (*) Notice: Subject to any disclaimer, the term of this 3,062,715. A 1 1/1962 Reese et al. tent is extended or adiusted under 35 3,067,784. A 12/1962 Gorman pa 3,092.255. A 6/1963 Hohman U.S.C. 154(b) by 37 days. 3,092,555 A 6/1963 Horn 3,141,821 A 7, 1964 Compeau (21) Appl. No.: 13/793,893 3,142,420 A 7/1964 Gawthrop (22) Filed: Mar. 11, 2013 3,144,386 A 8/1964 Brightenback O O 3,149,543 A 9/1964 Naab (65) Prior Publication Data 3,154,075 A 10, 1964 Weckesser US 2013/0189193 A1 Jul 25, 2013 3,178,352. -
Hematoxylin & Eosin
Washington University School of Medicine Neuromuscular Lab CAP: 1923316 CLIA: 26D0652044 NY: PFI 3499 HEMATOXYLIN & EOSIN (H & E) STAIN PROTOCOL PRINCIPLE: This protocol is applied in the routine staining of cationic and anionic tissue components in tissue sections. This is the standard reference stain used in the study of histochemical tissue pathology. SPECIMEN REQUIRED: Snap frozen human striated muscle. (Use the 2-methylbutane freezing method) METHOD: Fixation: None. Use snap frozen tissue. Technique: Cut 10 - 16 micron (12 µm) sections in cryostat from snap frozen biopsy. Attach first and last sections to a Superfrost Plus microscope slide. Equipment: Ceramic staining rack - Thomas Scientific #8542-E40 Columbia staining dish - Thomas Scientific #8542-C12 Columbia staining dish(jar) - Thomas Scientific #8542-E30 Forceps Latex gloves Reagents: Reagent alcohol - HPLC Fisher A995-4 or histological A962, FLAMMABLE store at room temp. in a flammable cabinet Eosin Y, disodium salt (Sigma #E-6003, store at room temperature) Harris Hematoxylin Stain, acidified (Lerner Laboratories #1931382)(R.T.) Permount - Fisher SP15-100, FLAMMABLE; HEALTH HAZARD Xylenes (Fisher #HC700-1GAL, FLAMMABLE Solutions: I. Eosin Y, 1 % aqueous (store at room temperature) Eosin Y dye 1 g Deionized water 100 ml H&E protocol.docx 1997 Washington University School of Medicine Neuromuscular Lab CAP: 1923316 CLIA: 26D0652044 NY: PFI 3499 2. Harris Hematoxylin, acidified (store at room temperature) Filter (Baxter #F2217-150, Grade 363, Qualitative) before use 3. Alcohol 50 % reagent alcohol ~50 ml deionized water ~50 ml 4. Alcohol 70 % reagent alcohol ~70 ml deionized water ~30 ml 5. Alcohol 80 % reagent alcohol ~80 ml deionized water ~20 ml 6. -
Triclosan Leads to Dysregulation of the Metabolic Regulator FGF21 Exacerbating High Fat Diet-Induced Nonalcoholic Fatty Liver Disease
Triclosan leads to dysregulation of the metabolic regulator FGF21 exacerbating high fat diet-induced nonalcoholic fatty liver disease Mei-Fei Yueha, Feng Heb, Chen Chena, Catherine Vua, Anupriya Tripathic, Rob Knightc, Michael Karinb,1, Shujuan Chena, and Robert H. Tukeya,1 aLaboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, CA 92093; bLaboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, La Jolla, CA 92093; and cDepartment of Pediatrics, University of California San Diego, La Jolla, CA 92093 Contributed by Michael Karin, October 13, 2020 (sent for review August 13, 2020; reviewed by Christopher A. Bradfield and Bhagavatula Moorthy) Triclosan (TCS), employed as an antiseptic and disinfectant, comes steatosis, have become a useful experimental animal model for into direct contact with humans through a plethora of consumer research on NAFLD, NASH, and TASH (4). products and its rising environmental release. We have demon- The environmental contaminant triclosan (TCS) is a ubiqui- strated that TCS promotes liver tumorigenesis in mice, yet the tous antimicrobial present in a myriad of consumer products as biological and molecular mechanisms by which TCS exerts its well as various environmental compartments. Ecotoxicology toxicity, especially in early stages of liver disease, are largely studies have showed that TCS is one of the most commonly unexplored. When mice were fed a high-fat diet (HFD), we found encountered contaminants in solid and water compartments and that fatty liver and dyslipidemia are prominent early signs of liver has been detected in levels from nanograms to several micro- abnormality induced by TCS. -
Comprehensive Mapping of Volatile Organic Compounds in Fruits
International PhD Program in Biomolecular Sciences XXVII Cycle Comprehensive Mapping of Volatile Organic Compounds in Fruits Tutor Dr. Fulvio Mattivi Department of Food Quality and Nutrition, Fondazione Edmund Mach Advisor Prof. Vladimir Shulaev Department of Biological Sciences, University of North Texas Ph.D. Thesis of Manoj Shahaji Ghaste Department of Food Quality and Nutrition Fondazione Edmund Mach 2013-2014 This thesis is lovingly dedicated to my Mother. Her support, encouragement, belief and constant love have sustained me throughout my life. Declaration I, Manoj Shahaji Ghaste confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Thesis abstract Volatile organic compounds (VOCs) are the key aroma producers in fruits and sensory quality of fruits is widely determined by qualitative and quantitative composition of VOCs. The aroma of grape is a complex of hundreds of VOCs belonging to different chemical classes like alcohols, esters, acids, terpenes, aldehydes, furanones, pyrazines, isoprenoids and many more. VOCs play important role as they determine the flavor of grapes and wine made from it. The objective of this thesis is to study of VOCs through development of different mass spectrometry based analytical methodologies and its applications for the comprehensive investigation and construction of database of the VOCs in grapes. First part of the study was dedicated to generation of a database of grape VOCs through the screening of multiple grape varieties (n=124) representing different species, color and origin. The experiment was carried out using headspace solid-phase microextraction (HS-SPME) and gas chromatography mass spectrometry (GC-MS) based approach and according to metabolomics protocols.