Survey Manual

Total Page:16

File Type:pdf, Size:1020Kb

Survey Manual ATLANTIC SALMON TRUST SMALL STREAMS CHARACTERISATION SYSTEM – Survey Manual Prepared for The Atlantic Salmon Trust, The River Annan Trust & District Salmon Fishery Board and the Strangford Lough & Lecale Partnership by Martin McGarrigle, Limnos Consultancy Ballynew, Castlebar, Co. Mayo, Ireland. Version: AST-SSCS-1.3 Date: July 2015 © Atlantic Salmon Trust, 2015 Atlantic Salmon Trust – Small Streams Characterisation System Survey Manual – AST-SSCS-1.2 Contents Background ................................................................................................................................ 3 Introduction ............................................................................................................................... 5 Health and Safety When Sampling Small Streams or Rivers ..................................................... 6 Biosecurity.................................................................................................................................. 7 The Survey .................................................................................................................................. 8 Field Equipment ..................................................................................................................... 8 Taking a Sample ..................................................................................................................... 9 1. Where Are You Sampling? ................................................................................................... 10 2. Describe the Stream and its Surroundings .......................................................................... 10 3. Identifying Stream Macroinvertebrates .............................................................................. 12 Mayflies versus Stoneflies .................................................................................................... 16 4. Calculating the Small Streams Characterisation System Score ........................................... 22 Manual Calculation Method ................................................................................................ 22 Spreadsheet Method ........................................................................................................... 23 Group 1 MayFlies – 3-Tails – Ephemeroptera ......................................................................... 24 Group 2 Stoneflies – 2-Tails – Plecoptera ................................................................................ 24 Group 3 Caddis Cased and Uncased ........................................................................................ 25 Group 4 GOLD+ ........................................................................................................................ 25 Group 5 Asellus ........................................................................................................................ 26 Flow Chart for Manual Calculation of AST-SSCS ...................................................................... 27 5. What Types of Aquatic Plants are found in the Stream? ..................................................... 28 Mosses and Liverworts ........................................................................................................ 29 Filamentous Algae ................................................................................................................ 29 Higher Plants (Flowering Plants) .......................................................................................... 29 6. Hydromorphology: Estimating the Potential to Block Fish Passage .................................... 33 The Sampling Strategy for the AST Small Stream Characterisation System ............................ 35 A Case Study ............................................................................................................................. 35 Keys and Aids for Identification of Aquatic Flora and Fauna ................................................... 37 Useful Hyperlinks ..................................................................................................................... 38 Page 2 | 38 Background and Introduction SMALL STREAMS CHARACTERISATION SYSTEM FIELD SHEET & GUIDANCE NOTES Background identified as contributing to failures to meet EU Water Framework Directive In recent years, in the UK and Ireland, standards in larger river catchments, such there has been increasing interest in the watercourses are rarely classified as conservation and management of small “water bodies” under the terms of the streams. They are essential to the health WFD. As such, they do not receive the of the wider aquatic ecosystem and of fish formal monitoring priority and protection populations throughout river catchments. they need. But, because of their size, small streams are particularly vulnerable, both to In response to the above recommenda- general pressures and to specific tions and under the general theme of problems. managing small streams for fish in a changing environment, two subsequent A sea-trout workshop, organised by the workshops were organised to discuss Atlantic Salmon Trust in February 2011, small streams in upland and lowland / clearly identified the need for the urban areas. These meetings were held in monitoring and protection of such Carlingford, Co Louth, Ireland, 27th and streams and concluded that a greater 28th November, 2012 and York, England, focus was required on the significance of 6th and 7th March 2013, the latter dealing small streams for sea-trout production. primarily with lowland and urbanised These provide important spawning small streams. The conclusions and habitats, but are easily blocked by recommendations from these meetings impassable culverts, farm crossings and were subsequently presented to a minor land use changes and can be meeting in Brussels later in 2013, adversely affected by very minor land organised by the European Environmental management practices. They are also Bureau and the Freshwater Habitats Trust. poorly protected by existing legislation. Hyperlinks to reports on these meetings The workshop agreed that research is are available in this manual (see Useful needed to quantify the contribution such Hyperlinks on p38). streams make to sea-trout recruitment. There is also a need to identify both actual It was clear from the Carlingford Small and potential sea-trout spawning streams, Streams Workshop that the care and and to draw attention to the need to attention urgently required by burns and protect them. streams is most likely to come from volunteers and key catchment based During the workshop, it was suggested interest groups. There was also much that a definition of a small stream might support for the role that citizen science be any stream less than 6 m in width. might play in monitoring such streams. However, a more satisfactory definition is probably any first or second-order hill Having identified the need to equip stream or any small self-contained coastal interest groups with the skills to monitor stream, which discharges directly into the and assess the health of streams in their ocean. Although small streams have been particular catchments, AST approached Page 3 | 38 Background and Introduction the Strangford Lough & Lecale Partnership fishery managers to put in place plans to and the River Annan Trust & District protect the high quality watercourses and Salmon Fishery Board, with a view to improve the problematic areas. agreeing on such a programme. The programme in many ways is similar to This training manual represents the the Adopt-a-Stream Programme in completion of the first phase of this joint Canada. Our colleagues in the Atlantic partnership. In conjunction with a training Salmon Conservation Fund and the Adopt- programme, it provides volunteers with a-Stream Programme have been very the required skills and training to walk and helpful in commenting on drafts of the monitor the small streams in their manual and we would encourage those particular location, both small mountain concerned with the protection and streams and discrete coastal streams. The management of small streams to visit objective is not to intentionally seek out their websites, which are packed full of pollution points but to objectively assess practical and useful information – see the current status of the streams. In many Useful Hyperlinks (p38). ways identifying and highlighting the presence of pristine streams or burns that We trust that this manual will prove useful have been little impacted by agricultural not alone to those interested in the or forestry practices is as important as welfare of our sea trout but to all those identifying problems in damaged or with concerns for the welfare of the degraded streams. The initiative is based migratory species which depend on the on a simple premise: that obtaining high- health and well-being of the myriad of quality information on the condition of small streams that pepper our mountain our small streams and burns is key for landscapes and our coastal margins. Page 4 | 38 Background and Introduction Introduction Small streams (known as first and second- these small streams and by identifying order streams) comprise over 75% of the obvious blockages to fish migration from length of the total river network – typically and to the sea. The aim of this guide and these are less than 3 m wide. They are key training programme is to build a certain spawning areas for trout. The health of expertise in assessing the risks of pollution
Recommended publications
  • The Mitochondrial Genomes of Palaeopteran Insects and Insights
    www.nature.com/scientificreports OPEN The mitochondrial genomes of palaeopteran insects and insights into the early insect relationships Nan Song1*, Xinxin Li1, Xinming Yin1, Xinghao Li1, Jian Yin2 & Pengliang Pan2 Phylogenetic relationships of basal insects remain a matter of discussion. In particular, the relationships among Ephemeroptera, Odonata and Neoptera are the focus of debate. In this study, we used a next-generation sequencing approach to reconstruct new mitochondrial genomes (mitogenomes) from 18 species of basal insects, including six representatives of Ephemeroptera and 11 of Odonata, plus one species belonging to Zygentoma. We then compared the structures of the newly sequenced mitogenomes. A tRNA gene cluster of IMQM was found in three ephemeropteran species, which may serve as a potential synapomorphy for the family Heptageniidae. Combined with published insect mitogenome sequences, we constructed a data matrix with all 37 mitochondrial genes of 85 taxa, which had a sampling concentrating on the palaeopteran lineages. Phylogenetic analyses were performed based on various data coding schemes, using maximum likelihood and Bayesian inferences under diferent models of sequence evolution. Our results generally recovered Zygentoma as a monophyletic group, which formed a sister group to Pterygota. This confrmed the relatively primitive position of Zygentoma to Ephemeroptera, Odonata and Neoptera. Analyses using site-heterogeneous CAT-GTR model strongly supported the Palaeoptera clade, with the monophyletic Ephemeroptera being sister to the monophyletic Odonata. In addition, a sister group relationship between Palaeoptera and Neoptera was supported by the current mitogenomic data. Te acquisition of wings and of ability of fight contribute to the success of insects in the planet.
    [Show full text]
  • Aquatic Insects Are Dramatically Underrepresented in Genomic Research
    insects Communication Aquatic Insects Are Dramatically Underrepresented in Genomic Research Scott Hotaling 1,* , Joanna L. Kelley 1 and Paul B. Frandsen 2,3,* 1 School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; [email protected] 2 Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84062, USA 3 Data Science Lab, Smithsonian Institution, Washington, DC 20002, USA * Correspondence: [email protected] (S.H.); [email protected] (P.B.F.); Tel.: +1-(828)-507-9950 (S.H.); +1-(801)-422-2283 (P.B.F.) Received: 20 August 2020; Accepted: 3 September 2020; Published: 5 September 2020 Simple Summary: The genome is the basic evolutionary unit underpinning life on Earth. Knowing its sequence, including the many thousands of genes coding for proteins in an organism, empowers scientific discovery for both the focal organism and related species. Aquatic insects represent 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. However, aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ~9 terrestrial insect genomes. Instead, ~24 terrestrial insect genomes have been sequenced for every aquatic insect genome. A lack of aquatic genomes is limiting research progress in the field at both fundamental and applied scales. We argue that the limited availability of aquatic insect genomes is not due to practical limitations—small body sizes or overly complex genomes—but instead reflects a lack of research interest. We call for targeted efforts to expand the availability of aquatic insect genomic resources to empower future research.
    [Show full text]
  • A New Genus and Species of Asiocoleidae (Coleoptera) From
    ISRAEL JOURNAL OF ENTOMOLOGY, Vol. 50 (2), pp. 1–9 (21 July 2020) This contribution is published to honor Prof. Vladimir Chikatunov, a scientist, a colleague and a friend, on the occasion of his 80th birthday. The first finding of an asiocoleid beetle (Coleoptera: Asiocoleidae) in the Upper Permian Belmont Insect Beds, Australia, with descriptions of a new genus and species Aleksandr G. Ponomarenko1, Evgeny V. Yan1, Olesya D. Strelnikova1 & Robert G. Beattie2 1A.A. Borissiak Palaeontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia. E-mail: [email protected], [email protected], [email protected] 2The Australian Museum, 1 William Street, Sydney, New South Wales, 2010 Australia. E-mail: [email protected], [email protected] ABSTRACT A new genus and species of Archostematan beetles, Gondvanocoleus chikatunovi n. gen. & sp., is described from an isolated elytron from the Upper Permian Belmont locality in Australia. Gondvanocoleus n. gen. differs from other members of the family Asiocoleidae in having only one row of cells in the middle part of the elytral field 3 and in having unorganized cells not forming rows near the elytral apex. Further relationships of the new genus with other asiocoleids are discussed. The fossil record of the Asiocoleidae is briefly overviewed. KEYWORDS: Coleoptera, Archostemata, Asiocoleidae, beetles, new genus, new species, Permian, Lopingian, Australia, Gondwana, fossil record. РЕЗЮМЕ Новый род и вид жуков-архостемат, Gondvanocoleus chikatunovi n. gen. & sp., описаны по изолированному надкрылью из верхнепермского мес то­ нахождения Бельмонт в Австралии. Gondvanocoleus n. gen. отличается от остальных родов семейства Asiocoleidae присутствием только одного ряда ячей в средней части предшовного поля и не организованных в ряды ячей в апикальной части надкрылья.
    [Show full text]
  • Late Carboniferous Paleoichnology Reveals the Oldest Full-Body Impression of a flying Insect
    Late Carboniferous paleoichnology reveals the oldest full-body impression of a flying insect Richard J. Knechta,1, Michael S. Engelb,c, and Jacob S. Bennera aDepartment of Geology, Tufts University, Medford, MA 02155; bDivision of Entomology (Paleoentomology), Natural History Museum, and cDepartment of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66049 Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved March 8, 2011 (received for review October 23, 2010) Insects were the first animals to evolve powered flight and did earliest mayflies and their relatives that wing fossils do not. More so perhaps 90 million years before the first flight among verte- significantly, the FBI somewhat blurs the usual distinctions brates. However, the earliest fossil record of flying insect lineages between trace and body fossils and the traditional dichotomy (Pterygota) is poor, with scant indirect evidence from the Devonian between paleoichnological and paleontological systematics and and a nearly complete dearth of material from the Early Carbonif- taxonomy. erous. By the Late Carboniferous a diversity of flying lineages is known, mostly from isolated wings but without true insights into Geological Context the paleoethology of these taxa. Here, we report evidence of a full- The geological context of the fossil locality is described in SI body impression of a flying insect from the Late Carboniferous Geological Context. Wamsutta Formation of Massachusetts, representing the oldest trace fossil of Pterygota. Through ethological and morphological Systematic Paleoichnology analysis, the trace fossil provides evidence that its maker was The following discussion is a systematic description of the trace a flying insect and probably was representative of a stem-group fossil morphology and its relation to the morphology of the in- lineage of mayflies.
    [Show full text]
  • Life History and Production of Mayflies, Stoneflies, and Caddisflies (Ephemeroptera, Plecoptera, and Trichoptera) in a Spring-Fe
    Color profile: Generic CMYK printer profile Composite Default screen 1083 Life history and production of mayflies, stoneflies, and caddisflies (Ephemeroptera, Plecoptera, and Trichoptera) in a spring-fed stream in Prince Edward Island, Canada: evidence for population asynchrony in spring habitats? Michelle Dobrin and Donna J. Giberson Abstract: We examined the life history and production of the Ephemeroptera, Plecoptera, and Trichoptera (EPT) commu- nity along a 500-m stretch of a hydrologically stable cold springbrook in Prince Edward Island during 1997 and 1998. Six mayfly species (Ephemeroptera), 6 stonefly species (Plecoptera), and 11 caddisfly species (Trichoptera) were collected from benthic and emergence samples from five sites in Balsam Hollow Brook. Eleven species were abundant enough for life-history and production analysis: Baetis tricaudatus, Cinygmula subaequalis, Epeorus (Iron) fragilis,andEpeorus (Iron) pleuralis (Ephemeroptera), Paracapnia angulata, Sweltsa naica, Leuctra ferruginea, Amphinemura nigritta,and Nemoura trispinosa (Plecoptera), and Parapsyche apicalis and Rhyacophila brunnea (Trichoptera). Life-cycle timing of EPT taxa in Balsam Hollow Brook was generally similar to other literature reports, but several species showed extended emergence periods when compared with other studies, suggesting a reduction in synchronization of life-cycle timing, pos- sibly as a result of the thermal patterns in the stream. Total EPT secondary production (June 1997 to May 1998) was 2.74–2.80 g·m–2·year–1 dry mass (size-frequency method). Mayflies were dominant, with a production rate of 2.2 g·m–2·year–1 dry mass, followed by caddisflies at 0.41 g·m–2·year–1 dry mass, and stoneflies at 0.19 g·m–2·year–1 dry mass.
    [Show full text]
  • The Morphology of the Pterothorax of Ephemeroptera, Odonata
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2008 Band/Volume: NS_1_A Autor(en)/Author(s): Willkommen Jana Artikel/Article: The morphology of the pterothorax of Ephemeroptera, Odonata and Plecoptera (Insecta) and the homology of wing base sclerites and flight muscles 203-300 Stuttgarter Beiträge zur Naturkunde A, Neue Serie 1: 203–300; Stuttgart, 30.IV.2008. 203 The morphology of the pterothorax of Ephemeroptera, Odonata and Plecoptera (Insecta) and the homology of wing base sclerites and flight muscles1 JANA WILLKOMMEN Abstract The ability to fly was the decisive factor for the evolutionary success of the most diverse group of insects, the Pterygota. Nevertheless, the ground plan of the functionally important wing base has not been sufficiently clari- fied. The aim of this study is to homologise the wing base sclerites of Ephemeroptera, usually regarded as sister group of the remaining Pterygota, with that of other basal pterygote lineages and to reconstruct the ground plan of the wing base of Pterygota. The pterothoracic musculature of representatives of the three basal lineages of Ptery- gota (Ephemeroptera, Odonata and Neoptera) is also described and discussed. Contrary to previous hypotheses, it is shown that most elements of the neopteran wing base are also present in Ephemeroptera and Odonata. The wing base in the ground plan of Pterygota is presumably composed of three axil- lary sclerites. The proximal median plate is probably also present in the ground plan of Pterygota. The first axillary is provided with two muscles.
    [Show full text]
  • Biometric Studies of Some Stoneflies and a Mayfly (Plecoptera and Ephemeroptera)
    Hydrobiologia 299 : 169-178, 1995 . 169 © 1995 Kluwer Academic Publishers . Printed in Belgium . Biometric studies of some stoneflies and a mayfly (Plecoptera and Ephemeroptera) Angelika Beer-Stiller & Peter Zwick* Limnologische Fluf3station des Max-Planck-Instituts fur Limnologie, PO .B. 260, D-36105 Schlitz, Germany (*author for correspondence) Received 4 August 1993 ; in revised form 1 February 1994 ; accepted 2 March 1994 Key words: Plecoptera, Ephemeroptera, exuvial losses, metamorphosis, sexual size differences, reproductive investment Abstract Aspects of the nymphal/adult developmental change were investigated in biometric studies of several species of Plecoptera : Nemouridae near Schlitz, Hesse, Germany. Preliminary information on the mayfly, Baetis vernus Curtis, is also provided . Nemourid nymphs pass through 3 wing bearing stages before reaching adulthood . Instars can be identified by their characteristic shapes, as expressed by the wing length/head width (WL/HW) ratio . Size does not allow instar discrimination, mainly due to sexual size differences . HW is ca 10% larger in last instar female than in male nemourid nymphs ; exuviae shed at the moult to adult represent about 14% of nymphal ash free dry weight (AFDW) . Biomass lost with exuviae during the many larval moults should be accounted for in estimates of production . Freshly emerged nemourid females are about 6% larger and 30% heavier than males . The HW/AFDW relationship is the same in both sexes . Through terrestrial feeding during adult life, males double their weight on average. Mature females are up to three times heavier than freshly emerged ones . They invest about 30% of their final AFDW in reproduction . Shape of last instar nymphal Baetis was expressed as the ratio wing length/mesonotum length .
    [Show full text]
  • Embioptera (PDF)
    Embioptera EMBIOPTERA Webspinners / Embiids The name Embioptera, derived from the Greek "embio" meaning lively and "ptera" meaning wings refers to the fluttery movement of wings that was observed in the first male Embioptera described. Classification Life History & Ecology Distribution Physical Features Economic Importance Major Families Fact File Hot Links Life History & Ecology: The order Embioptera (webspinners or embiids) is another group within the Orthopteroid complex that probably appeared early in the Carboniferous period. Many insect taxonomists believe webspinners represent another evolutionary "dead end" that diverged about the same time as Plecoptera. Determining phylogenetic relationships for this group is unusually difficult because the Embioptera have a number of adaptations not found in any other insects. The tarsi of the front legs, for example, are enlarged and contain glands that produce silk. No other group of insects, fossil or modern, have silk-producing glands in http://www.cals.ncsu.edu/course/ent425/compendium/webspi~1.html (1 of 5) [10/24/2007 12:08:15 PM] Embioptera the legs. The silk is used to construct elaborate nests and tunnels under leaves or bark. Webspinners live gregariously within these silken nests, feeding on grass, dead leaves, moss, lichens, or bark. Nymphs and adults are similar in appearance. Embiids rarely leave their silken tunnels; a colony grows by expanding its tunnel system to new food resources. Well-developed muscles in the hind legs allow these insects to run backward through their tunnels as easily as they run forward. Only adult males have wings. Front and hind wings are similar in shape and unusually flexible; they fold over the head when the insect runs backward through its tunnels.
    [Show full text]
  • Recent Plecoptera Literature 8-24 Recent Plecoptera Literature
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Perla Jahr/Year: 1982-1983 Band/Volume: 06 Autor(en)/Author(s): Redaktion Artikel/Article: Recent Plecoptera Literature 8-24 Recent Plecoptera Literature This section includes the Plecoptera papers published since PERLA 5 was mailed as well as some additions of older literature. PERLA is published every two years and a literature section is included in every issue. Please help us to make this section as complete and correct as possible by sending us copies of your publications and/or notes on errors found. 8 ALLEN, J.D. (1982): Feeding habits and prey consumption of three setipalpian stoneflies (Plecoptera) in a mountain stream. Ecology 63:26-34. ANDERSON, N.H. (1982): A survey of aquatic insects associated with wood debris in New Zealand streams. Mauri Ora 10:21-34. ANDERSON, R.L. (1982): Toxicity of fenvalerate and permethrin to several nontarget aquatic invertebrates. Environ. Entomol. 11(6): 1251-1257. ANONYMUS. (1982): FIiessgewaesser in Nordrhein-Westfalen Richtlinien fur die Ermittlung der Gewaessergueteklasse. Landesamt f. Wasser u. Abfall Nordrhein-Westfalen, Duesseldorf. 6+7 unnumbered pages. ANTONOVA, O.A., A.K. BRODSKI, andV.D. IVANOV. (1981): Wing-motion kinematics of five insect species. Zool. Zhurn. 60(4):506—519 (Russian, English summary). BAUMANN, R.W. (1982a): Plecoptera, pp. 278-279 in: HURLBERT, S.H. and A. VILLALOBES-FIGUEROA (eds.): Aquatic Biota of Mexico, Central America, and the West Indies., San Diego State University, San Diego. BAUMANN, R.W. (1982b): Plecoptera, pp. 389-393 in: PARKER, S.P.
    [Show full text]
  • Plecoptera: Perlodidae) in the Ural Mountains, Russia Olga A
    RESEARCH/REVIEW ARTICLE Wing and body size polymorphism in populations of the stonefly Arcynopteryx dichroa McL. (Plecoptera: Perlodidae) in the Ural Mountains, Russia Olga A. Loskutova1 & Lidia A. Zhiltzova2 1 Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Kommunisticheskaya 28, Syktyvkar 167982, Russia 2 Zoological Institute of the Russian Academy of Sciences, Universitetskaja naberezˇnaja 1, St. Petersburg 199034, Russia Keywords Abstract Wing length; short-winged population; Urals; mountain lakes; latitude; isolation. Specimens from five Arcynopteryx dichroa (McL.) populations were examined to study wing length and body size at different latitudes and altitudes. In Correspondence northern Europe, female A. dichroa are usually long winged, while males are Olga A. Loskutova, Institute of Biology, Komi short winged. During the past 20 years, only two short-winged populations Scientific Center, Ural Branch of the Russian have been found, in a nameless lake, herein called Lake Ozernoe, and in Academy of Sciences, Kommunisticheskaya Bolshaya Lagorta Lake, in Russia’s Ural Mountains. In the isolated population 28, RU-167982 Syktyvkar, Russia. of Ozernoe Lake (850 m a.s.l.), both sexes were micropterous. In Bolshaya E-mail: [email protected] Lagorta Lake (380 m a.s.l.), females were brachypterous. However, at a higher altitude (560 and 760 m a.s.l.), a population was found with macropterous females. Specimens of both short-winged populations had smaller body length than long-winged populations. Our findings give limited support to the idea that stonefly wings are reduced with altitude and latitude and more support to the supposition that small wing size is associated with population isolation resulting from lengthy geological isolation.
    [Show full text]
  • SC Bat Conservation Plan CH 3: Species Accounts 49
    Chapter 3: Species Accounts In this chapter are individual accounts of the 14 species commonly found in South Carolina. They are arranged in alphabetical order by common name and provide information on identification, taxonomy, distribution, population status, habitat, behavior, reproduction, food habits, seasonal movements, longevity, survival, threats, and conservation measures. The current known distribution of each species is shown in the range maps and indicated by shaded South Carolina counties. Additionally, a summer and winter range are provided for the migratory silver-haired bat, a suspected range for the little brown bat is shown with crosshatching, and an asterisk indicates incidental records for the southeastern bat. This range map information is based on museum records, capture records maintained by the SCDNR, records from rabies testing maintained by the state’s epidemiology lab, and captures recorded in published and unpublished literature such as reports and scientific literature (Menzel et al. 2003a, Mary Bunch, SCDNR, pers. comm.). Size measurements based off of Menzel et al. (2003b) are shown in Table 5. Incidental records exist of the big free-tailed bat (Nyctinomops macrotis) and the federally endangered Indiana bat (Myotis sodalis) (DiSalvo et al. 1992, NatureServe 2017). However, these species are not addressed in this document due to their rarity in the state. Table 5: Size measurements of bat species in the southeastern US. Modified from Menzel et al. (2003b). SC Bat Conservation Plan CH 3: Species Accounts 49 Big Brown Bat (Eptesicus fuscus) head with a broad nose and powerful jaw. The pelage is dark above and light below and varies from glossy dark brown to pale.
    [Show full text]
  • A Guide to Mongolian Stoneflies (Insecta: Plecoptera)
    Zootaxa 3541: 1–118 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Monograph ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:505937B0-9F57-4068-82E6-8553826DD5AA ZOOTAXA 3541 A Guide to Mongolian Stoneflies (Insecta: Plecoptera) SARAH W. JUDSON1 & C. RILEY NELSON2 1Department of Watershed Sciences, 5210 Old Main Hill, Utah State University, Logan, UT 84341, [email protected] 2Department of Biology, 401 WIDB, Brigham Young University, Provo, UT 84602, [email protected] Magnolia Press Auckland, New Zealand Accepted by R.E. DeWalt: 26 Jul. 2012; published: 6 Nov. 2012 SARAH W. JUDSON & C. RILEY NELSON A Guide to Mongolian Stoneflies (Insecta: Plecoptera) (Zootaxa 3541) 118 pp.; 30 cm. 6 Nov 2012 ISBN 978-1-77557-044-8 (paperback) ISBN 978-1-77557-045-5 (Online edition) FIRST PUBLISHED IN 2012 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2012 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3541 © 2012 Magnolia Press JUDSON & NELSON Table of contents Abstract . 3 Introduction . 3 Materials and Methods .
    [Show full text]