National Feral Animal Control Program

Final Report to the Bureau of Rural Sciences Agriculture, Fisheries and Forestry - Prepared for the

Quantifying the population dynamics of in the arid and semiarid rangelands of Australia

Peter Spencer Andrew Woolnough Neil Burrows Danielle Giustiniano

MurdochUniversity WADepartmentof WADepartmentof AgricultureandFood EnvironmentandConservation July 2008

NFACPReportMolecularecologyofcamelsinAustralia Page 1

EXECUTIVE SUMMARY 5

Name of Project 6

Project aims and objectives 6

Project location 6

Background information 7

FeralcamelsinAustralia 7

IntroductionofcamelsinAustralia 7

Estimationofnumbers 8

Declineinthedomesticrequirementandestablishmentoftheferalpopulation 8

Impactsofferalcamels 9

Biologyadaptationandpopulationdynamicsofcamels 9

Controlstrategies 10

Applicationofmolecularecologytoferalanimalmanagement 11

Aims and scope of report 11

Development of mitochondrial markers: 11 Development of microsatellite markers: 11

Methodology 12

Sampling and study sites 12 DNA extraction 13 Mitochondrial amplification 13 Microsatellite amplification 14 Data analysis and statistical calculations 16 Populationstructure 16

Geneticvariationwithinpopulations 17

Estimatesofeffectivepopulationsize(N e) 17

Results 18

Mitochondrial DNA analysis in Australian camelids 18 Characterisation of the control region 20 Phylogenetic reconstructions 20 NFACPReportMolecularecologyofcamelsinAustralia Page 2 Causes of reduced genetic variability 23 Foundereffect 23

BottleneckpriortointroductioninAustralia 23

Summary of the findings from the mtDNA analysis 24 Nuclear DNA analysis in Australian camelids 25 Inferred population structure 25 Descriptive statistics 27 Genetic diversity within feral camel populations 28 Effective population size and Population Bottleneck 28 Comparison of the genetic findings with previous camel studies 29

Summary of findings from the STR analysis 31

General discussion and future directions 32

Overview 32

Implications for control programmes and management 32

Current management of feral camel populations 32 Management implications and recommendations 33

Acknowledgments 34

Bibliography 34

Alignmentsequenceusedtogeneratephylogenetictree

Erro r!Bookmarknotdefined.

NFACPReportMolecularecologyofcamelsinAustralia Page 3 This study was jointly funded by the National Feral Animal Control Program (NFACP, part of the ’s Natural Heritage Trust), Murdoch University, the Department of Agriculture and Food, WA and the Department of Environment and Conservation. The agricultural component of NFACP is administered by the Bureau of Rural Sciences (BRS). Under its component of NFACP, BRS is producing national management guidelines for the main pest species to agricultural production in Australia. BRS provides financial support to projects addressing the information, management and extension deficiencies identified under these guidelines and demonstrating the strategic management approaches advocated under the guidelines. Thisreportshouldbecitedas: Spencer PBS, D Giustiniano, A Woolnough and N Burrows (2008). Quantifying the population dynamics of camels in the arid and semiarid rangelands of Australia. Unpublished report to the Bureau of Rural Sciences, Canberra.

NFACPReportMolecularecologyofcamelsinAustralia Page 4

EXECUTIVE SUMMARY

Theeffectivecontrolandabatementofinvasivespeciesisanemergingwildlife managementproblemthatisexpectedtoincreaseincomingdecadeswiththe rise in globalisation, urban encroachment, climate change and spread of zoonoticdiseases.Acommonthreadwithmanyofthepestspeciesisthatthe ecological informationpertaining to their ecology, such as understanding the movements and population structure remains undetermined. The other problem with invasive species is they share a number of common traits, namely that they are generalists, highly fecund, with expanding ranges and havehighevolutionarypotential.Onesuchspeciesisthedromedary,orone humpedcamelinAustralia. Thirty seven percent of the Australian continent is now occupied by feral camels with recent population estimates of 1,000,000 individuals. At the current rate of increase, the population is estimated to double every six to eightyears.Thereisgrowingevidencethatatthesedensities,feralcamelsare adverselyimpactingonenvironmentalandculturalvaluesandinfrastructurein the arid zone. Control of feral animal populations is best achieved when population(andsocial)structuringhasbeendelineated,andassuchtheaim ofthisstudy wastogeneratethegeneticdataonferal camels in Australia. Thisreportdescribesthedevelopmentofnuclearandmitochondrialmolecular markers for Camelus with the aim of providing a greater understandingofferalcameldispersalandstructuring. ConservedmitochondrialDNA(mtDNA)sequenceswereusedtocharacterise thecontrolregionof C. dromedarius .Alignmentsgeneratedfromsequencing avariablesegmentofthecontrolregion(n=104camels)fromaroundAustralia wereusedtoconstructaphylogenythatrevealedthepopulationhasonlylittle control region variation with only three haplotypes detected. The limited mtDNA variation observed is likely due to a combination of both founder effectsanddomesticationprocesses. We also used STR markers to profile 390 camels. Results suggested the presenceofasinglepanmicticpopulation.ConsistentwiththemtDNAanalysis low levels of genetic diversity were observed. We conclude that camels in Australia have a high potential for longdistance dispersal. Thus, localised controloperationsmaybetoonarrowintheircapacitytocontaintherapidre invasionofcamelsfromsurroundingareas. If,asthisstudysuggests,theferalcamelconsistsofasinglepopulation,the localised control strategies need to be reassessed. As such, new and undoubtedly costly approaches may be critical to the longterm goal of eliminating the camel from inland regions.. Management plans should be adopted on a national basis rather than by state boundaries – moreover, innovative approaches will be required to manage an invasive species with perhaps the single largest population of any vertebrate yet studied – encompassingasizeof≥2.8millionkm 2.

NFACPReportMolecularecologyofcamelsinAustralia Page 5 Name of Project Quantifyingthepopulationdynamicsofcamelsinthearidandsemiaridrangelandsof Australia Project aims and objectives Weproposedtoexaminethepopulationgeneticsofferalcamelpopulations.Withabetter understandingofcamelpopulations,strategicdecisionsandclearguidelinesonhowand wherecamelsshouldbemanagedcanbemadetominimiseimpactsonpastoral enterprises,maximiseconservationvaluesandintegratetheseintomanagementin remoteindigenouscommunities.Theprojectutilisedtechnology(DNAfingerprinting)used inasimilarwayforferalpigstoaddresstwomajoraspectsofcamelecologytodefine:(i) howlargearecamelpopulationsand(ii)whatarethedispersaldynamicsthatmaintain thesepopulations(wheredocamelsmoveto)?Morespecificallyweaimedto; OptimisethemethodologyforDNAprofiling(DNAfingerprinting)camelsinAustralia. 1. Determinethepopulationboundaries(size)ofcamelpopulationsinthearidand semiaridrangelandsoftheNT,SAandWA.Andtodeterminethegeneticeffective populationsizeofeachofthosepopulations 2. Quantifytheratesofimmigrationandemigrationandtoidentifykeysource populationsofreinvasion. 3. Defineexactlywhichpopulationsarelikelytorespondbesttocontrolandusethis toidentifyadaptivemanagementandcosteffectivestrategiesforthemanagement ofcamels,forboththeagriculturalandconservationstakeholders 4. Determinethehistoricallinksbetweenmultipleintroductionsitesandmodernday impactstoassistwithmanagementstrategies. Project location TheprojectwasbasedinPerth,WAbututilisedresourcesfromacrosstheentire distributionoftheferalcamelinAustralia.Theprojectcollecteddatafromallstateswith majorcamelpopulations(WA,SA&NT),withmanyregionalareasrepresented.

NFACPReportMolecularecologyofcamelsinAustralia Page 6 Background information Feral camels in Australia TheAustralianferal dromedarycamel (Camelus dromedarius ),oftenreferredtoasthe singlehumpedcamel, belongstothefamily .Thisgroupismadeupofthe‘New WorldCamelids’fromSouthAmerica(,,vicunasand)together withthelarger‘OldWorldCamelids’ofAsiaandAfrica.Thislattergroupconsistsofonly twospecies,thebactriancamel( Camelus bactrianus )andthedromedarycamel .

Thenaturalrangeof C. dromedarius isconcentratedaroundNorthernAfricaand middle eaststates(Fig1).Attemptshavebeenmadeatintroducingthedromedarycamelto many partsoftheworld,howevermost havebeenunsuccessful,withtheexceptionofAustralia (Long2003)wh ichcontainstheonly andlargest knownferalcamelpopulationintheworld (Mason1979).

Figure 1 Globalrepresentationoftheattemptedintroductionsitesofdromedarycamels (fromKöhler Rollefson1991).

Introduction of camels in Australia The dromedarycamelwasfirstintroducedintoAustraliain1840(McKnight 1969).The firstimportationofcamelsintoAustraliaoccurredinOctoberof1840intoSouthAustralia; onlyonecamelsurvivedthesh ipment.AsecondimportationoccurredinDecembero f 1840intoTasmania,wheretwocamelswereimported(andbred).Thethirdimportationof camelsoccurredin1860, where 24camelswereimportedintofortheBurkeand Willsexpedition,followedbyimportation sbySirThomasElderandSamuelStruc keyto establishabreeding property, stationinSouthAustralia.Thisimportationwasthe init ialnucleusofcamelsourcepopulation .Camelswerebeginningtoprovetheir usefulnessincommercialfreighthaulingand weredispersedfromBeltanasta tiontoNSW, QLDandWA.FurtherimportationofcamelsfromIndiaintoPortAugusta (SA)and Fremantleport(WA)alsooccurred(McKnight 1969;Rolls1969). Anexpansionofc amelbreeding occurredacrossAustralia,withthefocusbeingonnatural increaseratherthancontinuedimportation .Thiswasenhancedbytheestablishmentof

NFACPReportMolecularecologyof camelsinAustralia Page 7 cameldepotsthatservedascentresforbreedingandtraining,servicingGhantowns whichhousedtheskilledAfghans,whowereoriginallyusedtotrainandhandlethe camels.Camelswerecommonlyusedforriding,asdraughtandpackanimalsfor exploration,ascommercialcarriers,andinmajorinfrastructureprojects;forexampleinthe constructionoftheoverlandtelegraphline,theCanningStockRouteinWA,theRabbit ProofFenceandtheOodnadattaAliceSpringsrailway(McKnight1969). Estimation of camel numbers Intotal,anestimated10000to20000camelswereimportedintoAustraliabetween1880 and1907(theoriginofwhichisunknownduetothemanyimportationsandpoorrecords held;Edwards et al .2004;McKnight1969).Registeredrecordsshowthatthenumberof domesticatedcamelsheldinAustraliapeakedin1920at12,649butthendeclinedsteadily withtheadventofmoderntransport.Withmechanisation,camelsweresupersededand manywerereleased(McKnight1969;Dörges&Heucke2003).Theirsuitabilitytothe Australianclimateledtotheferalcamelsbreedingprolificallyandspreadingacross Australia.Thecurrentestimationofferalcamelnumbersisapproximately1,000,000 (GlenEdwards, pers. comm. )(Table1)withpopulationsestimatedatdoublingeverysixto eightyears(Edwardsetal.2004;Dörges&Heucke2003),inhabiting2.8millionkm 2or 37%ofAustralianmainland(McLeod2004).RecentaerialsurveysintheGreatVictoria DesertregionofWAindicatethattheAustralianpopulationmaybeconsiderablylessthan 1,000,000(Ward pers. comm .). Table 1. EstimatedcamelpopulationsizesforAustraliafrom1966to2007 (adaptedfromWard et al .2005toincludeinformationfromEdwards et al .2004& B.Ward, pers. comm.) Year State Population estimate Source 1966 NT 45006000 McKnight1969 1500020000 McKnight1969 1979 NT 30006000 Letts et al .1979 1986 NT 31570100000 Graham et al .1986 1994 NT 60000200000 NTConservationCommission1994 2001 NT 80533300000 Edwards et al .2004 2005 WA 238000476000 Ward et al .2005 2007 WA 364000728000 B.Ward, pers. comm. Decline in the domestic requirement and establishment of the feral population Thedeclineandphasingoutofthedromedarywasduetoanumberofreasonsincluding prolongeddrought,proliferationofmotorcarsandtrucks,thedevelopmentoffourwheel drives,theincreasedrateofroadwayconstructionandreducedremotenessofthe (McKnight1969). Thedeclineindemandforcamelusealsoledtoadecreaseinthedemandforcamel depots.Cameldepotswerestillinoperationintheearly1920’swithlargeinventoriesof stock.Thelastcameldepotwasclosedin1938.Camelswereeithersoldatareduced cost(aslittleasthreepounds)orslaughtered.Manycamelsescaped,orreleasedbytheir owners,twonotedcasesinludeMarbleBarwhere50camelswerereleasedandWiluna where200camelswerereleasedbythelastAfghancarterworkingthere(AmeerBux).It

NFACPReportMolecularecologyofcamelsinAustralia Page 8 islikelythataconsiderablenumberofcamelswerereleasedintentionally,orescaped,but thenumberremainsunquantifiable. Impacts of feral camels Feralcamelsareestimatedtocontribute$200Kworthofeconomicloss(approximately 25%issheepand75%cattleproductionloss).However,theyinhabitmostlynon agriculturalareasatpresentandimportantenvironmentalandsocialimpactsareyettobe quantified(McLeod2004).McLeod’s(2004)estimatereflectsthepaucityinour understandingofferalcamelsandtheirimpactsontheeconomy,environmentandpublic amenityratherthanthetrueeconomiccostofcamels.Thisisclearlyagapthatneeds exploringinmoredetail.Nonetheless,theferalcamelsarestillamajorvertebratepestto Australiaandtheirdeleteriousimpactsaresignificant,evenifheyhaven’tbeenquantified. Intermsofenvironmentalcosts,whencamelnumbersremainatlowpopulationdensities theydonotappeartohaveamajorimpactontheenvironment.Theirpaddedleatheryfeet dolessdamagethanthehardhoofedungulatesandtheirbrowsingpatterns(onthe move)meansthattheydonotgenerallyfeedintensivelyinonearea.Camelsfeedon morethan80%oftheplantspeciesinaridAustralia(Dörges&Heucke2003).Whilethe impactofcamelbrowsingdoesnotcontributetoalossofdiversity,theircontinual browsingcanhaveaseriousimpactonsomeshrubandtreespeciesincludingthecurly podwattleandbeantree(Dörges&Heucke2003).Interestingly,theymayinfacthave replacedtheroleofthelargemegaherbivoursthathavelongvanishedfrommainland Australia.Theimpactsofcamelsontheenvironmentmaybegreatestonthreatenedflora ofthearidlands,whicharealreadyrestrictedintheirrangeandabundance.Ifthe threatenedspeciesoffloraispalatabletocamels,evenatlowdensitycamelsmayhave detrimentalimpacts. Theimpactofferalcamelscanchangedramaticallyandbeverypronouncedwhenathigh populationdensities(>2camelsperkm 2)andduringperiodsofdrought(wherethey remainaroundwaterholes).Feralcamelsreduceshelterforsmalldesertmammalsand alsocompetewithfoodsourcestraditionallyharvestedbyindigenousAustralians.They canalsospoilnaturalwatersourcesandartificialwaterpoints.Agriculturallyferalcamels candamagefencesandinfrastructureatcattlewateringpoints(Edwards et al .2004). Camelsalsocompetewithcattleforage(McLeod2004)andhavethepotentialof spreadinglivestockdiseaseswhendensitiesarehigh.Morerecently,theirhavebeen reportsofcamelshavingdestructiveimpactsonremotecommunitiesbydestroying buildingsandinfrastructure.Also,thefirstroadaccidentfatalitycausedbyacamelwas reportedintheNorthernTerritoryinJune2008. Biology adaptation and population dynamics of camels Themorphologicaladaptationsofferalcamelshavemadethemimportantandsuccessful invadersinaridzonesofAustralia.Adaptationstothedesertenvironmentincludetheir dualpurposecoat,insulatinginwinterandreflectingtheheatinsummer.Camelsare highlymobile,foragingupto70kmperday(facilitatedbylonglegswhichenablerapid movementoverlongdistances)evenduringfoodabundance.Theirfeetarepadded, adaptedformovementonsand,andprovidinginsulationfromtheheatofgroundsurfaces. Theycanconservewaterbyreducingsweatandconcentratingtheirurine.Camelsalso havetheabilityofincreasingbodytemperatureupto3degreesCelsius,storingheatin thebody:furtherconservingwaterinsteadofbeingdissipatedbyitsevaporation.They havetheabilitytowithstandprolongeddehydrationduetotheirtoleranceofahighdegree

NFACPReportMolecularecologyofcamelsinAustralia Page 9 ofdesiccationoftheirbodies.Theirhumpisastoreoffat,whichisasourceofenergy whenfoodisscarce.Camelsalsohaveahightolerancetosalt,andthereforehavethe abilitytoconsumeplantsandwaterwithahighsaltconcentration(McKnight1968;Ward et al. 2005 &; Siebert&Newman,availableonline).Allofthesephysiologicaladaptations makecamelidswellsuitedtolifeinaridAustralianconditions. Sexualmaturityisreachedatapproximately4yearsofage.Femalescomeintooestrus severaltimesayear;malescomeintorutonlywhenfoodisabundant(usuallyinwinter), whenthepituitaryglandssecretegonadstimulatinghormones.Gestationlastsbetween 360and380days.Theyoungissuckledformorethanayear(Siebert&Newman, availableonline). Groupsizeappearstobedependentontheamountofrainfall,withahighamountof rainfallbeingdirectlyproportionaltolargergroupsizes.Camelsappeartoliveinnon territorialgroupsofthreekinds;yearroundgroupsofbulls(bachelorgroups),summer groupsofcowsandcalvesandwinterbreedinggroups(maturebullwithseveralcowsand theircalves).Duringthebreedingseason(MaytoOctober)thefemalesgrouptogetherto defendagainstadvancesfromothermales.Seasonalrangepatternswerealsorecorded onastudyconductedbyHeucke et al . (1992)whofoundthatduringsummercamel groupsstayedinsmallareasnotwanderingfar.Alternativelyinwinterbreedinggroups meetfrequentlywithbullgroups,wanderinggreatdistancesrestrictedonlybyaccessto areas(Heucke et al .1992). Control strategies Theprimaryaimincontrollinganypestspeciesistoremoveorreducetheanimal’s adverseeffects(Cowan&TyndaleBiscoe1997).Foreradicationtobesuccessful mortalityratesmustexceedbirthratesandnoimmigrationcanoccurtopreventreinvasion ofpestfreeareas(Bomford&O’Brien1995). Therehavenotbeenanylimitingfactorstothegrowthofferalcamelpopulationsin Australia.Camelsdonothavenaturalpredators,diseasehasnotbeenrecordedas havinganimpactonnumbersandfoodsupplyisalwayssufficient(Dörges&Heucke 2003;Edwards et al .2004).Camelsalsotravelgreatdistances(upto70kmaday) (Siebert&Newman,availableonline),haveextensivehomerangesandaredistributed overlargeuninhabitedareas(Norris&Low2005)makingcontrolstrategiesdifficultto implement. DörgesandHeucke(2003)suggestthatapproximately10%ofthecamelpopulation numbersneedtoberemovedannuallytomaintainthestabilityofthepopulation(as populationsdoubleevery68years).Themostcommonlyusedtechniquestocontrolferal camelnumbersareaerialandgroundshooting.Thesemethodsaremosteffective; howeverareoftenopportunisticandthereforeineffectiveasmanagementstrategies. Othermethodsalsousedarefencingoffkeyareasandlivewildharvestingforcommercial sale(Edwards et al .2004).Atpresentpopulationnumbers(estimatedat730000(B.Ward pers. comm .)controlstrategieswillrequiresubstantialeffortstoremovetheapproximate 80000individualsneededtohaltthenaturalrateofincreaseperyear. Abetterunderstandingofthedemographicstructureofcamelsisthereforeneededfor moreeffectivecontrolefforts,thisisparticularlyimportantinhighlymobilelargeherbivores (Edwards et al .2004).Theapplicationofmolecularecologicaldatatoferalanimal managementhashugepotentialbyestablishingthesizeandrateofdispersalpatterns.An NFACPReportMolecularecologyofcamelsinAustralia Page 10 effectivecontrolprogrammerequirestheknowledgeofimmigrationrateandsource/sink dynamics.Genetictechniqueswhichareabletoidentifythestageofpopulationgrowthor changeareusefulinmanagementsothatapopulationcanbetargetedwheneradication willbemostsuccessful.Thedetectionofpopulationcontractions(bottlenecks)canbe measuredbydetectionofexcessheterozygosityandthroughidentificationofshiftsin allelefrequencydistributions(Rollins et al .2006). Application of molecular ecology to feral animal management Molecularecologyistheuseofgeneticinformationtoassistdemographicstudiesof populations(Hamptonetal.2004).Itprovidesanidealcomplementarytechnologyfor fieldbasedstudiesbyprovidingadditionalinformationonpopulationparametersofanimal speciesthatfieldbasedtechniqueswouldnotprovide(Sunnucks2000).Informationfrom molecularecologystudiescanbegeneratedforalllevelsofpopulationstructure;froma landscapescaleinvolvingrelationshipsbetweenseparatepopulations,toamanagement scale;concerningrelatednessofsocialgroupswithinapopulation,aswellasfinescale socialanalysis,involvingrelatednessofindividualanimalswithinagroup(Milligan et al . 1994;Sunnucks2000).Currentmanagementofferalcamelsincludesfencingoffkey areas,livewildharvestingforcommercialsaleandculling(groundandaerialbased) (Edwards et al .2004).Managementtechniquesrequireadifferentandinnovative approachduetothepopulationsizeanddifficultyinmanagingtheAustralianferalcamel population.Moleculartechniquescanprovidetheunderlyingframeworktoassistin designingamoreeffectivepopulationcontrol strategy .Molecularmarkerssuchas microsatellitesandmitochondrialDNAallowalargeamountofinformationfroman individualinapopulationtobedetermined.Thisinformationcanbeusedtocompareto otherpopulationsofthesamespeciesandallowtheinferenceofgeneflow,species boundaries,parentageandmolecularevolution.

Aims and scope of report

TheremoteandaridhabitatoftheAustralianferalcamelmakesitadifficultspeciesto study.Theresearchinthisreportformsapilotstudythataimedtoidentifyanddevelop molecularmarkersthatwillultimatelyleadtoinformeddecisionmakingregardingthe controlstrategiesforferalcamels. Development of mitochondrial markers: • ForthefirsttimesequencethecontrolregionoftheAustraliandromedarycamel. • Develop and optimise a PCR assay to amplify the control region of C.dromedarius . • Determine the phylogenetic relationship among a subset of C.dromedarius sampled from across Australia, and to determine the relationship with other camelidspecies. • IdentifyifanyphylogeographicsignalsexistswithintheAustralianpopulation. Development of microsatellite markers: • Developefficient,highthroughputSTRmarkersforprofilingferalcamelsbased onexistingcamelidSTRmarkers. • Determinewhatpopulationboundariesandsocialstructure, if any, exist in the aridandsemiaridrangelandsofWesternAustralia.

NFACPReportMolecularecologyofcamelsinAustralia Page 11 • ComparetheWesternAustralian,SouthAustralianandNorthernTerritorycamel populations to determine genetic differences between popu lations in the aid of targetingcontrolefforts. • Quantify the rates of immigration and emigration to identify key source populationsofreinvasion. • Definespecificpopulationswhicharelikelytorespondbesttocontrolanduse this to identify adaptive m anagement and cost effective strategies for the managementofcamelsforbothagriculturalandconservationstakeholders. Methodology

Sampling and study sites Atotalof558feralcamelsamples(ear,skeletalmuscleandliver)werecollectedbetween September2005toOctober2007.Asubsampleof390camelswereusedinthisstudy fromlocalitiesinWesternAustralia(n=332),NorthernTerritory(n=47)andfromSo uth Australia(n=11)(Fig2&Table 2).Allavailablesampleswereusedfromsamplingpoints fromtheNorthernTerritoryandSouthAustralia.Sampleswerecollectedwith records/detailsofdemographicdataincludingsex,weight,ageclass(juvenileoradul t) andsocialgroupingaswellasaGPScoordinatelocation.

Figure 2 Mapofferalcamel tissuesamplecollectionsites& samplegroups.Numbersare representativeofpopulationgroupings basedondistribution givenin Table2.

NFACPReportMolecularecologyof camelsinAustralia Page 12

Table2 ThenumberofcamelssampledacrossAustraliagroupedbasedon distribution,andthenumberofthesewhichareadults. Populations Location Number of camels Adults Only groupings based samples on distribution (Adults & Juveniles) 1 WA(North) 104 77 2 WA(MiddleWest) 133 106 3 WA(MiddleEast) 45 28 4 WA(South) 50 37 5 NT 47 41 6 SA 11 11 TOTAL 390 300

DNA extraction Tissue(ear,muscleandliver)sampleswerepreservedinasolutionof20% dimethylsulphoxide(DMSO)saturatedwithNaCl.DNAwasextractedfromasmallpiece oftissue(approximately2mm 3)whichwassuspendedintissuedigestionbuffer(20mM EDTA;50mMTris;120mMNaCl;1.5%SDS)containing0.1mgofProteinaseKsolution followingstandardproceduresdescribedinHamptonet al.( 2004). Mitochondrial amplification Thelackofanypreviouscharacterisationofthe C. dromedarius controlregionmeantthat thefirststageofthisprojectinvolveddesigningnewgenericcamelidprimers.Initially primersdesignedfortheamplificationofsubspecies(L. guanicoe , L. glama and L.pacos )wereemployed.TheseprimersweretargetedtosequencesintRNAProand tRNAPhegenes(Table3;Maté et al2004)andshouldhaveamplifieda1000bpfragment. However,afternumeroussequencingattemptswefailedtoobtainthe C. dromedarius controlregion.ThelackofsuccesswiththetRNAProandtRNAPheprimersnecessitated asecondattemptusingdegenerateprimersdesignedforcamelidspecies(ourdata). PrimersLthrArtio(Forward)andH362(Reverse)(Table3)wereused.Amplification producedafragmentwithanapproximatesizeof380bp,whichconferredwiththe expectedsize(Maté et al. 2004).Theresultingampliconwassequencedandamore specificprimersetwasdesignedtoincludetheregionwiththemostvariation,basedon analignmentofallcamelidstaxa. Table 3 Controlregionprimersfor C. Dromedarius Primer Sequence(5`→3`) Initiallydesignedfor tRNAPro CTGATAAATCCCATAGAGC Lama 1 tRNAPhe TTTCAGCGCCTTGCTTTAAG Lama 1 LthrArtio(F) GGTCCTGTAAGCCGAAAAAGGA C. bactrianus 1 H362(R) GGTTTCACGCGGCATGGTGATT C. bactrianus 1 CR_71F CCAGCACCCAAAGCTGGA C. dromedarius 2 CR_29F CACCCTCCCTAAGACTCAGGG C. dromedarius 2 CR_305R TTGACTGGAAATGATTTGACATAATG C. dromedarius 2 CR_302R GGAAATGATTTGACATAATGCGC C. dromedarius 2 1:Maté et al. (2004); 2: this study

NFACPReportMolecularecologyofcamelsinAustralia Page 13 Fourprimersweredesigned:CR_71F,CR_29F,CR_305RandCR_302R(Table3),and optimisedundervariousconditions.Theprimercombinationthatproducedthemost efficientPCRwasfoundtobeCR_29FandCR_305R.UsingthisPCRassayasampleof camelsfromageographicspreadacrossWA,andasubsetofNTandSAcamelswas chosentoconductapilotstudyintothelevelsofmtDNAdiversityinthepopulation. PCRreactionswereperformedinatotalreactionvolumeof25Lwithapproximately50 100ngDNA.Finalconcentrationswere1xReactionBuffer(FisherBiotech),2.5mMMgCl 2 (FisherBiotech),0.1mMbovineserumalbumen(BiotechInternational),0.25mMofeach deoxynucleotide(Astral),10ρmoleofeachprimerand0.25Uof Taq polymerase.PCR reactionsconsistedofaninitialdenaturationof95ºCfor3minutes,followedby40cycles of95ºC45seconds,55ºC45secondsand72ºC45seconds.Thiswasfollowedbyan extensionstepof72ºCfor10minutes. AmpliconswerecleanedupandsequencedusingBigDye3.1chemistriesand3730 capillarysequencer.DNAsequenceswerecheckedforfidelitybyeyeanddepositedinto analignmentinGeneous(BioMatters)togetherwithothercamelidspecies. Microsatellite amplification EighteenmicrosatelliteprimerspreviouslyusedintheCamelidaefamily( Camelus bactrianus , C. dromedarius , Llama glama and L. pacos )werechosenforoptimisationin Australiancamels.Ofthese,sixwereomittedduetopooramplificationordifficultywith allelescoring.Oftheremaining,12microsatellitelociwereshowntobehighlyinformative for C. dromedarius (Table4). PCRreactionswereperformedinatotalreactionvolumeof40Lwithapproximately50 100ngofDNA.Finalconcentrationswere1xReactionBuffer(FisherBiotech),2.0mM MgCl 2 (FisherBiotech),0.1mMbovineserumalbumen(BiotechInternational),0.4mMof eachdeoxynucleotide(Astral),8ρmoleofeachprimerand0.15Uof Taq polymerase (FisherBiotech).PrimerswerefluorescentlylabelledwitheitherFAM,VIC,NEDorPET (Table4).Temperatureoptimisationbetween50and65ºCwasperformedforallprimers. Allprimersperformoptimallyat55ºC.Assuch,PCRconditionsforallreactionsentailed aninitialdenaturationof95ºCfor5minutes,followedby35cyclesof94ºC1minute,55ºC 1minuteand72ºC1minute.Thiswasfollowedbyanextensionstepof72ºCfor10 minutes. Fragment analysis Fragmentswerecombinedwithloadingmix,containingHiDiFormamide(Applied Biosystems)andGenescanLiz600sizestandard(AppliedBiosystems).Fluorescently labelledDNAfragmentswererunonanAppliedBiosystems373040capillarysequencer. DNAfragmentswerescoredwiththeaidofGeneMarkersoftware(v1.5,SoftGenetics), andrecordedinanelectronicspreadsheet.

NFACPReportMolecularecologyofcamelsinAustralia Page 14 Table 4 Thecharacteristicsofthe17microsatellitelociamplifiedinferalcamels(adaptedfromPenedoetal.1998Penedo etal.1999;Mburuetal.2003;Obrequeetal.1998;Langetal.1996andMariasegarametal.2002).N/A=informationwasnot available;*representsfluorescentdyeonreverseprimer Allele size Fluorescent Primer GenBank range Dye* Forward Primer (5`→3`) Reverse Primer (5`→3`) Type of repeat

VOLP03 AF305228 144176 FAM AGACGGTTGGGAAGGTGGTA CGACAGCAAGGCACAGGA (TG) 13 VOLP32 AF305234 256262 (TG) VIC GTGATCGGAATGGCTTGAAA CAGCGAGCACCTGAAAGAA 20 YWLL08 N/A 134172 N/A NED ATCAAGTTTGAGGTGCTTTCC CCATGGCATTGTGTTGAAGAC YWLL38 N/A 182188 N/A FAM* GGCCTAAATCCTACTAGAC CCTCTCACTCTTGTTCTCCTC YWLL44 N/A 90114 N/A FAM CTCAACAATGCTAGACCTTGG GAGAACACAGGCTGGTGAATA 136164 N/A LCA33 AF060103 PET GAGCACAGGGAAGGATATTCA ACAGCAAAGTGATTCCATAATACA 132133 (CA) LCA37 AF060105 VIC AAACCTAATTACCTCCCCCA CCATGTAGTTGCAGGACACG 8 133169 C(CA) CCACA LCA56 AF091122 VIC ATGGTGTTTACAGGGCGTTG GCATTACTGAAAAGCCCAGG 22 240244 (CA) LCA66 AF091125 VIC GTGCAGCGTCCAAATAGTCA CCAGCATCGTCCAGTATTCA 13 170190 (GT) CMS50 AF329149 PET TTTATAGTCAGAGAGAGTGCTG TGTAGGGTTCATTGTAACA 27 196242 (GT) (GC) i(GT) CVRL01 AF217601 FAM* GAAGAGGTTGGGGCACTAC CAGGCAGATATCCATTGAA 27 6 9 VOLP10 AF305231 249267 FAM CTTTCTCCTTTCCTCCCTACT CGTCCACTTCCTTCATTTC (TG) 7 TA(TG) 7 VOLP67 AF305237 149203 VIC TTAGAGGGTCTATCCAGTTTC TGGACCTAAAAGAGTGGAG (CA) 7 CG(CA) 9(C) 3(CA) 5 YWLL02 N/A 290304 PET GTGCACTCAGATACCTTCACA TACATCTGCAATGATCGACCC N/A YWLL09 N/A 158162 PET AAGTCTAGGAACCGGAATGC AGTCAATCTACACTCCTTGC N/A LCA63 AF091123 190254 PET TTACCCAGTCCTTCGTGGG GGAACCTCGTGGTTATGGAA (GT) 8(GC) 4AC(GT) 8 CMS16 AF329157 179207 NED ATTTTGCAATTTGTTCGTTCTTTC GGAGTTTATTTGCTTCCAACACTT (TG) 34

NFACPReportMolecularecologyofcamelsinAustralia Page 15 Data analysis and statistical calculations

Population structure TheprogrammeStructure(Pritchardetal.2000)wasusedtodeterminepopulation structurefromthetotalsamplebeforeanyfurtherstatisticalcalculationsweremade.This isanincreasinglyutilisedapproachwhenindividualsarenotarrangedinaclustered distributionandalsofordetectingcrypticstructurethatisnotobviousfromsampling locations.StructureusestheBayesianclusteringmethodtoidentifytheinferred populationbasedonthelikelihoodofagivengenotypeestimatedbyallelefrequencies.K populationsarecharacterisedbyasetofallelefrequenciesateachlocus,individualsare thenassignedtopopulationsonthebasisofgenotype.TheassumptionsofStructureare thatpopulationsarewithinHardyWeinbergequilibrium(HWE)andthemarkerlociare unlinkedandatlinkageequilibriumwithinthepopulation.Thuseachalleleateachlocus foreachindividualisanindependentrepresentativeoffrequencydistribution(Pritchardet al.2000).Structurethereforemodelsthedatatominimiselinkageandincrease conformancetoHWE.Usingthisapproachtherelativecontributionofeachinferred populationintoeachpredefinedsamplegroupandeachindividualanimalwasdetermined. Individualswereorganizedintopredefinedsamplegroups,basedonthegeographicarea sampleswerecollectedfrom.Inferredpopulationswerecalculatedbasedonthegroups thatclusteredtogetherfromassignmentresults,determinedbyimplementationofMarkov ChainMonteCarlo(MCMC)algorithm.Thisapproachrequiresnopriorknowledgeor assumptionsofthetruepopulationstructure(Pritchardetal.2000). Theresultsgeneratedwerebasedonsimulationsfromonetoten(K=110)inferred populations,usingaburninperiodof50,000iterationswith10 6iterationsofMCMC simulation(repeated10times).Thenumberofinferredpopulations(K)mostcompatible withthedatasitewasestimatedfollowingEvannoetal.(2006).Thesampledpopulation wasruninavarietyofcombinations:includingtheentiregroup(asonepopulation,and alsoontheassignedgroupingsbasedonthedistribution),alljuvenilesexcludedand juvenilesexcludedandmaleandfemalestreatedasseparategroups.Various combinationswereruntoensurepopulationswereassignedcorrectly. TheprogrammeGeneClass2(Piryetal.2004)wasalsousedtodeterminepopulation structure,asanalternativemethod.Thismethodassignsindividualsbasedonthelocus dataforareferencepopulation.AMonteCarloresamplingmethodisusedtoidentifya statisticalthresholdbeyondwhichindividualsarelikelytobeexcludedfromthereference population.Thisisbasedonthedistributionofgenotypelikelihoodsinareference populationsample,andisalsocomparedtothelikelihoodfortheindividualtobeassigned tothatdistribution.Thecamelgenotypicinformationwasagainrunmultipletimes,withthe possibilityofbelongingtoonepopulation,andagainbasedontheassignedgroup numbersbasedondistribution.Theresultsgeneratedwerebasedontheassigningof individualstothereferencepopulation,usingtheRannala&Mountain(1997)Bayesian method,withthesimulationalgorithmofPaetkauetal.(2004),simulated10000timeswith anαof0.01.Genepop(Raymond&Rousset1995)wasusedtotesttheassumptionsof HWEandmarkerlinkage.

NFACPReportMolecularecologyofcamelsinAustralia Page 16 Genetic variation within populations Measuresofgeneticdiversitywithinpopulations:meanobserved(H o)andmeanexpected heterozygosity(H e)(Nei1987)andmeanobserved(NA)andmeanexpectednumberof alleles(NE)(Kimura&Ohta1964)werecalculatedusingPopGene2(Yehetal.1999). Bottleneck(Piryetal.1999)wasalsousedtotestifthepopulationshaveundergone recentbottlenecksusingaWilcoxonsignranktestwithparametersof1000iterations, usingatransitionalphasemutationmodel(TPM)(consistingof90%SMMand10%IAM) (seeSection1.7).

Estimates of effective population size (N e) Effectivepopulationsizeisthesizeofanidealpopulationthatloosesgeneticvariationat thesamerateastherealpopulation.Effectivepopulationsizeisapproximatelyequaltoor morelikelylessthanthenumberofbreedingindividualsinapopulation(Caughley1994; Frankhametal.2002).Neisarelativemeasureofpopulationsizeandmaydifferwidely fromcensuspopulationsizebasedonobservationalstudies.Theeffectivesizeofa populationiscorrelatedwiththerateofchangeofgeneticvariationandthelevelofgenetic diversityalreadyexistingwithinthatpopulation(Crow&Denniston1988).Estimatesof effectivepopulationsizewascalculatedbasedon(i)thepopulationgroupsassignedby Structureand(ii)asaonesinglepopulation(juvenilesexcluded)and(iii)AdultMaleand Femalestreatedasseparatepopulation;usingtheprogrammeNeEstimator(version1.3, Peeletal.2004)whichestimateseffectivepopulationsizeusingapointestimation methodbasedonallelefrequencydatausinglinkagedisequilibrium(Hill1981).

NFACPReportMolecularecologyofcamelsinAustralia Page 17 Results Mitochondrial DNA analysis in Australian camelids

MtDNAcanprovidev aluableinformationonevolutionaryrelationshipsamongthecamelid species(Ballard&Whitlock20 04).Inthecontextofthisstudyitwas suggested thatthe controlregionsequencemightprovideinformationontheeffectofintroductiononspecies diversityallowingcomparisonbetweenthecamelidlineages. MitochondrialDNAis maternallyinherited,andassuchmutationsdonotarisefromrecombinati onduringsexual reproduction.ThevariationinthemitochondrialDNAshowsthedifferencesinmaternal lineages.ThemitochondrialgenomehasahigherrateofmutationthannuclearDNA, whichaccumulatesgeneticvariationwithinandbetweenpopulations.T hishighrateof mutationallowstheuseofmtDNAtodistinguishvariationbetweencloselyrelatedspecies, whichformsthebasisoftheconstructionofphylogenetictrees(Avise et al .1987;Baker 2000).Duringthecourseofthis study,theentiremtDNA genomeofthetwohumped C. bactrianus wassequencedbyCui et al .(2007)(GenBankaccessionnumber:EF212037, EF507798,EF507799).Thisisfortunateasitallowedadirectalignmentof C. dromedarius closestrelative. Thisstudyisthefirsttocharacteri sethemtDNAcontrolregioninthe dromedarycamel. Twogenericprimercombinationswereusedinthisstudy;LthrArtioandH362(Marín et al . 2007) whichprovidedtheexpectedampliconsize.Specificdromedarycamelcontrol regionprimersweredevelopedf orthemostheterogeneoussectionofthecontrolregion (Table2.2);twoforward(CR_71FandCR_29F)andtworeverse(CR_305Rand CR_392R)primersweredesigned(Fig3) .Variousprimercombinationsweretried,and CR_29FandCR_305Rwerefoundtobethemo stspecificandrobust(Fig3).

LthrArtio H362

CR_29FCR_305R D-loop

Figure 3 Aschematicmapofthemitochondrialgenomeof C.bactrianus ferus illustratingthe positionofthecontrolregionandprimerbindingsites.ThecamelidCRissituated betweentRNAprolineandphenylalanine.LocationsofLthrArtioandH362_Rprimers (genericcamelidprimers)areshownaswellasthelocationofthedesig ned dromedaryspecificprimers29_Fand305_R,themainprimersemployedinthisstudy (adaptedfromCui et al .2007).

NFACPReportMolecularecologyof camelsinAustralia Page 18 Sequencevariationinthecontrolregionofthebactriananddromedarycamelcanbe visualisedinthealignmentbelow(Figure4).Thereareatotalof15basedifferences betweenthetwospecies,ofwhich3substitutionsaretransversions,therestbeing transitions. 1 11 21 31 41 51 | | | | | | C_bactrianus_D1_EF212037 GAGCCACACT CTCCCTAAGA CTCAGGGAAG AGGCCAAAGC CCCACCACCA GCACCCAAAG camel_C0102 .G...... C ...... G...... camelCR_29F ------CACC CTCCCTAAGA CTCAGGG------camelCR_305R ------

61 71 81 91 101 111 | | | | | | C_bactrianus_D1_EF212037 CTGGAATTCT CATTAAACTA CCCCCTGACC CCCGCCAAAA CGGCGGTAGC CCTTGAGTAT camel_C0102 ...... T...... T...... AA...... camelCR_29F ------camelCR_305R ------

121 131 141 151 161 171 | | | | | | C_bactrianus_D1_EF212037 TATTACAGTA CTAAAAACCA GATAACATGC CCAACGTGCA TGAAACTTCA ATACTGACAT camel_C0102 ....T...... C..GT...... TGG...... C...... camelCR_29F ------camelCR_305R ------

181 191 201 211 221 231 | | | | | | C_bactrianus_D1_EF212037 GTCACAGCAC GCGTTGCGTG CTATATGTAC ATCGTGCATA AATTTGTTTG CCCCATGCAT camel_C0102 ...... camelCR_29F ------camelCR_305R ------

241 251 261 271 281 291 | | | | | | C_bactrianus_D1_EF212037 ATAAGCATGT ACATCTTATC CTTGTTCGTG CATAGCACAT TATGTCAAAT CATTTCCAGT camel_C0102 ...... T ...... G...... camelCR_29F ------camelCR_305R ------CAT TATGTCAAAT CATTTCCAGT 301 311 | | C_bactrianus_D1_EF212037 CAATACGCAT ATCATAACC camel_C0102 ...... camelCR_29F ------camelCR_305R CAA------

Figure 4 Alignmentofthecontrolregionof C. bactrianus and C. dromedarius (IDnumber C0102).Forwardandreverseprimerbindingsitesasindicated.Thesitesofvariation betweenthedromedaryandbactriancamelscanbeseenasindicatedbythechange inbases.DotsareindicativeofidentitywiththeC. bactrianus sequence.

NFACPReportMolecularecologyofcamelsinAustralia Page 19 Characterisation of the dromedary control region ArepresentativespreadofcamelsacrossawidegeographicaldistributionfromAustralia werechosenforthecontrolregionanalysisusingtheCR_29FandCR_305RPCRassay. Thiswastoensureallareaswereadequatelyrepresentedwiththeaimofmaximisingthe chanceofseeingphylogeographicdifferencesacrosstheAustralianpopulation. TherawsequencechromatographsobtainedfromtheCR_29FandCR_305Rassayof C.dromedarius wasalignedbyeyeusingGeneioussoftware(Biomatters).The phylogenetictreeshowsthreematernalhaplotypeswithintheAustraliandromedarycamel population.Thephylogeneticsignalof C. dromedarius isaresultofnucleotide substitutionsatthreesites.ThevariablesitesinthealignmentcanbeseeninAppendix3 (foundontheattachedCD).Theseoccuratpositionnumber54(A→G),positionnumber 96(G→A)andpositionnumber230(G→A).Thesemutationsareallpurine transversions.Sequenceheterogeneitycanoccurforone;twoorallthreevariablesites, andassuchresultinthedifferenttreetopologyseeninFigure3.3.Thealignment (Appendix3)generatedforthedifferentcamelidsubspeciesalsoshowsthatwithinthe Camelidaefamilytherearemanynucleotidesubstitutions;highlightingtheseparationof speciesandhencedifferentbranchingonthephylogenetictree(Purdue et al .2006). Furthermore,themtDNAhaplotypesweremappedonthebasisoftheirdistributionwithin Australia(Figs5and6).Thethreehaplotypesareeachrepresentedbyadifferentcolour (asindicatedbytheblue,yellowandpinkshadingonthephylogenetictree)which correspondtothebranchingonthetreewhichhavebeenmappedbasedondistribution belowandshowthatthereispoorphylogeographicsignalbasedonhaplotype(Figures5 and6).Geographicdistributionssuchasfoundabovecorrespondwiththeabsenceof geographicalbarriersconstrictivetomovement,whichisseenintheAustraliandromedary populationwhodonothaveanyfactorslimitingtheirmovementandrange(seeAvise et al .1987) Phylogenetic reconstructions

AphylogeneticanalysiswasconductedusingGeneioussoftware(Biomatters)usinga neighbourjoiningtreemethodunderaHasegawaKishinoYano(HKY)nucleotide substitutionmodel.TheHKYmodelallowsfortheasymmetricbasefrequencies (transitionsandtransversions).Theresultingphylogenyofcamelsisveryshallow,and givethreeclearmaternalhaplotypeswithintheAustraliandromedarycamel(Fig5).The haplotypesbasedonthedistributionwithinAustralia(givenindifferentshadesinFig5and 6)clearlydemonstratethepoorphylogeographicalstructure. Bootstrapvalueswerecalculatedwith1000bootstrapreplicatesshowingsupportvalues greaterthan80%.Bootstrappingmeasureshowconsistentlythedatasupportsthe topologybyresamplingdata.Ahighbootstrapvalueof100%forthedromedaryand bactrianbranchesindicatedthatthereisuniformsupportforthemonophylyofthebactrian anddromedarycamel,excludingthemfromotherSouthAmericancamelidspecies

NFACPReportMolecularecologyofcamelsinAustralia Page 20 Figure 5 PhylogenyofthemtDNAhaplotypesfoundinAustraliancamels.TheNJtreewas constructedunderaHKYmodelusing1000bootstrapreplicates.Thehaplotypes shadedcorrespondtothelineagescolouringinthefoll owingfigure(Fig6 ).

NFACPReportMolecularecologyof camelsinAustralia Page 21

Region of close up view

Figure 6 ThegeographicdistributionofthedifferentmtDNAhaplotypesfoundinthe C.dromedarius representedbydifferentcoloursindicatingthehaplotypesgiveninthe phylogenetictree,Figure 3.3.Theclose upviewof theWAcamelsdemonstratethat thesehaplotypes weremixed.

NFACPReportMolecularecologyof camelsinAustralia Page 22 Causes of reduced genetic variability

FindingonlythreemtDNAhaplotypeswithlimitedgeneticdiversityinapopulationof camelsestimatedtobeapproximately700000( sensu Edwardsetal.2004)issurprising. Therearemanyexampleswhereapopulationofthissizewouldbeexpectedtohavea muchgreateramountofgeneticdiversity.Therearetwopossiblecausesforthislackof diversity: Founder effect ThecamelpopulationinAustraliawasfoundedfromalimitednumberofmaternal lineages.Populationsfoundedbyasmallnumberofindividualswillcarryonlyasmall proportionofthetotalgeneticvariationoftheparentalpopulation(Carson&Templeton 1984;Halliburton2004). BasedontheknownnumberofcamelsintroducedintoAustraliaitisplausiblethatthis isthecase,alimitednumberofcamelswereinitiallyintroducedandbred.Themost successfulinitialimportationbeingthatofSirThomasElderandSamuelStrucke.In 1866theyimported124camelsandestablishedtheBeltanabreedingstation.Focus wasplacedonbreedingratherthanthecontinualimportationofcamels. Duetothesmallnumberoffounderswithinthepopulation(whocarryonlyasmall proportionoftheparentalpopulation’sgeneticvariation)itwouldseemplausiblethat thefoundereffectisthecauseofthereducedmtDNAgeneticvariationwithinthe population.Howeveraselectivesweepofthepopulation(inthetimesincerelease) alsocannotbediscounted. Bottleneck prior to introduction in Australia Thedromedarycamelpopulationmayhavebottleneckedpriortointroductioninto Australia.Bottlenecksoccurasaresultofareductioninpopulationsize.Population bottlenecksreducegeneticvariationandincreasethelevelofinbreeding(Hedrick& Miller1992;Maruyama&Fuerst1985;Leberg1992).Domestication,aprocessof reorganisationofwildspeciestodomesticatedformsaccordingtohuman requirements,canbeattributedtopopulationbottlenecks(Hummer1990). Domesticationofthedromedarywasthoughttohaveoccurredaround3000BC (Mburu et al .2003;Mason1979).Thereasonsbehindthecapture,tamingand breedingofthedromedarymayhaveinitiallybeennonutilitarianhoweverwouldhave eventuatedtheuseofcamelsforworkrelatedpurposes(Mikesell1955).Bulliet(1975) suggeststhatdomesticationwaseffectedbyanunknownpreSemiticand fishingpeoplewhotamedthecamelformilkduringthisperiod.Circumstantial evidenceshowsthedomesticationofthedromedaryoccurredinArabia;rockartfound withcamelsrepresentedasridinganimalsdatesbacktothistime(Mason1979). Arabictextsdetailtheuseofthedromedaryfortradeofspice,saltandincensearound 1000BC,indicatingdomesticationhadoccurredpriortothis(Mikesell1955).No archaeologicalrecordsandevidenceexiststosupportthis;basedonpurely circumstantialevidenceArabiaisthoughttobetheprobableoriginofdomestication. Itisplausiblethatbottlenecksarethecauseofthereducedgeneticvariationwithinthe dromedarycamel,causingthethreematernalhaplotypes.Thegeneticconsequences

NFACPReportMolecularecologyofcamelsinAustralia Page 23 ofabottleneckareidenticaltothefoundereffect.Ifthecamelpopulationhad bottleneckedpriortobeingintroducedintoAustraliathenthosewhichwereintroduced alreadyhadareducedamountofallelicdiversityandgeneticvariation,andassuch uponintroductionandmatingwouldproducefurtherindividualswithreducedgenetic variation,asseenintheresults.

ThelackofgeneticdiversityfoundwithintheAustraliandromedarypopulationislikelyto beduetoacombinationofbottleneckingandthefoundereffect.Ifpopulations bottleneckedbeforetheywereintroducedintoAustralia,thepopulationwouldalready havereducedallelicdiversity.Addingtothis,removingasmallsubsetofthese bottleneckedindividualsandintroducingthemintoAustraliawouldfurtherreducethe geneticvariationasthefounderscarryasmallerproportionofthetotalgeneticvariationof theparentalpopulation,andtheparentalpopulationwouldhavealreadyundergonea bottleneckandhaveapreexistingreductionofgeneticvariation(Carson&Templeton 1984;Halliburton2004;Hedrick&Miller1992;Maruyama&Fuerst1985;Leberg1992).

Amoreindepthphylogeneticanalysisusingthisdatasetisbeyondthescopeofthis thesis.ThedataclearlyindicatesminimalsignalfromthemtDNAanalysis;thelimited variationwithinthemostvariableregionofthemtDNAasindicatedbythesmallnumberof variablesitesshowsthatthereislittlemtDNAdiversitywithintheAustraliandromedary population.Forthisreasonanalysisofmorevariablelociisrequired,theonlymarkerswith thisresolutionaremicrosatellitemarkers.Thedirectionisthenshiftedawayfroma speciesevolutionaryleveltowardsapopulationlevel.Thiswillbedonewiththeuseof microsatellitemarkerstolookatpopulationstructuringandgroupdynamicswithin C. dromedarius asmtDNAaloneisunabletoprovidethisinformation.

Summary of the findings from the mtDNA analysis • Characterisationofthedromedarycontrolregionisneverpreviouslybeen done. • Primerswerespecificallydesignedfortheanalysisofthecontrolregionin theAustraliandromedarycamels. • Phylogeographicreconstruction(Fig.5)showedthatthreemainhaplotypes existedfortheAustralian C. Dromedaries . • Highbootstrapvaluesshowuniformsupportforthemonophylyofthe bactriananddromedarycamelexcludingthemfromotherSouthAmerican camelidspecies. • Thereisnophylogeographicsignalbasedonmitochondrialhaplotypes • ItcanbeinferredthattheAustraliancamelpopulationhaslimitedgenetic variationasaresultofthefoundereffect,populationbottleneck(priortoor uponintroductionintoAustralia),severelimitationonbreedingindividuals oracombinationofthese.

NFACPReportMolecularecologyofcamelsinAustralia Page 24 Nuclear DNA analysis in Australian camelids Inferred population structure

Thisstudyisthefirsttousehighlyvariablemicrosatellitemarkerstoexaminethe populationstructureoftheAustraliandromedarycamels.Analysiswiththeprogramme Structure (Pritchard et al .2000)undervariousgroupings(detailedbelow)showedthe presenceoftwopopulationshadthehighestlikelihood.Thenumberofinferred populations(K)mostcompatiblewiththedatasitewasassumedtobethesmallestK valueforwhichthesimulationproducesaplateaufortheprobabilityof∆K.Thisvaluewas foundtobeK=2.InferredpopulationsarereferredtoasPopulationAandPopulationBin futurediscussions. Thesampledpopulationwasruninavarietyofcombinations:includingon(i)theassigned groupingsbasedonthegeographiclocation(Table5),(ii)alljuvenilesexcludedandmale andfemalestreatedasseparategroups(Table6)and(iii)theentiregroupasone population(Table7;Fig.7).Forindividualswhereageinformationwasnotavailable(not recordeduponsamplecollection)itwasassumedthattheseindividualswereadults.Of the390camelssampled,300ofthesewereadults.Juvenileindividualswereexcluded fromtheanalysestoavoidoverrepresentationofgenotypesfromrelatedindividuals(see Table2).Variouscombinationswererunindependentlytoensurepopulationswere assignedcorrectly. Ascamelpopulationstructuringisunknownandpreviouslyuntested,allpossibilities neededtobetestedtoensureanaccuraterepresentationofthedata.Camelsaresaidto occurinthreenonterritorialgroups,bachelorgroups,summergroupsofcowsandcalves andwinterbreedinggroups(Heucke et al. 1992).Analysisofmalesandfemalestreated asseparatepopulations(Table6;todetermineifgroupsarestructuredasmentioned above)foundthatinferredpopulationstructureisstillfoundtobetwo,thereforemaleand femalepopulationsarestillgroupedintotwoinferredpopulationswhichareunrelatedto thesexoftheindividual. Analysisofadultindividualsbasedongeographiclocationalsoproducedaninferred populationoftwo(Table7).Inferredpopulationstructureisdeterminedfrommodeland independentofgeographicsamplinglocation.TheinferredpopulationsAandBarenot correlatedwithgeographicdistribution.Allcombinationsresultedininferredpopulationof two. Table 5 Theproportionofcamelsassignedbasedon Structure ’sinferred populationgroupings,PopulationAandBrelativetotheassignedpopulationbased ongeographicsamplinglocation .

Assignedpopulationnumber Proportionofcamelsin Proportionofcamelsininferred basedongeographiclocation inferredPopulationA PopulationB 1WANorth(n=104) 0.258 0.742 2WAMiddle(n=133) 0.414 0.586 3WAMiddleeast(n=45) 0.564 0.436 4WASouth(n=50) 0.374 0.626 5NT(n=47) 0.325 0.675 6SA(n=11) 0.629 0.371

NFACPReportMolecularecologyofcamelsinAustralia Page 25 Table 6 TheproportionofcamelsfoundininferredpopulationsAandB assignedontheseparationofmalesandfemales Sex Proportionofcamelsin Proportionofcamelsin inferredPopulationA inferredPopulationB Male(n=141) 0.511 0.489 Female(n=105) 0.413 0.587

Table 7 Thetotalcamelpopulation(excludingjuveniles)andtheproportion foundininferredpopulationsAandB. Proportionofcamelsin Proportionofcamelsin inferredPopulationA inferredPopulationB Thetotalcamelpopulation(n=300) 0.386 0.614

Figure 7 GeographicdistributionofinferredpopulationsA(yellow)andB(Pink)asdesignated by Structure. Theassumptionsof Structure arethatpopulationsarewithinHardyWeinberg Equilibrium (HWE)andthemarkerlociareunlinkedandatlinkageequilibriumwithinthepopulation (Pritchard et al .2000).TestingforHWEandmarkerlinkageusingthe programme Genepop (Raymond&Rousset 1995)confirmstheseassumptions,findingalllociareat

NFACPReportMolecularecologyof camelsinAustralia Page 26 HWEwithinthepopulation,andnotlinked.The Genepop dataprovidesvalidationthat resultsobtainedfrom Structure analysisarenotbiasedbylinkagevariationfromHWE. TheprogrammeGeneClass2 (Piry et al.2004)wasalsousedtodeterminepopulation structure,asanalternativemethod. GeneClass2 differsfrom Structure inthat Structure assignsindividualstopopulationsrequiringnopriorknowledgeofpopulationstructure (usingtheMarkovChainMonteCarloalgorithm)(Pritchard et al .2000),whereas GeneClass2 assignsindividualsbasedonthelocusdataforareferencepopulation. Thereforeanindividualneedstobeassignedtoareferencepopulationsothatother individualscanthenbeassignedtoaninferredpopulation.Resultsofanalysisof GeneClass2 implythatpopulationsarestructuredloosely,asnodefinitivepopulation groupingisinferredbytheoutput. Thedatageneratedfromthe11microsatellitelocisuggestuponanalysisbythe programme Structure thattherearetwolikelypopulationsofcamels.Howeverthis structuringisnotrelatedtolocation,sexandage,whicharemostfrequentmorphological characteristicstocausepopulationstructuring.Asthecauseofpopulationstructuringis unabletobeidentified,theAustraliandromedarycamelpopulationcanbeassumedtobe panmictic,withsomeunknownformofweakcrypticpopulationstructuring.Analysiswith GeneClass2 confirmsthisconclusion,asresultsalsoimplicatedthatloosepopulation structuringamongAustraliandromedarycamelsexists.Basedonthe12microsatellite markersusedtheAustralian C. dromedarius canthereforebesaidtobeasinglepanmictic population,withsomecrypticstructuringunrelatedtolocation,sexandageofthe population. Descriptive statistics Ofthe12microsatellitelocicharacterisedinferalcamelpopulationanalyses,11were moderatelypolymorphic,containingbetween2and20allelesperlocus(withthe exceptionofmarkerLCA77whichismonomorphic)withthepercentofpolymorphiclociat 91.67%.Heterozygosity(H e)valuesrangefrom0.062to0.862(0.536±0.299;Table8). Table 8. Measuresofgeneticvariability;meanobserved(N A)andexpectednumber ofalleles(N E),meanobserved(H o)andexpected(H e)heterozygosityandfixation index(F IS )forthe12microsatellitemarkerschosenforthestudyofferalcamels. Marker NA NE Ho He FIS VOLP03 5 2.07 0.027 0.518 0.949 VOLP32 3 2.30 0.400 0.566 0.290 YWLL08 20 7.14 0.823 0.862 0.043 YWLL38 8 3.30 0.552 0.698 0.208 YWLL44 4 1.23 0.084 0.186 0.549 LCA33 13 2.75 0.437 0.637 0.313 LCA37 2 1.07 0.037 0.062 0.402 LCA56 4 2.03 0.620 0.509 0.221 LCA66 6 4.15 0.571 0.760 0.248 LCA77 1 1 0.000 0.000 CMS50 11 5.63 0.591 0.8240 0.282 CVRL01 20 5.13 0.705 0.8063 0.125 Mean (± s.d) 8.1 ± 6.6 3.15 ± 1.98 0.40 ± 0.30 0.54 ± 0.30 0.245

NFACPReportMolecularecologyofcamelsinAustralia Page 27 Genetic diversity within feral camel populations

Measuresofgeneticvariabilitybasedontheinferredpopulationstructure(Table9) assignedby Structure andbasedongeographiclocation(Table8)areincludedbelow. Thisinformationisincludedforcomparativepurposesonly,aspopulationstructureisnot actuallygroupedassuch.PopulationB(asassignedby Structure ;Table10)hada marginallyhigherlevelofexpectedheterozygositythanPopulationA. Table 9. Measuresofgeneticvariability;meanobserved(N A)andmeanexpected numberofalleles(N E),meanobserved(H o)andmeanexpected(H e)heterozygosity fortheassignedcamelpopulationsbasedongeographiclocation. Population n NA ( ± s.d) NE ( ± s.d) Ho ( ± s.d) He ( ± s.d) 1WANorth 77 6.667±5.483 3.024±1.781 0.401±0.291 0.531±0.301 2WAMiddle 106 7.167±6.235 3.271±2.318 0.399±0.293 0.538±0.300 3WAMiddleEast 28 4.917±4.231 2.872±1.850 0.386±0.291 0.516±0.301 4WASouth 37 5.750±4.181 2.781±1.585 0.422±0.297 0.508±0.302 5NT 41 5.750±4.093 2.641±1.309 0.417±0.326 0.512±0.283 6SA 11 3.750±2.527 2.501±1.306 0.405±0.335 0.512±0.286 Table 10. Measuresofgeneticvariability;meanobserved(N A)andmeanexpected numberofalleles(N E),meanobserved(H o)andmeanexpected(H e)heterozygosity fortheinferredpopulationgroupingsbasedonanalysisby Structure . Population n NA ( ± s.d) NE (± s.d) Ho ( ± s.d) He (± s.d) PopulationA 107 6.833±5.750 3.165±2.454 0.3823±0.283 0.492±0.339 PopulationB 193 7.750±6.269 2.998±1.878 0.416±0.300 0.505±0.315 Effective population size and Population Bottleneck

Estimatesofeffectivepopulationsize( Ne)werecalculatedforthreedifferentsituations: (1)asonesingleadultpopulation,(2)thepopulationgroupsassignedby Structure ; populationsAandBand(3)Adultpopulationsofmaleandfemaleindividualstreatedas separatepopulationsbasedonsex(Table11). Table11. Estimatesofeffectivepopulationsizeandbottleneckingfrom12 microsatellitelociforvarioussituations. Population Ne Probability of recent genetic bottleneck (1) Pooled samples EntireAdultPopulation 429 0.949 (2) Inferred Populations PopulationA 232 0.897 PopulationB 375 0.966 (3) Sex MaleAdults 1005 0.913 FemaleAdults 201 0.966

NFACPReportMolecularecologyofcamelsinAustralia Page 28 Effectivepopulationsizeisanestimateofthesizeofanidealpopulationthatlosesgenetic variationatthesamerateastherealpopulation .Simulationsundervariousmodelsrevealed thateffectivepopulationsizewassimilarforallpopulations(withtheexclusionofmalesas itsownsubgroup),rangingfrom232to429breedingadultindividuals.Maleshowever showedamarkedincreaseintheeffectivepopulationsize,withanestimatedvalueof 1005,incomparisonwith201infemales.Malescontributeapproximatelyafivefold increaseinthepopulationswhencomparedtofemales.Despitethisbeinganabstract measure,effectivepopulationsizeisinfluencedbyapopulation’sgeographicstructure, dispersal,presenceorabsenceofoverlappinggenerations,breedingsexratio,distribution offamilysizesandthedegreeofdifferentiationofpopulations(Barrowclough1980).Itisa relativemeasureofpopulationsizeandmaydifferwidelyfromcensuspopulationsize basedonobservationalstudies.Theeffectivesizeofapopulationiscorrelatedwiththe rateofchangeofgeneticvariationandthelevelofgeneticdiversityalreadyexistingwithin thatpopulation(Crow&Denniston1988).Theeffectivepopulationsizeestimatedin camelsissignificantlylessthantheactualpopulationsize;thiscorrelateswithwhatis expectedastheN eisrelatedtothelevelofgeneticvariationwithinthedromedary population.Microsatelliteandmitochondrialstudiesbothshowlimitedgeneticvariation withintheAustraliandromedarypopulation,resultinginthesmallereffectivepopulation sizethancensuspopulationsizeasobservedinthedromedarycamels.

Thesignificanceofarecentgeneticbottleneckonferalcamelpopulationswasalso estimated,usingthedemarcationofthesamplingunitslistedinTable11,corresponding to(i)asinglecamelpopulation,(ii)inferredpopulationsAandBand(iii)maleandfemales treatedasseparatesamplingunits.Calculationswerebasedonatransitionalphase mutationmodelwithaWilcoxonsignranktestwith1000iterations.Findingsforall situationspreviouslymentionedshowtheprobabilityofaheterozygosityexcess(onetail forHexcess)wasalwaysgreaterthan0.05.Nopopulationstructuretestedshowed evidenceofarecentgeneticpopulationbottleneck,butwithlimitedheterozygosity(Table 9),suggestthattheyhavehadsubstantiallongtermdemographicbottlenecking. Comparison of the genetic findings with previous camel studies

PreviousstudiesusingthesamecamelidmarkersallowthecomparisonofAustralian dromedarycameltoothercamelidspecies.ThesplitbetweentheNewWorld(llamas, alpacas,vicunasand)andOldWorldcamelidspecies(bactriananddromedary camels)occurredapproximately11millionyearsago(Cui et al .2007).Thissectionwill lookatcomparisonofthegeneticvariabilityofthe12microsatellitemarkersusedfor Australian C. dromedarius (Table8)tothoseusedinpreviousexperiments(Table12). Manyoftheseexperimentsdidnotpublishtheassociatedinformationinthejournal articles,andassuchhasbeenleftblankwheretheinformationcouldnotbeobtained. Themajorityofthemarkersusedinpreviousexperimentswereusedinadifferentcamelid species,forexampleallprimersexceptCMS50andCVRL01wereperformedonvarious speciesincluding L. glama and L. pacos .PrimersCMS50andCVRL01inprevious experimentswereperformedon C. dromedarius speciesfromdifferentorigins(not Australiandromedaries).ComparisonofLCAprimers(LCA33,37,56,66and77),where informationforthemeanobservednumberofalleles(N A)andexpectedheterozygosity (H e)wasavailableshowedasignificantdifferenceintheresultsobtainedfortheAustralian dromedarycamelandthe L.glama resultsasfoundbyPenedoandcoworkers(1998,

NFACPReportMolecularecologyofcamelsinAustralia Page 29 1999).ForexamplePenedofoundfor L.glama withmarkerLCA33N Atobe3andH etobe 0.23,whereasincomparisontoresultsofthisexperimentwith12and0.637respectively, thereisasubstantialdifferencebetweentheoldandnewworldcamelids.Thereisalsoa substantialdifferencebetweenspecieswithmanyoftheotherprimersused. OncomparisonofprimerswhichwereusedonthedromedaryspeciesCMS50(Kenyan origin)andCVRL01(unknownorigin)resultsforN AandH e(Table12)weresimilartothose foundintheexperiment(Table9).CMS50resultsfromEdvotchneko et al .(2003)foundN A tobe8andH etobe0.82,resultsforAustraliandromedaryshowNAtobe11andH etobe 0.83.CVRL01showsaH eof0.73inpreviousstudiesandintheAustraliandromedaryis foundtobe0.806.Thisindicatesthatprimerresultsarespeciesspecific,asAustralian dromedarycamelsproducedsimilarvaluestootherdromedarycamels.Thisalso demonstratesthatprimerswhichhaveonlypreviouslybeenusedinNewWorldcamelids showcrossspeciesamplification.ForexampleprimerYWLL08,whichhaspreviously beenusedinllamaandspecies(Lang et al .1996;Table12)showshighlevelsof allelicvariationindromedarycamels,withameanobservednumberofallelesof20(Table 12).PrimerLCA33showsameanobservednumberofallelesinllamasof3(Penedo et al .1999;Table12)comparedwith13forthedromedary(Table11).Thisinformationis usefulforfuturestudiesasprimerswithhighlevelsofallelicdiversitywhichamplifycross species(eventhoughcamelidspeciesareestimatedtohavesplit11millionyearsago) canbeusedincomparativestudiesofspecies Table 12.Measuresofgeneticvariability;meanobserved(N A)andmeanexpected numberofalleles(N E),meanobserved(H o)andmeanexpected(H e)heterozygosity andfixationindex(F IS )forthe12microsatellitemarkerschosenforthestudyofferal camelsasfoundinpreviousstudies.BlanksintableandN/Arepresentinformation unavailability. Marker NA NE Ho He Camelid species Reference VOLP03 0.80 Lama pacos Obreque et al .1998 VOLP32 0.80 Lama pacos Obreque et al .1998 YWLL08 llamasandalpacas Lang et al .1996 YWLL38 llamasandalpacas Lang et al .1996 YWLL44 llamasandalpacas Lang et al .1996 LCA33 3 0.23 Lama glama Lang et al .1996 LCA37 9 0.82 Lama glama Penedo et al .1998 LCA56 12 0.78 Lama glama Penedo et al .1999 LCA66 18 0.83 Lama glama Penedo et al .1999 LCA77 10 0.79 Lama glama Penedo et al .1999 CMS50 8 4.97 0.70 0.82 C. dromedarius (Kenya) Edvotchenko et al .2003 CVRL01 0.60 0.73 C. dromedarius Ariasegaram et al .2002 Thegeneticcharacterisationof Camelus dromedarius inSouthernAfrica(Nolte2003)also usedsomeoftheSTRmarkersdescribedinthisstudy,findingthatthedromedaryhave lessgeneticvariationthanthealpaca.Oncomparingthedromedaryindifferent populationstheyalsofoundthatthereislittlegeneticvariationwithinthem(Nolte2003). TheaverageexpectedheterozygosityfoundfortheSouthAfricanpopulationis0.505(± 0.241),incomparisonwithfindingsinAustraliaof0.404(±0.299)(Table9)indicatingthat theAustralianpopulationhaslowergeneticvariationthantheSouthAfricanpopulation.

NFACPReportMolecularecologyofcamelsinAustralia Page 30 Thiscorrespondswithwhatisexpected;Australia’spopulationistheintroduced population,andthesiteofthesourceofintroducees(thefounderofthepopulation,which ispotentiallyAfricaandIndiabasedonMcKnight1969)wouldbeexpectedtohavea higherlevelofgeneticvariationthantheintroducedpopulation. Theabovefindingsneedtobeexploredinfurtherdetailtoallowcomparisonoffindingsto thoseoftheAustraliandromedary.Problemsincomparingspecificvaluesobtainedfrom theSouthAfricanstudyarisewhendetailsarelookedat:minorvariationsinexperimental conditions,allelescoringandstatisticalprogrammesusedfromthatoftheAustralian study.Tobeabletobettercomparegeneticvariabilityofthedromedarycamelfrom Australiatootherpopulations,specificexperimentaldetailsshouldbereplicatedto maintaintheaccuracyofthereport. BycomparingthepotentialfoundersoftheAustraliandromedarypopulationtotheresults ofthisexperiment,thepotentialfordiscoveringunknowninformationarises,forexample thesourceofthecrypticstructuringofthedromedarypopulationinAustralia. Summary of findings from the STR analysis

• Inferredpopulationstructurefoundtwopopulations(K=2).Populationstructuring with GeneClass2 showedweakpopulationstructuring,withadefinitiveinferred populationsunabletobedetermined. • TheAustraliandromedarycamelpopulationcanthereforebesaidtobeasingle panmicticpopulation,withweakcrypticstructuringunrelatedtogeographiclocation, sexandageofspecies. • 11ofthe12microsatellitelociusedaremoderatelypolymorphic,withthepercentof polymorphiclociat91.67%. • Malesshowedamarkedincreaseintheeffectivepopulationsize,approximately fivetimeshigherproportionofmalesthanfemalescontributinggenestothenext generation. • TheAustraliandromedarycamelshowednoevidenceofpopulationbottlenecking. • ComparisonofAustralianfindingswiththosefrompreviousstudiesshowedthat resultsvaryconsiderablywithprimersbasedonspecies.SouthAfricandromedary populationshadahigherexpectedheterozygositythanAustralianpopulations, whichwouldbeexpectedwithfounderandintroducedpopulations. • FocuscannowbeplacedontheapplicationoffindingsofSTRandCRofthe Australiandromedarycamelforcontrolandmanagementpurposes.

NFACPReportMolecularecologyofcamelsinAustralia Page 31 General discussion

Overview Moleculartechniqueshavebeenusedininvasivespeciesmanagementwiththeaimof focusingcontroleffortsonthepestspecieswheresuccesswillbemaximised,preventing reinvasionoferadicatedareasandwastingresources.Thisthesishasappliedmolecular genetictechniquestocharacterisetheAustraliandromedarycamelpopulation,more specificallymicrosatelliteandmitochondrialmarkerstogainaninsightintotheAustralian population’sstructureforuseincontrolapplications.MtDNAanalysisfoundthatonlythree maternalhaplotypesexistedfortheAustraliandromedarycamelpopulation.These haplotypesaredifferentiatedonthebasisofthreenucleotidesubstitutions(allpurine transversions),indicatinglimitedgeneticvariabilitywithintheAustraliandromedary population,possiblyduetobottleneckingpriortobeingintroducedintoAustraliaasa resultofthedomesticationprocessandorduetothefoundereffect.Thehaplotypes showednophylogeographiccorrelation.Analysisofmorevariablemicrosatelliteloci concurwiththis,populationstructuringisnotrelatedtolocation,sexorageofcamels.The Australiancamelpopulationshowedweakpopulationstructuring;giventhisfindingour currenthypothesisisthatthedromedarycamelpopulationwithinAustraliaisasingle panmicticpopulationwithweakcrypticstructuringduetosomeundetectablecause. Overallthefindingssuggestthatusingthecurrenttechnology,Australiandromedary camelsdisplayalackofgeneticdifferentiation.Panmixia,isusuallyseeninspecieswhich arecapableofdispersingoverlargedistancesandintheabsenceofbarrierstodispersal (Feldheim et al .2001)forexamplepanmixiaisfrequentinbirdsandisattributedtotheir dispersalability(Miller1947). Australiandromedarycamelsarecapableoftravellinglong distances ofupto70kmaday,theyalsodonothavebarrierstomovementwithinthearid andsemiaridzonesofAustraliaarelimited,withtheoccasionalfenceasabarrier,which iseasilydestroyedbycamelsifnotbuiltadequately,makingcamelsideallysuitedtobeing apanmicticpopulation. ThefindingsofthepresenceofasinglepanmicticpopulationwithintheAustralian dromedarycamelpopulationwillhaveimplicationforthemanagementofthisinvasive pest,makingcontrolevenmoredifficult.

Implications for control programmes and management

Current management of feral camel populations Currentmanagementofferalcamelsfocusesonthreemainstrategies;culling,harvestingand exclusionfencing.Cullingoccursviagroundandaerialbasedshootingpredominantlythrough agenciessuchasDepartmentofEnvironmentandConservation(DEC)andalsobyprivate landholders.Aerialshootingishighlyeffective,andallowsbroadscalecontroloverremote anddifficulttoaccessareas.Groundbasedshootingissomewhatlesseffective,andis confinedtoaccessiblelocations,howeverdoesallowtargetspecificcontrolforlandholders (Norris&Low2005). Commercialharvestingincludeslivewildharvestinganduseinpetmeat.Livewildharvesting israre,infrequentandoccursinlownumbers.Commercialharvestinghasnoprospectat reducingcamelnumbersinthenearfuture,asdemandforcamelproductsislow,andlackof apurposebuiltabattoirmakescamelmeattradedifficult.Themajorrestrictionstomeatand

NFACPReportMolecularecologyofcamelsinAustralia Page 32 liveanimaltradeoftheAustraliancamelsaretheinfrastructurerequirements.Evenwiththe presenceofapurposebuiltabattoirthesuccessofcamelmeatindustrywouldbedependent onanumberoffactorsincludingthenetreturnofcamel,whichisreliantonthemethodof captureanddistancerequiredfortransport(Norris&Low2005;Ellard2000). Fencingofcamelsexcludesthemfromanarea,butdoesnotdoanythingtocontrolpopulation numbers.Fencingisusefulforconservingareasofhighimportance,asafenceprovidesa barrierwhichshiftsthepointofimpactawayfromtheareainsidethefence.Exclusionfences needstobeofatleastaheightof1.6metresandreinforced,fenceswhichareinadequately builtareeasilydestroyedbycamels(Norris&Low2005). Aerialandgroundbasedshootingarethemosteffectivewayatcontrollingcamelpopulation numbers.Asubstantialamountofcamelsneedtoberemovedannuallytomaintaincurrent populationnumbers.Assuch,ameansisneededtooptimisethesuccessofculling,focusing effortsonindividualswhichwillhavethemosteffect.

Management implications and recommendations

ManagementofferalcamelsposesaproblemforAustraliaascamelsareaninvasive pest,howevertheyarealsoviewedasaresourcebymanypeople(especiallythe aborigines).Theresultsgeneratedfromthisstudysuggestthatthemanagementofthe Australianferalcamelpopulationwillbeadifficultproblem.Thelargertheareainvaded byaninvasivespeciestheharderthetaskofcontrollingthem(Hulme2006).The Australiancamelpopulationhasinvadedapproximately37%ofitsmainland(McLeod 2004),indicatingtheyhavedispersedlargedistances,makingcontroleffortsdifficult.The amountofcamelsneededtobeculledtomaintainthecurrentpopulationsizeis significantlylarge(approximately80000p.a.).Addingtothisthefindingthatthe Australianferalcamelpopulationisonesinglepanmicticpopulation(withsomeformof weakstructuringwhichcannotclearlybeidentified),posesfurtherdifficultyforthecontrol andmanagementofcamelpopulationsasthelackofdiscretegroupsmeansthatthe entirecamelpopulationneedstobeeradicatedforeffectivecontrol.Cullinginonelocality, removingonlyafractionofthepopulationwouldinevitablyresultinarapidrecolonisation oftheareaasmigratingcamelswouldsimplyreinvadetheareapreviouslyclearedby culling,wastingresources.Eradicatingtheentirecamelpopulationisalsoimprobable.A moreinnovativemeansbywhichtocontrolcamelsisthereforeneeded. Thefollowingaresuggestionsonly,onwaystocontrolcamels,basedonthecurrent knowledgeofcamelpopulations.Ifcamelscouldsomehowbeseparatedintodistinct populationscreatingbarriersbetweenthem,populationstructurewouldbealtered, allowingspecificpopulationstobetargetedatatimeandhencepreventingthere invasionofthatarea.Associatedwiththisaredifficultieswithcreatingboundariesand targetingpopulations.Camelmovementsandmigrationroutescouldperhapsbeusedto targetpopulationsandcreateboundaryfences.Forexamplecamelsareknownto concentratearoundareasofsaltlakesparticularlyinwinterandwithinregionswithplants containingahighsaltcontent.Themigrationpatternsandpopulationdistributionofferal camelsinWesternAustraliadifferfromthatoftheNorthernTerritoryduetotheregular movementbetweenuninhabiteddesertregionsandpastoralproperties.Surveyingof landownersreportthatgroupsofcamelsregularlymoveontopropertiesalongdefined migrationroutesdependentonseasonalconditions(Ellard2000). Groupsizeappearsto bedependentontheamountofrainfall,withahighamountofrainfallbeingdirectly

NFACPReportMolecularecologyofcamelsinAustralia Page 33 proportionaltolargergroupsizes(Heucke et al .1992).Thesecharacteristicscould enablethepredictionofcamelmovementstocreatebarrierstomovementandisolate populationsindifferentareas.Ifpopulationsareisolatedintodiscretegroups,cullingof thesegroupscouldbesuccessfulifreinvasiondoesnotoccur. Understandingdynamicsandpopulationstructureofinvasivespeciesisimportantforthe managementandcontrolofthesespecies.Furtherinformationonpopulationgroup dynamicsoftheAustraliandromedarycamelisneededtobeabletoeffectivelycontrol them.Camelsappeartoliveinnonterritorialgroupsofthreekinds;yearroundgroupsof bulls(bachelorgroups),summergroupsofcowsandcalvesandwinterbreedinggroups (maturebullwithseveralcowsandtheircalves;Heucke et al .1992).Thestructureof thesegroupscouldbeusedinafertilitycontrolstrategy. Acknowledgments FundsforthisprojectwereprovidedbytheNationalFeralAnimalControlProgramofthe AustralianGovernment’sNaturalHeritageTrustandtheauthorswishtosincerelythank theprogramforitsassistance.WewouldalsoliketothanktheBureauofRuralSciences foradministeringthefundsandprovidingsupportthroughouttheproject.Inparticular, QuentinHartisthankedforhisassistanceandadvice.Thestudywouldnothavebeen possiblewithoutthecooperationofthemanyinterestedpartieswhohelpedwiththe collectionofmaterial.Wewouldliketothank:ALongbottom,TThompson,RWatkins,G Hearle,VGallagvier,Cunyustation,SMcKenzie,CDoehring,TScholz,SVan Wymoarden,MCowen,JSheehan,CHankinson,CHall,PKendrick,DMartin,BZeng andtothosepeoplewhohelpedincollectingsamplethatwehaveforgotten,oursincerest apologies.

NFACPReportMolecularecologyofcamelsinAustralia Page 34 Bibliography AviseJC,ArnoldJ,BallRM,BerminghamE,LambT,NeigelJE,ReebCA&SaundersNC,(1987) Intraspecificphylogeography:ThemitochondrialDNAbridgebetweenpopulationgeneticsandsystematics Animal Review Ecology 18 :489522 BakerAJ,(2000)MolecularmethodsinecologyBlackwellScience,Oxford,UK BallardJWO&WhitlockMC,(2004)Theincompletenaturalhistoryofthemitochondria Molecular Ecology 13 :729744 BomfordM&O’BrienP,(1995)Eradicationorcontrolforvertebratepests? Wildlife Society Bulletin 23 :249 255 BullietRW,(1975)ThecamelandthewheelHarvardUniversityPress CarsonHL&TempletonAR,(1984)Geneticrevolutionsinrelationtospeciationphenomena:thefoundingof newpopulations Annual Review of Ecology and Systematics 15 :97131 CaughleyG,(1994)Directionsinconservationbiology Journal of Animal Ecology 63 :215244 CowanPE&TyndaleBiscoeCH,(1997)AustralianandNewZealandmammalspeciesconsideredtobe pestsorproblems Reproductive Fertility Development 9:2736 CrowJF&DennistonC,(1988)Inbreedingandvarianceineffectivepopulationnumbers Evolution 42 :482 495 CuiP,JiH,DingF,QiD,GaoH,MengH,YuJ,HuS&ZhangH,(2007)Acompletemitochondrialgenome sequenceofthewildtwohumpedcamel( Camelus bactrianus ferus ):anevolutionaryhistoryofcamelidae BioMed Central Genomics 8: DörgesB&HeuckeJ,(2003)Demonstrationofecologicallysustainablemanagementofcamelsonaboriginal andpastorallandNaturalHeritageTrust EdvotchenkoD,HanY,BartenschlagerS,Preuss&GeldermannH,(2003)Newpolymorphicmicrosatellite locifordifferentcamelspecies Molecular Ecology Notes 3:431434 EdwardsGP,SaalfelfK&CliffordB,(2004)PopulationtrendofferalcamelsintheNorthernTerritory, Australia Wildlife Research 31 :509517 EdwardsGP,PopleAR,CaleyP&SaalfeldK,(2004)IntroducedmammalsinAustralianrangelands: Futurethreatsandtheroleofmonitoringprogrammesinmanagementstrategies Australian Ecology 29 :40 50 EllardK,(2000)Developmentofasustainablecamelindustry,RuralIndustriesResearchandDevelopment Corporation(RIRDC),part1:WARIRDCpublicationnumber99/118 FeldheimKA,GruberSH&AshleyVM,(2001)Populationgeneticstructureofthelemonshark( Negaprion brevirostris )intheWesternAtlantic:DNAMicrosatellitevariation Molecular Ecology 10 :253280 FrankhamR,BallouJD&BriscoeDA,(2002)IntroductiontoConservationGeneticsCambridgeUniversity Press,UnitedKingdom GeeP&GreenfieldB,(2007)SAAridLandsFeralCamelManagementPlan,DRAFTSouthAustralianArid LandsNaturalResourceManagementBoard HalliburtonR,(2004)IntroductiontopopulationgeneticsPearsoneducation,USA HamptonJO,SpencerPBS,AlpersDL,TwiggLE,WoolnoughAP,DoustJ,HiggsT&PluskeJ,(2004) Moleculartechniques,wildlifemanagementandtheimportanceofgeneticpopulationstructureanddispersal: acasestudywithferalpigs Journal of Applied Ecology 41 :735743 HedrickPW&MillerPS,(1992)Conservationgenetics:TechniquesandFundamentals Ecological Application 2:3046 HeuckeJ,DörgesB&KlingelH,(1992)EcologyofferalcamelsincentralAustralia Proceedings of the first International Camel conference 313316 HillWG,(1981)Estimationofeffectivepopulationsizefromdataonlinkagedisequilibrium Genetical Research 38 209216 HoarauG,RijnsdorpAD,VanDerVeerW,StamWT&OlsenJL,(2002)PopulationstructuringofPlaice (Pleuronectes plastessa L)innorthern:Microsatellitesrevealedlargescalespecialandtemporal homogeneity Molecular Ecology 11 :11651176 HulmePE,(2006)Beyondcontrol:widerimplicationsforthemanagementofbiologicalinvasions Journal of Applied Ecology 43 :835847 HummerH,(1990)DomesticationThedeclineofenvironmentalappreciationUniversityPress,Cambridge KimuraM&OhtaT,(1964)Thenumberofallelesthatcanbemaintainedinafinitepopulation Genetics 49 , 725738 LangKDM,WangY&PlanteY,(1996)Fifteenpolymorphicdinucleotidemicrosatellitesinllamasand alpacas Animal Genetics 27 :285294 LebergPL,(1992)Effectsofpopulationbottlenecksongeneticdiversityasmeasuredbyallozyme electrophoresis Evolution 46 :477494 LongJL,(2003)Introducedmammalsoftheworld:Theirhistory,distributionandinfluence,CSIRO publishings,Australia

NFACPReportMolecularecologyofcamelsinAustralia Page 35 MariasegaramM,PullenayegumS,JahabarM,AliRS,PenedoMCT,WerneryU&SasseJ,(2002) Isolationandcharacterisationofeightmicrosatellitemarkersin Camelus dromedarius andcrossspecies amplificationin Cbactrianus and Lama pacos Animal Genetics 33 :377405 MaruyamaT&FuerstPA,(1985)PopulationbottlenecksandnonequilibriummodelsinpopulationgeneticsII Numberofallelesinasmallpopulationthatwasformedbyarecentbottleneck Genetics 111 :675689 MasonIL,(1979)Origin,EvolutionandDistributionofDomesticCamels,takenfromTheCamelid,anall purposeanimal,Volume1MotalaGrafiskapublishing’s MatéML,DiRoccoF,ZambelliA&VidalRiojaL,(2004)MitochondrialDNAstructureandorganizationof thecontrolregionofSouthAmericancamelids Molecular Ecology Notes 4:765767 MburuDN,OchiengJW,KuriaSG,JianlinH,KaufmannB,RegeJEO&HanotteO,(2003)Genetic diversityandrelationshipsofindigenousKenyancamel( Camelus dromedarius )populations:implicationsfor theirclassifications Animal Genetics 34 :2632 McKnightTL,(1969)TheCamelinAustraliaMelbourneUniversityPress McLeodR,(2004)Countingthecost:ImpactofinvasiveanimalsinAustraliaPublishedbyCooperative researchcentreforpestanimalcontrol,Canberra MikesellMW,(1955)Notesonthedispersalofthedromedary Southwestern journal of Anthropology 11 :231 245 MillerAH,(1947)Panmixiaandpopulationsizewithreferencetobirds Evolution 1:186190 MilliganBG,LeebensMackJ&StrandAE,(1994)Conservationgenetics:beyondthemaintenanceof makerdiversity Molecular Ecology 3:423435 Muyzer G, Teske A, Wirsen C O& Jannasch H W, (1995) Phylogenetic relationships of Thiomicrospira speciesandtheiridentificationindeepsea Archives of Microbiology 164 :165172 NeiM,(1987)MolecularEvolutionaryGeneticsColumbiaUniversityPress,NewYork NolteM,(2003)Thegeneticcharacterisationof Camelus dromedarius inSouthernAfricaPhDThesis:Rand AfrikaansUniversity,Africa NorrisA&LowT,(2005)Reviewofthemanagementofferalanimalsandtheirimpactonbiodiversityinthe Rangelands:AresourcetoaidNRMplanning,PestAnimalControlCRCReport2005,PestAnimalControl CRC,Canberra Obreque V,CoogleL,Henney PJ,BaileyE, MancillaR,GarciaHuidobroJ,HinrichsenP&CothranEG, (1998)Characterisationof10polymorphicalpacadinucleotidemicrosatellites Animal Genetics 29 :460477 PeelD,OvendenJR&PeelSL,(2004)NeEstimator:Softwareforestimatingeffectivepopulationsize DepartmentofPrimaryIndustriesandFisheries,QueenslandGovernment PenedoMCT,CaetanoAR&CordovaK,(1998)MicrosatellitemarkersforSouthAmericanCamelids Animal Genetics 29 :411412 PenedoMCT,CaetanoAR&CordovaK,(1999)EightmicrosatellitemarkersforSouthAmericancamelids Animal Genetic 30 :161168 Piry S, Alapetite A, Cornuet J M, Paetkau D, Baudoin L& Estoup A, (2004) GeneClass2: A software for GeneticAssignmentandFirstGenerationMigrantDetection Journal of Heredity 95 :536539 PeatkauD,SladeR,BurdenM&EstoupA,(2004)Geneticassignmentmethodsforthedirect,realtime estimationofmigrationrate:asimulationbasedexplorationofaccuracyandpower Molecular Ecology 13 :55 65 PritchardJK,StephensM&DonnellyO,(2000)Inferenceofpopulationstructureusingmultilocusgenotype data Genetics 155 :945959 PurdueJR,OleksykTK&SmithMH,(2006)Independentoccurrenceofmultiplerepeatsinthecontrol regionofMitochondrialDNAofWhiteTailedDeer Journal of Heredity 97 :235243 RannalaB&MountainJL,(1997)Detectingimmigrantsbyusingmultilocusgenotypes Proceedings National Academy of Science USA 94 :91979221 RaymondM&RoussetF,(1995)GENEPOP(version12):populationgeneticssoftwareforexacttestsand ecumenicism Journal of Heredity 86 :248249 RollinsLA,WoolnoughAP&SherwinWB,(2006)Populationgenetictoolsforpestmanagement:areview Wildlife Research 33 :251261 RollsEC,(1969)Theyallranwild:ThestoryofpestsonthelandinAustraliaAngusandRobertson Publishers,London SunnucksP,(2000)Efficientgeneticmarkersforpopulationbiology Trends in Ecology and Evolution 15 : 199203 WardBG,WardCG&LiddelowGL,(2005)APilotCamelSurveyofacentralportionofWesternAustralia YehF,YangR&BoyleT,(1999)PopGene2:MicrosoftWindowsbasedfreewareforpopulationgenetic analysisUniversityofAlberta&CentreforInternationalForestResearch

NFACPReportMolecularecologyofcamelsinAustralia Page 36 Appendix 1 Sequencealignmentfromarangeofcamelsandrelatives,including representativesfromAustralianC. dromedarius usingprimersLthrArtio(F)andH362(R).

1 11 21 31 41 51 | | | | | | camel_C0102 ------GGGCCACA CCCTCCCTAA GACTCAGGGG AGAGGCCAAA C_bactrianus_D3_EF507799 ...... A...... T...... A ...... C_bactrianus_D2_EF507798 ...... A...... T...... A ...... C_bactrianus_D1_EF212037 ...... A...... T...... A ...... C_bactrianus_ferus_W3_EF507801 ...... A...... T...... A ...... C_bactrianus_ferus_W2_EF507800 ...... A...... T...... A ...... C_bactrianus_ferus_W1_EF212038 ...... A...... T...... A ...... Lama_pacos_AJ566364 ...... AAT.GT...... A .AGA...... Vicuna_vicuna_vicuna_Vci13_AY856309 ...... ------Vicugna_vicugna_mensalis_Vpu14_AY856303 ...... ------Lama_guanicoe_cacsilensis_Gpu02_AY856168 ...... ------Lama_glama_Lch10_AY856143 ...... ------Lama_guanicoe_huanacus_Grc06_AY856222 ...... ------Lama_guanicoe_voglii_Gbo16_AY856180 ...... ------H362_RC ...... ------lthr_artio ggtcctgtaa gccgaaaaag ga------camelCR_29F ...... ------...... ------camelCR_71F ...... ------camelCR_305R ...... ------camelCR_302R ...... ------

61 71 81 91 101 111 | | | | | | camel_C0102 GCCCCACCAC CAGCACCCAA AGCTGGAATT CTTATTAAAC TACCCCCTGA CCTCCGCCAA C_bactrianus_D3_EF507799 ...... C...... C...... C_bactrianus_D2_EF507798 ...... C...... C...... C_bactrianus_D1_EF212037 ...... C...... C...... C_bactrianus_ferus_W3_EF507801 ...... C...... C...... C_bactrianus_ferus_W2_EF507800 ...... C...... C...... C_bactrianus_ferus_W1_EF212038 ...... C...... C...... Lama_pacos_AJ566364 ....T...... T.C.-A...C Vicuna_vicuna_vicuna_Vci13_AY856309 ------. T.C.-....C Vicugna_vicugna_mensalis_Vpu14_AY856303 ------. T.C.-....C Lama_guanicoe_cacsilensis_Gpu02_AY856168 ------. T.C.-A...C Lama_glama_Lch10_AY856143 ------. T.C.-A...C Lama_guanicoe_huanacus_Grc06_AY856222 ------. T.C.-A...C Lama_guanicoe_voglii_Gbo16_AY856180 ------. T.C.-A...C H362_RC ------lthr_artio ------camelCR_29F ------camelCR_71F ------.CAGCA..C. .AGCT.G.------camelCR_305R ------camelCR_302R ------

121 131 141 151 161 171 | | | | | | camel_C0102 AAC-GGCAA- -TAGCCCTTG AGTATTATTT CAGTACTAAA AACCACATGT C-ATGCCTGG C_bactrianus_D3_EF507799 ...... GG...... A ...... G..AA ...... CAA C_bactrianus_D2_EF507798 ...... GG...... A ...... G..AA ...... CAA C_bactrianus_D1_EF212037 ...... GG...... A ...... G..AA ...... CAA C_bactrianus_ferus_W3_EF507801 ...... GG...... G.....A T...... G..AA ...... CAA C_bactrianus_ferus_W2_EF507800 ...... GG...... G.....A T...... G..AA ...... CAA C_bactrianus_ferus_W1_EF212038 ...... GG...... G.....A T...... G..AA .T.....CAA Lama_pacos_AJ566364 ...C...GGC A...T...... A..A.G..C T...... G-A.A..A...... T..AA Vicuna_vicuna_vicuna_Vci13_AY856309 ...CA..G.C A...T....A .A..A....C T...... G-AGA..T. T....T..A. Vicugna_vicugna_mensalis_Vpu14_AY856303 ...CA..G.C A...T....A .A..A..C.C T...... G-AGA..T...... T..A. Lama_guanicoe_cacsilensis_Gpu02_AY856168 ...C...GGC A...T...... AC.A....C T...... G-A.A..A...... T..AA Lama_glama_Lch10_AY856143 ...C...GGC A...T...... A..A.G..C T...... G-A.A..A...... T..AA Lama_guanicoe_huanacus_Grc06_AY856222 ...C...GGC A...T...... AC.A.GC.C T...... G-A.A..A...... T..AA Lama_guanicoe_voglii_Gbo16_AY856180 ...C...GGC A...T...... AC.A.GC.C T...... G-A.A..A...... T..AA H362_RC ---.-----. .------.------lthr_artio ---.-----. .------.------camelCR_29F ---.-----. .------.------camelCR_71F ---.-----. .------.------camelCR_305R ---.-----. .------.------camelCR_302R ---.-----. .------.------

NFACPReportMolecularecologyofcamelsinAustralia Page 37

181 191 201 211 221 231 | | | | | | camel_C0102 CGTGCATGAA ACC-TCAATA CTGACATGTC ACAGCACGCG TTGCGTGCTA TATGTACATC C_bactrianus_D3_EF507799 ...... T...... C_bactrianus_D2_EF507798 ...... T...... C_bactrianus_D1_EF212037 ...... T...... C_bactrianus_ferus_W3_EF507801 ...... T...... C_bactrianus_ferus_W2_EF507800 ...... T...... C_bactrianus_ferus_W1_EF212038 ...... T...... Lama_pacos_AJ566364 .A.A...-.. ...C...... C...... Vicuna_vicuna_vicuna_Vci13_AY856309 .A.....-.. ...C...... T...... Vicugna_vicugna_mensalis_Vpu14_AY856303 .A.....-.. ...C...... T...... Lama_guanicoe_cacsilensis_Gpu02_AY856168 .A.A...-.. ...C...... C...... Lama_glama_Lch10_AY856143 .A.A...-.. ...C...... C...... Lama_guanicoe_huanacus_Grc06_AY856222 .A.A...-.. ...C...... T...... Lama_guanicoe_voglii_Gbo16_AY856180 .A.A...-.. ...C...... T...... H362_RC ------.------lthr_artio ------.------camelCR_29F ------.------camelCR_71F ------.------camelCR_305R ------.------camelCR_302R ------.------

241 251 261 271 281 291 | | | | | | camel_C0102 GTGCATAAAT TTGTTTGCCC CATGCATATA AGCATGTACA TCTTATTCTT GTTCGTGCAT C_bactrianus_D3_EF507799 ...... C...... C_bactrianus_D2_EF507798 ...... C...... C_bactrianus_D1_EF212037 ...... C...... C_bactrianus_ferus_W3_EF507801 ...... C_bactrianus_ferus_W2_EF507800 ...... C_bactrianus_ferus_W1_EF212038 ...... Lama_pacos_AJ566364 ...... A ...... Vicuna_vicuna_vicuna_Vci13_AY856309 ...... A ...... Vicugna_vicugna_mensalis_Vpu14_AY856303 ...... A ...... Lama_guanicoe_cacsilensis_Gpu02_AY856168 ...... A ...... Lama_glama_Lch10_AY856143 ...... A ...... Lama_guanicoe_huanacus_Grc06_AY856222 ...... A ...... Lama_guanicoe_voglii_Gbo16_AY856180 ...... A ...... H362_RC ------lthr_artio ------camelCR_29F ------camelCR_71F ------camelCR_305R ------camelCR_302R ------

301 311 321 331 341 351 | | | | | | camel_C0102 AGCGCATTAT GTCAAATCAT TTCCAGTCAA TACGCATATC ATAACC------C_bactrianus_D3_EF507799 ...A...... ATTA GATCACGAGC C_bactrianus_D2_EF507798 ...A...... ATTA GATCACGAGC C_bactrianus_D1_EF212037 ...A...... ACTA GATCACGAGC C_bactrianus_ferus_W3_EF507801 ...A...... T.....G ...... CTTA GATCACGAGC C_bactrianus_ferus_W2_EF507800 ...A...... T.....G ...... CTTA GATCACGAGC C_bactrianus_ferus_W1_EF212038 ...A...... G ...... CTTA GATCACGAGC Lama_pacos_AJ566364 ...A...... C...... CATA GATCACGAGC Vicuna_vicuna_vicuna_Vci13_AY856309 ...... G ...... C...CATA GATCACGAGC Vicugna_vicugna_mensalis_Vpu14_AY856303 ...... G ...... C...CATA GATCACGAGC Lama_guanicoe_cacsilensis_Gpu02_AY856168 ...A...... CATA GATCACGAGC Lama_glama_Lch10_AY856143 ...A...... CATA GATCACGAGC Lama_guanicoe_huanacus_Grc06_AY856222 ...... CATA GATCACGAGC Lama_guanicoe_voglii_Gbo16_AY856180 ...... CATA GATCACGAGC H362_RC ------...... lthr_artio ------...... camelCR_29F ------...... camelCR_71F ------...... camelCR_305R ----...... ------...... camelCR_302R -...... ------......

361 371 381 | | | NFACPReportMolecularecologyofcamelsinAustralia Page 38 camel_C0102 ------C_bactrianus_D3_EF507799 TT...... C_bactrianus_D2_EF507798 TT...... C_bactrianus_D1_EF212037 TT...... C_bactrianus_ferus_W3_EF507801 TT...... C_bactrianus_ferus_W2_EF507800 TT...... C_bactrianus_ferus_W1_EF212038 TT...... Lama_pacos_AJ566364 TT...... Vicuna_vicuna_vicuna_Vci13_AY856309 TT...... Vicugna_vicugna_mensalis_Vpu14_AY856303 TT...... Lama_guanicoe_cacsilensis_Gpu02_AY856168 TT...... Lama_glama_Lch10_AY856143 TT...... Lama_guanicoe_huanacus_Grc06_AY856222 TT...... Lama_guanicoe_voglii_Gbo16_AY856180 TT...... H362_RC ..AATCACCA TGCCGCGTGA AACC lthr_artio ...... camelCR_29F ...... camelCR_71F ...... camelCR_305R ...... camelCR_302R ......

NFACPReportMolecularecologyofcamelsinAustralia Page 39