Evolution of Centralized Nervous Systems: Two Schools of Evolutionary Thought

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Centralized Nervous Systems: Two Schools of Evolutionary Thought Evolution of centralized nervous systems: Two schools of evolutionary thought R. Glenn Northcutt1 Laboratory of Comparative Neurobiology, Scripps Institution of Oceanography and Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093 Edited by John C. Avise, University of California, Irvine, CA, and approved May 1, 2012 (received for review February 27, 2012) Understanding the evolution of centralized nervous systems Fossil Record requires an understanding of metazoan phylogenetic interrela- The fossil record is notoriously incomplete. Fossils essentially exist tionships, their fossil record, the variation in their cephalic neural as snapshots in time, and these snapshots are of varying quality. characters, and the development of these characters. Each of these Some are grainy, providing only a glimpse of organisms and their topics involves comparative approaches, and both cladistic and ecology; others are fine-grained photographs of individual taxa phenetic methodologies have been applied. Our understanding of and their ecology (Lagerstätten). Regardless, each snapshot metazoan phylogeny has increased greatly with the cladistic provides unique and critical insights into the minimal age of a analysis of molecular data, and relaxed molecular clocks gener- radiation. Each snapshot helps calibrate molecular clocks, establish ally date the origin of bilaterians at 600–700 Mya (during the ecological settings of evolutionary events, and reveal unsuspected Ediacaran). Although the taxonomic affinities of the Ediacaran bi- morphological characters that challenge current conclusions re- ota remain uncertain, a conservative interpretation suggests that garding character transformation (2). a number of these taxa form clades that are closely related, if not stem clades of bilaterian crown clades. Analysis of brain–body Ediacaran Biota. The earliest reported fossils of possible metazoan complexity among extant bilaterians indicates that diffuse nerve embryos and adults are in the Ediacaran Doushantuo Formation nets and possibly, ganglionated cephalic neural systems existed in (∼570 Mya) in southern China (3–5). Small globular fossils, ∼200 Ediacaran organisms. An outgroup analysis of cephalic neural char- μm in diameter, show remarkable cellular details and have been acters among extant metazoans also indicates that the last com- interpreted as cnidarian gastrulae and planulae as well as bilaterian mon bilaterian ancestor possessed a diffuse nerve plexus and that gastrulae comparable with living molluscans and echinoderms (4). brains evolved independently at least four times. In contrast, the However, the interpretation of these fossils as bilaterian meta- hypothesis of a tripartite brain, based primarily on phenetic analysis zoans has been questioned, and they have been reinterpreted as of developmental genetic data, indicates that the brain arose in the encysted holozoan protists (6). Similar problems plague the last common bilaterian ancestor. Hopefully, this debate will be re- earliest reported adult bilaterian, Vernanimalcula,whichisalso solved by cladistic analysis of the genomes of additional taxa and an from the Doushantuo Formation of southern China (7, 8). Fossils increased understanding of character identity genetic networks. of Vernanimalcula (∼200 μm in diameter) have been described as broadly oval and triploblastic with a mouth, a differentiated gut Cambrian explosion | Neoproterozoic | phyletic comparisons | Urbilateria surrounded by paired coeloms, and an anus. The rostral end of these “small spring animals” is also reported to have three pairs of external pits that have been interpreted as sensory organs (7). The fact that some of these building stones are universal does not, of This interpretation has been questioned, however, and these course, mean that the organs to which they contribute are as old as fossils have been claimed to be taphonomic artifacts in which these molecules or their precursors. phosphates were deposited within a spherical object, such as the cysts of algal acritarchs (9). von Salvini-Plawen and Mayr (1) The earliest fossils of macroscopic organisms interpreted as ny consideration of the evolution of centralized nervous metazoans, including bilaterians, are in the Ediacaran strata Asystems is inextricably linked to an understanding of the above the Doushantuo formation (10). They average 10 cm but phylogeny of living metazoans, their fossil history, the vast range reach an extreme of 1 m in length, and they include forms that A of complexity in their nervous systems, and the development of are frond-, disk-, and worm-like (Fig. 1 ); their interpretation has had a tumultuous history. Many of these fossils were discovered in these nervous systems. For this reason, any attempt to reconstruct the late 1940s and were interpreted as representatives of living the phylogeny of metazoan CNSs must be based on all lines of metazoan phyla. Forms like Eoporpita (Fig. 1A, 1) were inter- evidence available. The molecular phylogenetic studies of the preted as cnidarian pelagic medusa (11), and frond-like forms, last 20 y are particularly important in understanding metazoan such as Charniodiscus (Fig. 1A, 2), were interpreted as possible interrelationships as well as the time frame in which these animals cnidarian sea pins (12). Still other forms of these fossils were arose and radiated, and we now have increased insights into the interpreted as stem bilaterians. For example, Dickinsonia (Fig. 1A, genetics underlying the development of CNSs. 3) was interpreted as a flatworm (13), Arkarua (Fig. 1A, 4) was First, I will review the fossil history of the earliest putative met- interpreted as an echinoderm (14), Spriggina (Fig. 1A, 5) was azoans, and then, I will discuss different comparative approaches to analyzing both molecular and morphological data: the mo- lecular clock hypothesis, which has yielded a range of possible This paper results from the Arthur M. Sackler Colloquium of the National Academy of dates for the origin and divergence of metazoans; developmental Sciences, “In the Light of Evolution VI: Brain and Behavior,” held January 19–21, 2012, at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engi- genetics and its contribution to our understanding of the pat- neering in Irvine, CA. The complete program and audio files of most presentations are terning of metazoan bodies, particularly patterning of the CNS; available on the NAS Web site at www.nasonline.org/evolution_vi. and conclusions based on the first outgroup analysis of metazoan Author contributions: R.G.N. analyzed data and wrote the paper. central neural characters. Finally, I will review two hypotheses The author declares no conflict of interest. concerning the morphological complexity of the last common This article is a PNAS Direct Submission. bilaterian ancestor. 1E-mail: [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1201889109 PNAS Early Edition | 1of8 Downloaded by guest on October 1, 2021 Fig. 1. Reconstruction of the Ediacaran (A) and Burgess Shale (B) biotas. The Ediacaran biota is reconstructed to convey maximal morphological complexity. (A)1,Eoporpita;2,Charniodiscus;3,Dickinsonia;4,Arkarua;5,Spriggina;6,Praecambridium; 7, soft-bodied “trilobite”;8,Kimberella.(B)1,Burgessochaeta; 2, Lingulella;3,Ottoia;4,Marrella;5,Olenoides;6,Naraoia;7,Canadaspis;8,Sidneyia,9,Opabinia; 10, Anomalocaris; 11, Gogia; 12, Eldonia;13,Pikaia;14, Aysheaia; 15, Hallucigenia; 16, Odontogriphus;17,Dinomischus. interpreted as an annelid capable of active swimming (15), and the White Sea assemblage are diverse and suggest the presence Praecambridium (Fig. 1A, 6) and a soft-bodied “trilobite” not for- of small bilaterians (21). mally described (Fig. 1A, 7) were interpreted as stem arthropods The Nama assemblage has less diversity than either the Avalon (16, 17). After this burst of descriptions, Ediacaran anatomy was or White Sea assemblages, and it is dominated by frond-like taxa, reevaluated; claims were made that all Ediacarans were orga- called arboreomorphs, and simple cylindrical, sessile taxa, called nized on a quilt-like pattern and represented an independent erniettomorphs (21, 22). Bilaterian body fossils are absent, but experiment of nonmetazoan animals, termed the Vendobionta, small calcified shells of Cloudina and Namacalathus and the ear- that failed with the evolution of macrophagous bilaterian meta- liest evidence of predation in the form of holes bored into these zoans (18–20). The concept of the Ediacaran biota as Vendobionta calcified shells do occur (26). was generally abandoned, because paleontologists came to realize Our understanding of body organization and phylogeny of that the Ediacaran biota represents a wide range of morphological Ediacarans is incomplete, but a conservative interpretation of forms (10, 21). the paleontological data indicates that most animals existed To date, the Ediacaran biota includes some 160 taxa (10) found primarily on microbial mats; it was likely a 2D world, with sessile in 40 separate locations representing all parts of the globe except frond-like forms and vagile, small organisms that trophically Antarctica. These biotas are dispersed among three stratigraphic were suspension feeders and grazers. There is little to no evidence zones in named assemblages based on a cladistic analysis of their that pelagic medusae existed (Fig. 1A, 1), but there is considerable spatial and temporal distribution (22): an Avalon assemblage evidence that sponges
Recommended publications
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • AND MICROFOSSIL RECORD of the CAMBRIAN PRIAPULID OTTOIA by MARTIN R
    [Palaeontology, 2015, pp. 1–17] THE MACRO- AND MICROFOSSIL RECORD OF THE CAMBRIAN PRIAPULID OTTOIA by MARTIN R. SMITH1,THOMASH.P.HARVEY2 and NICHOLAS J. BUTTERFIELD1 1Department of Earth Sciences, University of Cambridge, Cambridge, UK; e-mails: [email protected], [email protected] 2Department of Geology, University of Leicester, Leicester, UK ; e-mail: [email protected] Typescript received 11 December 2014; accepted in revised form 31 March 2015 Abstract: The stem-group priapulid Ottoia Walcott, 1911, Ottoiid priapulids represented an important component of is the most abundant worm in the mid-Cambrian Burgess Cambrian ecosystems: they occur in a range of lithologies Shale, but has not been unambiguously demonstrated else- and thrived in shallow water as well as in the deep-water where. High-resolution electron and optical microscopy of setting of the Burgess Shale. A wider survey of Burgess macroscopic Burgess Shale specimens reveals the detailed Shale macrofossils reveals specific characters that diagnose anatomy of its robust hooks, spines and pharyngeal teeth, priapulid sclerites more generally, establishing the affinity establishing the presence of two species: Ottoia prolifica of a wide range of Small Carbonaceous Fossils and demon- Walcott, 1911, and Ottoia tricuspida sp. nov. Direct com- strating the prominent role of priapulids in Cambrian parison of these sclerotized elements with a suite of shale- seas. hosted mid-to-late Cambrian microfossils extends the range of ottoiid priapulids throughout the middle to upper Key words: Burgess Shale, Small Carbonaceous Fossils, pri- Cambrian strata of the Western Canada Sedimentary Basin. apulid diversity, Selkirkia. S TEM-group priapulid worms were a conspicuous compo- in analyses of its ecological and evolutionary significance nent of level-bottom Cambrian faunas (Conway Morris (Wills 1998; Bruton 2001; Vannier 2012; Wills et al.
    [Show full text]
  • Late Precambrian Bilaterians: Grades and Clades JAMES W
    Proc. Natd. Acad. Sci. USA Vol. 91, pp. 6751-6757, July 1994 Colloquium Paper Ths par was presented at a colloquium eniled "Tempo and Mode in Evolution" organized by Walter M. Fitch and Francisco J. Ayala, held January 27-29, 1994, by the National Academy of Sciences, in Irvine, CA. Late Precambrian bilaterians: Grades and clades JAMES W. VALENTINE Museum of Paleontology and Department of Integrative Biology, University of California, Berkeley, CA 94720 ABSTRACT A broad variety of body plans and subplans decades have witnessed intense work on the early faunas, appear during a period of perhaps 8 million years (my) within and during most of that time the base of the Tommotian has the Early Cambrian, an unequaled explosion of morphological been taken as the base ofthe Cambrian. However, within the novelty, the ancestral l es represented chiefly or entirely by last few years new criteria have been developed and now the trace fossils. Evidence from the fossil record can be combined lowest Cambrian boundary is commonly based on the earliest with that from molecular phylogenetic trees to suggest that the appearance of the trace fossil Phycodes pedum (see ref. 9). lastcommon ancestor of(i) protostomes and deuterostomes was Choosing this boundary has lowered the base of the Cam- a roundish worm with a blood vascular system and (ii) of brian, enlarging that Period by about one half(Fig. 2). Despite arthropods and annelids was similar, with a hydrostatic hemo- this expansion of the Cambrian, new absolute age estimates coed; these forms are probably among trace makers of the late have caused the length of time believed to be available for the Precambrian.
    [Show full text]
  • A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils
    Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils Author(s) MacGabhann, Breandán Anraoi Publication Date 2012-08-29 Item record http://hdl.handle.net/10379/3406 Downloaded 2021-09-26T20:57:04Z Some rights reserved. For more information, please see the item record link above. A Solution to Darwin’s Dilemma: Differential taphonomy of Palaeozoic and Ediacaran non- mineralised discoidal fossils Volume 1 of 2 Breandán Anraoi MacGabhann Supervisor: Dr. John Murray Earth and Ocean Sciences, School of Natural Sciences, NUI Galway August 2012 Differential taphonomy of Palaeozoic and Ediacaran non-mineralised fossils Table of Contents List of Figures ........................................................................................................... ix List of Tables ........................................................................................................... xxi Taxonomic Statement ........................................................................................... xxiii Acknowledgements ................................................................................................ xxv Abstract ................................................................................................................. xxix 1. Darwin’s Dilemma ...............................................................................................
    [Show full text]
  • The Early History of the Metazoa—A Paleontologist's Viewpoint
    ISSN 20790864, Biology Bulletin Reviews, 2015, Vol. 5, No. 5, pp. 415–461. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A.Yu. Zhuravlev, 2014, published in Zhurnal Obshchei Biologii, 2014, Vol. 75, No. 6, pp. 411–465. The Early History of the Metazoa—a Paleontologist’s Viewpoint A. Yu. Zhuravlev Geological Institute, Russian Academy of Sciences, per. Pyzhevsky 7, Moscow, 7119017 Russia email: [email protected] Received January 21, 2014 Abstract—Successful molecular biology, which led to the revision of fundamental views on the relationships and evolutionary pathways of major groups (“phyla”) of multicellular animals, has been much more appre ciated by paleontologists than by zoologists. This is not surprising, because it is the fossil record that provides evidence for the hypotheses of molecular biology. The fossil record suggests that the different “phyla” now united in the Ecdysozoa, which comprises arthropods, onychophorans, tardigrades, priapulids, and nemato morphs, include a number of transitional forms that became extinct in the early Palaeozoic. The morphology of these organisms agrees entirely with that of the hypothetical ancestral forms reconstructed based on onto genetic studies. No intermediates, even tentative ones, between arthropods and annelids are found in the fos sil record. The study of the earliest Deuterostomia, the only branch of the Bilateria agreed on by all biological disciplines, gives insight into their early evolutionary history, suggesting the existence of motile bilaterally symmetrical forms at the dawn of chordates, hemichordates, and echinoderms. Interpretation of the early history of the Lophotrochozoa is even more difficult because, in contrast to other bilaterians, their oldest fos sils are preserved only as mineralized skeletons.
    [Show full text]
  • The Cambrian Radiation of Bilaterians: Evolutionary Origins and Palaeontological Emergence; Earth History Change and Biotic Factors ⁎ Bruce S
    Available online at www.sciencedirect.com Palaeogeography, Palaeoclimatology, Palaeoecology 258 (2008) 180–188 www.elsevier.com/locate/palaeo The Cambrian radiation of bilaterians: Evolutionary origins and palaeontological emergence; earth history change and biotic factors ⁎ Bruce S. Lieberman Department of Geology, 120 Lindley Hall, 1475 Jayhawk Blvd., University of Kansas, Lawrence, Kansas 66045, United States Accepted 3 May 2007 Abstract Evidence from a variety of research areas, including phylogenetic palaeobiogeographic studies of trilobites, indicates that there may be a fuse to the Cambrian radiation, with a duration on the order of 20–70 myr. Evolution in trilobites appears to have been powerfully influenced by the tectonic changes occurring at the end of the Neoproterozoic: especially the breakup of Pannotia. This continental fragmentation may have also elevated opportunities for vicariance and speciation in trilobites, and other metazoans, given that speciation rates at this time period were high, though not phenomenally so. This provides clear evidence that abiotic factors played an important role in motivating evolution during this key episode in the history of life; biotic factors probably also played a role. The evidence for the role of biotic factors is considered in light of information from some problematic Cambrian taxa. These may show affinities with modern problematic pseudocoelomate phyla, although Cambrian and modern exponents differ dramatically in body size. © 2007 Elsevier B.V. All rights reserved. Keywords: Biogeography;
    [Show full text]
  • The Emu Bay Shale Konservat-Lagerstätte: a View of Cambrian Life from East Gondwanajohn R
    XXX10.1144/jgs2015-083J. R. Paterson et al.Emu Bay Shale Konservat-Lagerstätte 2015 Downloaded from http://jgs.lyellcollection.org/ by guest on October 2, 2021 2015-083review-articleReview focus10.1144/jgs2015-083The Emu Bay Shale Konservat-Lagerstätte: a view of Cambrian life from East GondwanaJohn R. Paterson, Diego C. García-Bellido, James B. Jago, James G. Gehling, Michael S.Y. Lee &, Gregory D. Edgecombe Review focus Journal of the Geological Society Published Online First doi:10.1144/jgs2015-083 The Emu Bay Shale Konservat-Lagerstätte: a view of Cambrian life from East Gondwana John R. Paterson1*, Diego C. García-Bellido2, 3, James B. Jago4, James G. Gehling2, 3, Michael S.Y. Lee2, 3 & Gregory D. Edgecombe5 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia 2 School of Biological Sciences & Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia 3 Earth Sciences Section, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia 4 School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia 5 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK * Correspondence: [email protected] Abstract: Recent fossil discoveries from the lower Cambrian Emu Bay Shale (EBS) on Kangaroo Island, South Australia, have provided critical insights into the tempo of the Cambrian explosion of animals, such as the origin and seemingly rapid evolution of arthropod compound eyes, as well as extending the geographical ranges of several groups to the East Gondwa- nan margin, supporting close faunal affinities with South China.
    [Show full text]
  • Yunnantozoon and the Ancestry of Chordates
    Yunnantozoon and the ancestry of chordates Dzik. J. lgg5. Yunnantozoon and the ancestry of chordates. Acta Palneontologica Polonica 4o' 4, 34 1-360. The oldest known chordate, Yunnanozoon lluidum Hou et al. f 991, from the Chen$iang Lagerstette of Yunnan shows several features in its anatomy that had not been e><pectedto occur at this stage of evolution. Its metameric dorsal myomeres were separated by straight myosepta. The notochord was located ventrad of the muscular blocks instead of being bordered by them. The pharynx did not contain any filtratory basket but had only seven pairs of branchial arches. These were composed of rows of minute scleritic se$ments that connected the notochord with a rigid ventral trough. The head region was rather complex in organization and bore a specialized ring-like mouth apparatus. The presence of sensory organs, perhaps large eyes with sclerotic rings, is probable. Only tl th: remarkable elongation of the notochord and metameric arrangement of oval gonads this early chordate is similar to Branchiostoma. The anterior part of the muscular blocks of Yunnanozoon resembles a little the proboscis and collar of the enteropneusts and may perhaps be homologous with these structures, although inyunnanto?-oonthey are displaced much behind the mouth. The whole metameric 'quilted muscular unit is proposed to correspond to the pneu structure' of the Ediacaran problematic fossil Dickiraonis.. Monotypic Yunnanozoa classis n., Yun- nanozoida ordo n., and Yunnanozoidae fam n. are proposed for this early chordate. K e y w o r d s : Cambrian, Precambrian, chordates, conodonts, cephalochordates, Dickinsonta, origins, PhYlogenY. Jerzg Dzik, Instgtut Paleobiologii PAIV,Aleja Zuirki- i Wtgury 93 , O2-O89Wqrszawa, Poland.
    [Show full text]
  • Paleoecology of the Greater Phyllopod Bed Community, Burgess Shale ⁎ Jean-Bernard Caron , Donald A
    Available online at www.sciencedirect.com Palaeogeography, Palaeoclimatology, Palaeoecology 258 (2008) 222–256 www.elsevier.com/locate/palaeo Paleoecology of the Greater Phyllopod Bed community, Burgess Shale ⁎ Jean-Bernard Caron , Donald A. Jackson Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5 Accepted 3 May 2007 Abstract To better understand temporal variations in species diversity and composition, ecological attributes, and environmental influences for the Middle Cambrian Burgess Shale community, we studied 50,900 fossil specimens belonging to 158 genera (mostly monospecific and non-biomineralized) representing 17 major taxonomic groups and 17 ecological categories. Fossils were collected in situ from within 26 massive siliciclastic mudstone beds of the Greater Phyllopod Bed (Walcott Quarry — Fossil Ridge). Previous taphonomic studies have demonstrated that each bed represents a single obrution event capturing a predominantly benthic community represented by census- and time-averaged assemblages, preserved within habitat. The Greater Phyllopod Bed (GPB) corresponds to an estimated depositional interval of 10 to 100 KA and thus potentially preserves community patterns in ecological and short-term evolutionary time. The community is dominated by epibenthic vagile deposit feeders and sessile suspension feeders, represented primarily by arthropods and sponges. Most species are characterized by low abundance and short stratigraphic range and usually do not recur through the section. It is likely that these are stenotopic forms (i.e., tolerant of a narrow range of habitats, or having a narrow geographical distribution). The few recurrent species tend to be numerically abundant and may represent eurytopic organisms (i.e., tolerant of a wide range of habitats, or having a wide geographical distribution).
    [Show full text]
  • (Alexander) Jih Pai
    Curriculum Vitae (Alexander) Jih-Pai Lin Associate Professor Department of Geosciences National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC www.trilobite.taipei Education: B.S. (magna cum laude), Tennessee Technological University 1997-2001 M.S., The Ohio State University, 2001-2003 (Advisor: Loren Babcock) Ph.D., The Ohio State University, 2004-2007 (Advisor: William I. Ausich) Postdoctoral Fellow, Yale University, 2008-2010 (Advisor: Derek E. G. Briggs) Research Position: Full-time researcher; Nanjing Institute of Geology and Palaeontology (NIGPAS), Chinese Academy of Sciences (CAS), 2010-2014 Summary of representative studies within the last five years: Chemostratigraphic correlations across the first major trilobite extinction and faunal turnovers between Laurentia and South China. Scientific Reports 9, 17392, doi:10.1038/s41598-019-53685-2 (2019). First author and corresponding author. Summary of more than a decade of field work and data analyses on the first major trilobite biomere boundary. Based on eight sections in both North America and South China, we have provided the most updated chemostratigraphy, biostratigraphy and sequence stratigraphy across the first major trilobite extinction event. In this study, we concluded that: 1) the traditional lower-middle Cambrian boundary coincides with the base of Wuliuan Stage in South China and that is very close to the base of Wuliuan Stage in North America; 2) our results agree in part with previous studies but in much finer resolution; 3) our chemostratigraphic data provide strong support for using FAD of O. indicus at the GSSP of Wuliuan Stage. Young colonization history of a widespread sand dollar (Echinodermata; Clypeasteroida) in western Taiwan.
    [Show full text]
  • A New Stalked Filter-Feeder from the Middle Cambrian Burgess Shale, British Columbia, Canada
    A New Stalked Filter-Feeder from the Middle Cambrian Burgess Shale, British Columbia, Canada Lorna J. O’Brien1,2*, Jean-Bernard Caron1,2 1 Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, 2 Palaeobiology division, Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada Abstract Burgess Shale-type deposits provide invaluable insights into the early evolution of body plans and the ecological structure of Cambrian communities, but a number of species, continue to defy phylogenetic interpretations. Here we extend this list to include a new soft-bodied animal, Siphusauctum gregarium n. gen. and n. sp., from the Tulip Beds (Campsite Cliff Shale Member, Burgess Shale Formation) of Mount Stephen (Yoho National Park, British Columbia). With 1,133 specimens collected, S. gregarium is clearly the most abundant animal from this locality. This stalked animal (reaching at least 20 cm in length), has a large ovoid calyx connected to a narrow bilayered stem and a small flattened or bulb-like holdfast. The calyx is enclosed by a flexible sheath with six small openings at the base, and a central terminal anus near the top encircled by indistinct openings. A prominent organ, represented by six radially symmetrical segments with comb-like elements, surrounds an internal body cavity with a large stomach, conical median gut and straight intestine. Siphusauctum gregarium was probably an active filter-feeder, with water passing through the calyx openings, capturing food particles with its comb- like elements. It often occurs in large assemblages on single bedding planes suggesting a gregarious lifestyle, with the animal living in high tier clusters.
    [Show full text]
  • Canada Archives Canada Published Heritage Direction Du Branch Patrimoine De I'edition
    THE BURGESS SHALE: A CAMBRIAN MIRROR FOR MODERN EVOLUTIONARY BIOLOGY by Keynyn Alexandra Ripley Brysse A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute for the History and Philosophy of Science and Technology University of Toronto © Copyright by Keynyn Alexandra Ripley Brysse (2008) Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-44745-1 Our file Notre reference ISBN: 978-0-494-44745-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]