<<

A search for t[bar over t] resonances in lepton+jets events with highly boosted top quarks collected in pp collisions at √s = 7 TeV with the ATLAS detector

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation Aad, G., T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A. A. Abdelalim, O. Abdinov, et al. “A search for t[bar over t] resonances in lepton+jets events with highly boosted top quarks collected in pp collisions at √s = 7 TeV with the ATLAS detector.” J. High Energ. Phys. 2012, no. 9 (September 2012). © CERN, for the benefit of the ATLAS collaboration

As Published http://dx.doi.org/10.1007/jhep09(2012)041

Publisher Springer-Verlag

Version Final published version

Citable link http://hdl.handle.net/1721.1/86206

Terms of Use Creative Commons Attribution

Detailed Terms http://creativecommons.org/licenses/by/3.0/ JHEP09(2012)041 Springer July 10, 2012 : August 16, 2012 : September 13, 2012 : collisions at Received 10.1007/JHEP09(2012)041 Accepted pp Published doi: Published for SISSA by 5 TeV is excluded. . = 7 TeV collected in 2011 with the ATLAS s √ invariant mass spectrum is found to be compatible ¯ t t resonances in lepton+jets events with ¯ t t TeV with the ATLAS detector Hadron-Hadron Scattering of proton-proton collisions at A search for resonant production of high-mass top-quark pairs is performed , Copyright CERN, 1 production rate through new massive states. An upper limit of 0.7 pb is set [email protected] − ¯ t t = 7 s E-mail: Open Access for the benefit of the ATLAS collaboration with the Standardon Model the prediction andon 95% the credibility production level crossA upper Kaluza-Klein section limits gluon times with are branching a derived mass fraction smaller of than a 1 Keywords: narrow 1 TeV resonance. Abstract: on 2.05 fb experiment at theis Large specifically Hadron designed Collider.boosted for top the This quarks. particular analysis The topology of observed that the arises lepton+jets from final the state decay of highly The ATLAS collaboration highly boosted√ top quarks collected in A search for JHEP09(2012)041 are reconstructed as a ] experiment, but also 1 14 11 6 9 system 5 boosted objects ¯ t t – 1 – 3 11 ] for the reconstruction and identification of highly boosted, 24 2 2 ]. 14 4 , 1 3 19 jet. An overview of the tools developed for the reconstruction of boosted objects fat +jets production normalization and control regions The topology that forms when these Lorentz-boosted top quarks decay differs in impor- W New tools have been developed tolution fully proposed exploit by the Seymour potential [ ofhadronically these decaying, states. massive particles, We where adoptsingle a these so- is found in refs. [ high-mass final states are ofa particular number interest of for extensions searches for ofthe massive the most states Standard interesting predicted Model. by ofrepresent High-mass the a pairs considerable final of experimental states top challenge. explored quarks are by among the ATLAStant [ respects from that encountered when top quarks are produced approximately at rest. 1 Introduction The Large Hadron Collider (LHC)dard opens Model up (SM) a particles new can kinematic be regime, where produced pairs with of an Stan- invariant mass of several TeV. Such The ATLAS collaboration 9 Comparison of data to10 the Interpretation Standard Model prediction 11 Summary 6 Estimate of the multijet background7 from data 8 Systematic uncertainties 3 Data and Monte Carlo samples 4 Physics object reconstruction and5 selection Event selection and reconstruction of the Contents 1 Introduction 2 The ATLAS detector JHEP09(2012)041 ] ] , t ) ]. 0 k ¯ 8 q 15 [ 11 KK , bq g 1 10 → = 0 and a resonance 2 is defined as boson f ¯ t W b t 900 GeV [ 0 T p Z > → 0 t ] and D0 [ Z 9 = 1 and – m 5 bosons from the top 1 is measured with respect f ] with a mass smaller φ ] at W 18 16 , 5%. The first 5. . ] with invariant mass, we interpret . 17 ¯ 15 t t ]. For the choice of parameters -axis points up. The pseudorapidity = 2 y boson [ | 18 ) = 92 0 η , ¯ t | t Z 0) than is usually employed in AT- . 17 → 2. The transverse momentum = 1 θ/ KK ]. Jets are reconstructed with the anti- +jets” channel, depending on whether the R coverage in solid angle. g , where one of the µ ( ` 13 π `ν ln tan range up to 0 BR – 2 – ¯ q − 2 bq ¯ = b η → as +jets” or “ ¯ t e θ t resonances carried out by the CDF [ ¯ t t → invariant mass distribution. ] exclude Kaluza-Klein gluons [ ¯ t t pp 20 -axis along the beampipe. The azimuthal angle , z ] is a multi-purpose particle detector with a forward-backward 12 1 boson mass. 0 ] at 95% CL. Z ] used here, the KK gluon manifests itself as a relatively broad resonance 12 ) relies on the large boost of the top quarks; the jet assignment is based on 19 ` resonance searches are relevant for any extension of the Standard Model that ] with a larger radius parameter ( ¯ t 3%) with a branching fraction b`ν 14 . t . θ → ] using the present data set, this analysis is specifically designed for top-quark -axis, which points towards the centre of the LHC ring. The sin = 15 12 x p W b The inner detector (ID), composed of a silicon pixel detector, a silicon microstrip de- While Compared to searches for In this paper results are presented of a resonance search in the lepton+jets final state The specific case considered here corresponds toATLAS model uses IV a in right-handed coordinate ref. system [ with its origin at the nominal interaction point in the = 2 1 /m is defined in terms of the polar angle → T width of 1.2% of the centre of the detector andto the the η p symmetric cylindrical geometry and almost 4 tector and a transition radiation tracker,of provides charged efficient reconstruction particles of in the the trajectories pseudorapidity than 1.13 TeV [ 2 The ATLAS detector The ATLAS detector [ The second benchmark model envisagesas a predicted Kaluza-Klein in (KK) models excitation with ofof warped the Lillie extra gluon dimensions et [ al. [ (Γ searches on LHC data [ leads to an enhanced top quarkthe pair result production within rate two at specific large represents benchmark an models. example of The a leptophobicthe narrow width topcolor resonance, of where the the reconstructed experimental masslevel resolution peak. (CL) dominates limit The on Tevatron the searches mass have of set the a leptophobic 95% topcolor credibility is reconstructed as asubstructure. single fat Also jet. the reconstructiont The of selection the relies second stronglythe top on vicinity quark an to candidate analysis the (with charged of the lepton the decay originating jet from the top quark decay. collaborations at Run IILAS of [ the Fermilab Tevatronpairs Collider and with a an previous invariantalgorithm mass search [ by beyond AT- 1 TeVLAS. [ The highly energetic top quark decaying to three jets of hadrons ( that arises in thequarks reaction decays to a chargedare lepton classified and a as neutrino, belonging and tocharged the the lepton other “ to is jets an ofsignal electron hadrons. in or the Events a reconstructed muon. We search for the distinct shape of a resonant JHEP09(2012)041 ], are 39 [ Herwig 7), while ]), 4.6 pb . 1 34 ) thresholds < T | p η | Pythia ] parton distribu- or 27 [ -channel [ t Herwig ]) are used. Samples generated CTEQ6.6 36 ] with 26 ]. – 23 production, vector boson production in asso- 22 [ , ¯ t – 3 – t 21 ] to model effects due to the underlying event and [ 1 30 [ − ], showered with either background and electroweak single top quark produc- 38 ¯ t [ t associated production [ 08 fb . Jimmy 0 9. A highly granular lead and liquid-argon (LAr) sampling . W t ± 05 = 4 . ]. For single top quark production, 65 pb ( MC@NLO v3.41 | Powheg η 33 | – 31 ] and production process, as well as on parton showering and hadronization. 37 [ ¯ t t ]) and 15.7 pb ( 35 ] in association with 29 1) also uses LAr as the active medium, with copper and tungsten as absorber. thresholds are chosen on the efficiency plateau for the trigger. Only data recorded , . 3 T 28 AcerMC [ p The irreducible “continuum” Simulated samples are used to predict the contribution of the Standard Model back- The trigger system is composed of three consecutive levels. The level-1 trigger is based The muon spectrometer consists of one barrel and two endcap air-core toroidal mag- The ID is surrounded by a thin superconducting solenoid producing a 2 T magnetic field > = 2.4. = 2.7. Resistive plate and thin-gap chambers provide muon triggering capability up to | -channel [ | | η s | η η multiple parton interactions. The totalnext-to-next-to-leading-order production cross (NNLO) sections calculations. are basedtaken on The to approximate pair be 165 production pb( cross [ section is with evaluate the impact of systematicradiation, uncertainties the on the modelling of initial- and final-state tion are generated using tion functions (PDFs). Partonv6.5 showering and hadronization are performed using subdetectors are required tointegrated be luminosity operational. of The 2 resulting data sample corresponds togrounds, an the most important ofciation which with are jets and multijet production. Monte Carlo (MC) simulations are also used to using a single-muon orset single-electron at trigger 18 with GeV transverseused momentum for in ( muons the and offline 20fline selection GeV are or more 22 stringentunder than GeV those stable for used beam electrons. in conditions the The between trigger, object March and requirements and the of- August 2011 are used. Moreover, all Hz which is recorded for analysis. 3 Data and MonteThe Carlo data samples used in this search were collected by the ATLAS detector at the LHC in 2011 | on custom-built hardware thatrate processes to coarse a detector design informationlevels, value to level-2 of reduce and at the the most event event 75 filter, kHz. which together This reduce is the followed event by rate two to software-based a trigger few hundred ( nets, each consistingaround of the eight calorimeter. superconductingtubes coils Three and arranged layers cathode symmetrically of| precision strip in tracking chambers, azimuth chambers, allow consisting precise of muon drift momentum measurement up to and by a hermetic calorimeterparticle system, showers which up provides to three-dimensionalcalorimeter reconstruction provides of a precisehadronic measurement calorimeter of uses the steel energy andthe endcaps scintillating of use tiles electrons LAr in as and the the active photons. barrel material and region The copper ( as absorber. The forward calorimeter JHEP09(2012)041 ] µ 46 , with Alp- . The 45 ] PDFs [ 7 43 [ . Then the sim- µ . The production 1 Pythia v6.421 ] simulation of the AT- ] and a K-factor of 1.3 is production, and 0.97 pb 50 47 MRST2007LO* ]. The KK gluon production Madgraph v4.4.51 WZ 48 -based [ with +jets) is simulated with the for the KK gluon in Randall-Sundrum . Interference with Standard Model ¯ t V ]. t 49 → GEANT4 ] PDFs. Only leptonic vector boson decays . Matching of parton showers to the matrix KK Pythia v8.1 [ g 41 [ – 4 – Herwig v6.5 → process are generated using ]. ¯ Jimmy t pp t 2.8. K-factors are applied such that the production 42 Pythia → and < 0 | Z η CTEQ6L1 | → production, 3.46 pb (1.60) for ]. The cross sections (K-factors) used for these filtered samples pp 44 Herwig boson samples are evaluated as in ref. [ +jets yield is derived from data, as described in section WW ) are considered for these backgrounds. Events are generated in 0 − W Z ` + 10 GeV and ` PDFs, and showered with ] and reconstructed with the reconstruction software used also for data. > → 51 ] generator with production. in the topcolor model and T production process, as well as on the parton showering and hadronization. p 40 Z ¯ PDFs. Kaluza-Klein gluons are generated with t [ . A filter is applied at the generator level that requires the presence of one t ¯ t Production cross sections times branching fraction for the resonant signal processes , t ZZ ` BR [pb] 39.4 20.8 11.6 6.8 4.1 1.7 0.73 0.35 0.18 0.095 → `ν × BR [pb] 10.3 5.6 3.2 1.9 1.2 0.46 0.19 0.068 0.039 0.018 0 × Z CTEQ6L1 0 KK Jimmy → All generated samples are processed using a Signal samples for the Diboson samples are produced using Vector boson production with associated jets ( Z g interactions per bunch-crossing, which are quantified by the variable production is not taken into account. The production cross sections times branching → σ σ Mass [GeV] 600 700 800 900 1000 1200 1400 1600 1800 2000 +jets sample, which has a much smaller contribution to the signal region, is normalized W ¯ t The trigger response isminimum-bias emulated events are in overlaid the onpp offline the software. hard process A to varyingulated account number for events the are of effect reweighted simulated of sodistribution. multiple that the data and the simulated sample have the same cross sections for the applied to account for next-to-leading-ordercross (NLO) sections effects are [ determined using LAS detector [ CTEQ6L1 with t fraction used for both benchmark signal models are presented in table and lepton with cross sections agree with resultsthe obtained MSTW2008 using PDF set the [ MC@NLOare: Monte Carlo 11.5 generator pb and (1.48)(1.30) for for elements avoids double counting ofnormalization parton of emissions in the bothZ parts of the calculation.to The the inclusive NNLO cross section [ gen v2.13 ( exclusive bins of parton multiplicityevents up are to showered four, with and inclusively for larger multiplicity. The models with warped extra dimensions. used to evaluate systematication, uncertainties the on the modelling of initial- and final-state radi- Table 1. pp JHEP09(2012)041 ]. 0. . 47, . 56 2 , = 1 < 54 | R 2 around . ]. For the - dependent 14 = 0 η cluster η 2 | ) η events in data, and - and calibration, clusters T + (∆ p ee 5. Non-isolated muons . 2 52. The isolation trans- algorithm [ 2 . ) local → ]. t 1 φ < k 56 Z | < (∆ η | | p = cluster ]. In the η R | 3 around the muon candidate, after 55 . < = 0 37 . ] and validated with collision data [ R , are both less than 4 GeV. 54 T p – 5 – ]. The EM cluster must be within 52 cone of radius ∆ 4 is used. The input to the jet algorithm is formed by . φ − = 0 . η 5 R interactions is accounted for by applying a correction that de- pp 3 ]. Such topological clusters form the input to the jet reconstruction algorithm. 54 , 53 Calorimeter cells are clustered using a three-dimensional representation of the en- The isolation requirement on the leptons results in some loss of signal efficiency at high Muon candidates are reconstructed from track segments in different layers of the muon The jet four-vector is obtained by summing the four-vectors of the (massless) clusters in the calorimeter masses, as shown in section 3 ¯ t hadronization of massless gluons or light quarks acquire a non-zero mass [ The validity of the calibrationjets of outside fat this jets is regionto limited are to the not absolute jet considered. rapidity invariant mass. smaller For the than 2 fat and jets a furtherassociated correction with the is jets. applied As the jet components have non-zero opening angle, even jets that result from the density. A correction iscalibrated applied topological to clusters the are thus clustertypically corrected that for within depends calorimeter 10% non-compensation on of and thisjet the are classification. energy transverse Locally scale momentum of andcalibration the pseudorapidity factors corresponding obtained are particles. from corrected simulation In [ using both cases the first type, a radius parameter topological clusters calibrated at the EMby energy electrons scale, or appropriate photons. for theThese A energy jets deposited second are henceforth set referred ofis to jets as formed is fat by jets. created locally with Theare input calibrated a classified to topological radius as this parameter hadronic second clusters jet or [ reconstruction electromagnetic based on the cluster shape, depth and energy t ergy depositions inrithm [ the calorimeterTwo with types of a jets nearest-neighbour are used, noise-suppression both algo- reconstructed with the anti- tion from both detector systems,are and rejected are by required requiring toof that satisfy the track energy transverse deposited momentasubtraction in in of the the a calorimeter muon and cone energy the deposit of scalar or ∆ sum isolation transverse energy to be less than 3.5 GeV. chambers. These segments areprocedure then that combined, takes starting materialinner from effects detector. the into outermost account, The and layer, candidate with matched trajectories with a are tracks found refitted in using the the complete track informa- found in the calorimeterthe in electron an position. The energyparticles of from the additional electron is subtractedpends and on the the energy number of depositedto primary by vertices. decays of The hadrons contamination (including by non-isolated heavy electrons flavour) due in jets is reduced by requiring the corrected Electron candidates must have anpectations electromagnetic based (EM) on shower simulation, shapemust test consistent have with beam a ex- matching and track reconstructed inexcluding the the ID calorimeter [ transitionverse region energy at is 1 determined as the transverse component of the sum of the energy deposits 4 Physics object reconstruction and selection JHEP09(2012)041 T T p p 4 of any 60 GeV. . 400 MeV. > 25 GeV. In is required. = 0 > ) 4 > T R ]. ) p miss T 54 of muons passing miss T `, E T ( 20 GeV are rejected. p is the charged lepton T `, E ` T > ( m p T T + p m 4 miss T system ), where E ¯ φ t t 4 jet with cos ∆ . − boson decay leaves a signature in the = 0 (1 20 GeV are rejected. R W miss T 20 GeV is identified as out-of-time activity, is chosen. If the discriminant of the quadratic > E | ` T – 6 – T z > p p p 2 system. If the quadratic equation yields two real | T 25 GeV. p p 4 of any > . = miss T T T E = 0 E m 4, and muons, such that a cell is uniquely associated with R . 4 and with . 20 GeV is required, as well as +jets channel, the magnitude of the missing transverse momen- of the missing transverse momentum is constructed from the e = 0 > = 0 R R miss T miss T E 2 of an electron passing the electron selection cuts are removed from the E . = 0 R boson decay, the neutrino momentum can be reconstructed by imposing a must be larger than 35 GeV and the transverse mass W is the azimuthal angle between the lepton and the missing transverse momentum. miss T φ +jets channel, E Assuming the missing transverse momentum is dominated by the escaping neutrino The escaping neutrino from the leptonic A single isolated charged lepton that meets the quality criteria of section For all reconstructed objects in the simulation, scale factors and additional smearing Overlap between the different object categories is avoided by the following procedure. The magnitude µ The transverse mass is defined as mass constraint on the lepton- 4 W solutions, the solution with theequation smallest is negative, the magnitude of theand missing ∆ transverse energy is adjusted to get in the two channels. In the tum the from the Selected electrons mustdecision. match the Events online wheremuon lepton an are discarded. electron candidate shares20 responsible Muons GeV an for are and inner electrons required the must detector to have trigger track have with abalance transverse a of momentum the non-isolated event. greater Different than selections, optimized to suppress multijet events, are applied Events accepted by the single-electronone or reconstructed single-muon primary trigger vertex are withEvents required at are to least have discarded five at associated if least calorimeter tracks noise, any with or jet is with located in a problematic area of the calorimeter [ and simulation.corresponding The systematic uncertainties. uncertainties on these scale5 factors are Event used selection to and reconstruction determine of the the jet collection. Muons withinSubsequently, ∆ events where the selected electronjet is reconstructed separated with by less than ∆ are applied to compensate for the difference in reconstruction efficiencies between data taken at the correctedthe energy event scale selection is used included, forwith and jets. the the contributions muons Finally, from are the anyjets subtracted. track calorimeter are cells included The associated at remaining the clusters EM energy not scale. associatedJets with within ∆ electrons or vector sum of the energyCalorimeter deposits cells in are calorimeter associated cellsjets with associated a reconstructed with parent with topological physics clusters. objecta single in a physics chosen object.scale, order: Cells electrons, and belonging double to electrons counting are of calibrated cell-energies at the is electron avoided, energy while cells belonging to jets are JHEP09(2012)041 4 . ) are = 0 ` boson to the R ) to the 0) jet at b`ν φ . W 5 TeV. The . `, j → in ( ]. = 1 R = 2 12 ¯ t R t W b m → t back-to-back invariant mass: ¯ t t – 7 – 30 GeV is found in this region. If several jets > 5 from the jet associated with the semi-leptonic top 0 in red (colour online). T . . p 1 = 1 > ) requirement, moreover, we avoid that clusters of energy candidate event with large R ) ¯ t t j, j ( j, j ( R R 5 is defined around the direction of the charged lepton. Events are . 1 < ) 30 GeV are found, the one with smallest angular distance ∆ l, j Event display for a ( > R view of the same event is shown in the upper right panel. Jets reconstructed with T ∆ φ p − The decay products from a highly-boosted hadronically decaying top quark form The selection of jets and their assignment to top quark candidates is designed < η 4 . semi-leptonic top decaythe (i.e. transverse the plane, two andthe top the approximate quarks top direction are of quarka the boost emitted minimum top ensures in distance quarks). that ∆ oppositecandidate. their We directions decay With require in products at this retain least ∆ one ( with lepton is retained.four-momenta of The the semi-leptonic reconstructed top lepton, the candidate neutrino is candidate and thena the constructed selected single by jet. fat adding jet the that is expected to be found approximately specifically for the collimated topologyThe of lepton the decay and products jet ofexpected highly from to boosted the be top semi-leptonically quarks. collimated0 decaying in top a relatively quark small ( accepted area if of the at detector. least A one search jet region with with a null discriminant.the The signature selection of steps thecandidate based follow escaping on closely neutrino, the that and reconstructed of a the charged previous reconstruction lepton analysis of and of the the same leptonic final state [ Figure 1. left panel displays a transverseAn view of the chargedare particle indicated tracks and in calorimeter green, energy jets deposits. with JHEP09(2012)041 ¯ t t → b ¯ − → system events). 0 bW ¯ t ¯ t Z t t + W ] is required → = 107 GeV) jet is retained 56 → [ 12 T ¯ t pp d t p 12 √ d √ Z' mass [GeV] = 138 GeV, Electron channel Muon channel 4 jets in the opposite hemisphere j . m = 0 R is expected to reflect the large top quark mass, – 8 – 0. The invariant mass of the system formed by j . illustrates the reconstruction procedure. Of the m ], and the last splitting scale 1 = 1 57 4, the jet closest to the lepton is associated with the [ . R Simulation = 0 and is seen to depend strongly on the resonance mass, = 641 GeV, jet mass 2 R T p = 7 TeV 7 = s FastJet ATLAS 0 500 1000 1500 2000

5 0

15 10 30 25 20 efficiency [%] efficiency is either an electron or a muon, corresponding to approximately 30% of ` 250 GeV. The fat jet mass algorithm in t Estimate from Monte Carlo simulation of the selection efficiency for the leptophobic > k T p , where After this selection, the dominant background is Standard Model top-quark pair The efficiency times acceptance for signal events due to resonant The sample event display in figure bjj ¯ benchmark model. Only events with the targeted final state are considered ( b ` 0 the requirement on the minimumthe distance top between quarks the lepton are and so the highly nearest boosted. jet, because production. Two furthercontribution. Standard The Model yield processes due are to expected multijet to production, have where an the important isolated lepton signature when the event isthe reclustered two with top quark candidates is approximately 2.5 TeV. production is shown inwith figure a relatively steepgreater than turn-on 2 at TeV approximately the 800 acceptance is GeV. degraded, For primarily resonances due with to a the lepton mass isolation and candidate and the hadronically decaying top quark candidate. three jets reconstructed with leptonic top quark candidate.merge The into two remaining a single fat jet ( and is required tousing be the greater thanto 100 be GeV. greater Finally, than the 40as GeV. jet the If components hadronic more top are thanis candidate. reclustered one reconstructed fat The by jet four-vector adding is momentum found, the associated the four-momenta with leading of the the semi-leptonically decaying top quark The error bars shown correspond to the Monte Carlo statistical uncertainty. deposits in the calorimeter areto shared have between the two types of jets. The fat jet is required Figure 2. Z `ν JHEP09(2012)041 . The 6 2%) compared to decays in flight, . ± = 1 K /m invariant mass distribution and ¯ t t mass [GeV] ± t π = 1 TeV =1 TeV 1.3 = TeV 1.6 = TeV 2.0 = ] shows that this approach is Z' Z' Z' Z' m m m m 12 mass minus the true resonance mass, is ¯ t reconstructed t t – 9 – ]. Thus, migration from the low-mass region into the Simulation 13 ]. It exploits control regions with leptons satisfying looser = 7 TeV 7 = mass distribution for four benchmark samples is shown in 58 s ATLAS ¯ t t 0 500 1000 1500 2000 2500 0 . Further contributions from Standard Model processes are expected 0.1 . The natural width of the resonance is small (Γ 0.2 mass distribution, as a result of the convolution of the steeply falling 0 0.08 0.06 0.04 0.02 0.22 0.18 0.16 0.14 0.12 boson production in association with jets is normalized using data, as

7

Z ¯ t event fraction event t W Estimate from Monte Carlo simulation of the reconstructed . For resonance masses between 1 TeV and 1.6 TeV the mass resolution, from a 3 The reduced high-mass tail compared to Reference [ The reconstructed 6 Estimate of theTo multijet avoid background the from large data systematicfrom and multijet statistical production, uncertainties inusing the the the contribution MC Matrix prediction to Method ofidentification the events [ requirements signal region to is disentangle estimated the from contributions data from multijet production, intrinsically robust against thedue confusion to that initial-state arises fromhigh-mass radiation region the [ is presence minimal. of additional jets Gaussian fit to the distributionapproximately of 10%. reconstructed The tail thatin extends the to generated lower masses isparton present luminosity to with a lesser the degreethe resonance also 1.6 line TeV shape. and 2 This TeV effect points. is especially pronounced for contribution of reported in section to be small, and their prediction is based onfigure Monte Carlo estimates. mass appears due to the convolution with the rapidly falling parton luminosity. is faked by leptonselectrons from from heavy-flavour photon conversions, decays, or muons misidentified from hadrons, is estimated in section Figure 3. for the leptophobic the experimental mass resolution. For the highest mass points a considerable tail towards smaller JHEP09(2012)041 f ee and (6.3) (6.1) (6.2) → , mass Z T p electrons), prompt are largely N  tight and 0) for events with , f 2 around the electron . is the number of events , = 0 ) = (1 A A A N R N , f ,N T −  f N  , is defined as multijets L + N N T multijets × N N f , with ( f + f + 1) 6.3 − −  – 10 –  ( prompt prompt N = N = × cover the differences between the efficiency for within the statistical and systematic uncertainties. The  L  f N = multijets T N N × f is estimated using a tag-and-probe technique on a sample enriched 1) with a loose lepton that fails the tight cuts.  , electrons have less stringent quality criteria. The electron isolation is found to be constant for the invariant mass of the top quark candidates. is the number of events with a tight lepton, and ) indicates the probability that a prompt (multijet) lepton with loose selection  . Events with exactly two loose leptons of the same flavour and opposite electric loose f , we estimate the multijets contribution to the signal region as: T ( `` N  include contributions from the uncertainty in the yield of the subtracted background → Kinematic distributions for the multijet background are constructed by assigning a The probability The total number of events with loose leptons, The f Z multijets weight to the eventsa according tight to lepton Equation orindependent (0 of the kinematicor variables split of scale interest. have Variations noefficiency of impact the on cuts on jet the invariant mass ofThe systematic the uncertainties two on leptonsevents and is other required sources to ofin this electrons, be analysis. i.e. between the 86 background and GeV signal and processes 96 considered GeV. region by prompt leptons ison estimated from MCsources simulation. and The from systematic the uncertainties differences in the definition of thein signal and multijet control regions. charge are selected. At least one of the leptons must satisfy the tight quality criteria and where with a loose leptonis which measured fail on the a tighter control cuts sample of rich in the multijet standard events. selection. The The contamination of fake the rate control where criteria passes the standard,N tight selection. Solving these two equations for The subset of events with tight leptons should satisfy associated with the electron.criteria The applied loose in muon theand definition the standard, requires muon-jet candidates tight overlap to removal. selection satisfy except all the muon isolation requirements leptons such as the production of a vector bosonrequirement plus is jets. also modified:is the required total to energy in beafter a smaller correcting cone than of for 6 ∆ energy GeV deposits (instead from of 3.5 event GeV pile-up for interactions standard and for the energy which yields non-prompt leptons and jets misidentified as leptons, and sources of prompt JHEP09(2012)041 ], ]: 59 58 (7.1) +jets W -tagging b sample de- +jets and SM W production, either , Alpgen ¯ t t . The resulting scale data ) − 7.1 W N − + +jets MC prediction is scaled by W ] operated at a nominal W N ( 60  1 + 1 − MC MC r r – 11 –  +jets) channel, are compatible with unity within = . µ 150 GeV) cut on the transverse momentum of the 8 events yields no positive tags for the jets reconstructed pred +jets enriched control region is constructed, which differs > ) ¯ t t − -tagging algorithm [ W T b +jets ( p W e N +jets channels, well within the uncertainty. The shape predicted + µ + +jets events with positive leptons to those with negative leptons [ W . Systematic uncertainties with negligible impact on the sensitivity N W . To reduce the uncertainty on the normalization, the total contribution ( 2 3 of +jets contribution to the control region is over 70%. After application of is the number of predicted or observed events with a positive (negative) W +jets and ) MC e − r 4. The observed invariant mass spectrum is compared to the SM prediction in boson is presented. . +( 0 W Z = 0 . The +jets production normalization and control regions +jets contribution to the signal region is predicted using the N 4 +jets events in the sample is determined using Equation R W Normalization and shape uncertainties on the most important Standard Model sources As a cross-check, a second W -jet veto is furthermore applied to reduce contamination due to production have small contributions to this region and are subtracted. The fraction W b ¯ t affect both the yieldthe and impact the of shape1.3 shape of TeV the uncertainties, reconstructed the mass effect distribution. on To theare estimate estimated limit using a on combination of the in situ production and Monte Carlo rate techniques. of Following ref. [ a A total of 30presented sources in of table systematicare uncertainty omitted from are the taken table,result. into even if account. Groups they of are Anexpected taken related overview into background uncertainties account is yield are in and the combined. signal interpretation yield of The the are relative given impacts for on each the source. total Most uncertainties the data-driven scale factor, the3% observed for and both predicted numberby of Monte events Carlo agree is to in within good agreement with the observed8 distribution. Systematic uncertainties from SM productionrequires or that hypothetical aefficiency sources multivariate of beyond 60% the inwith simulated Standard Model.figure The veto the factors derived here.background are The discussed uncertainty in in section the normalization and shapefrom of the the signal regionA in that the jet mass and splitting scale requirements are removed. hadronically decaying topt quark candidate.of All processes otherfactors, than 0.77 (0.75)the for uncertainty. the In the remainder of this paper, the where lepton. The methodrequirements is and applied a to looser a control ( region without jet mass and splitting scale The scribed in section to the signal region is estimated inratio situ in using MC the observed charge asymmetry in data and the 7 JHEP09(2012)041 6% +jets − +jets W W +jets and W t t Data Z+jets W+jets Diboson Multijets Single top Uncertainty mass [GeV] t +jets modelling. The un- normalization is affected by W ¯ t t +jets yield amounts to less than W production cross section. = 7TeV s ¯ t t

reconstructed t -1 +jets contribution due to the extrapolation W – 12 – . These uncertainties individually lead to 3 Ldt=2.05 fb ATLAS ∫ +jets channels are combined. The scale factors derived in µ , and the generator systematic uncertainty based on a +jets Monte Carlo distribution. The hatched area indicates W +jets background using the charge asymmetry method is Powheg invariant mass distribution of candidate events in the W ¯ t t Herwig +jets and and e and . If this contribution is added, the total uncertainty on the . The statistical uncertainty on the 2 7 0 500 1000 1500 2000 2500 3000 3500 -1 1 -2 background: the initial- and final-state radiation (ISR/FSR) systematic MC@NLO Pythia 10

¯ t 10 10

t The reconstructed events / GeV / events The impact of the luminosity uncertainty (nominallyThe 3.7%) normalization of is the reduced for the in the background subtraction100%), (normalization the of the PDFs, subtracted thecertainty backgrounds in jet is normalization energy varied and scale by shapefrom uncertainty of the and the control the region touncertainty the in signal table region is accounted for in the jet scale and resolution background, compared withmultijets, the are determined signal, from because data. two of thedescribed in backgrounds, section 10%. A systematic uncertainty of 14% is assigned to account for systematic uncertainties uncertainty, the fragmentation and partoncomparison shower of (PS) systematic uncertainty basedcomparison on of a variations in the totalthe background uncertainty yield. in the In theoretical addition, prediction the of the included. three different systematic uncertainties take into accountof the imperfections the in the SM modelling Figure 4. enriched control region. The this section have been appliedthe to normalization the uncertainty on the Standard Model prediction, but the shape uncertainty is not JHEP09(2012)041 . 2 distribution is ¯ t t m . 10 — 0.1 — 1.1 1.3 TeV sensitivity [%] 0 Z norm. norm. +jets contribution to the W background – 13 – uncertainty is negligible and is not listed in table used in the parton splittings. s miss T α E +jets modelling uncertainty obtained by varying a number W , such as the factorization scale and the scale governing the value Alpgen Systematic uncertainties and their impact on the sensitivity. All uncertainties except normalizationISR, FSR 4.9 6.3 — — 0.7 0.7 fragmentation & parton showergenerator dependence 3.4 — 2.8 0.9 — 2.2 + jets normalization 4.3 — 1.4 + jets shape + jets normalization 2.0 — 0.5 ¯ ¯ ¯ ¯ t t t t Systematic effectLuminosityPDF uncertaintyt t Impact on yield [%] Impact on 3.1 2.5 1.0 3.7 0.2 0.4 t t W W Multijets normalization 2.1 — 0.2 Multijets shape Z Jet energy and mass scale 6.7 2.0 5.2 Jet energy and mass resolution 4.7 4.0 1.2 Electron ID and reconstruction 1.1 1.3 1.0 Muon ID and reconstruction 2.2 2.1 4.8 A constant normalization uncertainty of 50% is applied to the data-drivenThe multijet uncertainties related to charged lepton reconstruction are labelled as “Electron” with a mass 1.3 TeV is chosen as the benchmark). The shape variations do not affect the overall +jets validation regions we find that the result is always consistent within the assigned 0 background estimation, as well asloose a lepton shape selection uncertainty criteria. derived by comparing two different and “Muon” in the table. The systematic uncertainty. The shapeestimated of from the simulation. Theuncertainties shape on jets uncertainty includes andof the a parameters impact in of theof systematic the strong coupling constant is ignored. The limit-setting procedure is explained in detail in section yield amounts to approximatelyW 35%. Repeating the normalization procedure on several “luminosity” and those labelled “normalization”mass affect distribution. the yield In and the theexpected shape first background of yield two the (nominally columns reconstructed 1840Z the events) relative and impact on (in thenormalization. percent) number is of The shown selected third signal onlimit events column the on (a the total lists production the cross section relative times variation branching fraction for if this the corresponding benchmark systematic of effect the expected Table 2. JHEP09(2012)041 . ]. 2 54 ]. Energy 56 5% [ − 90 80 38 36 5 0.4 130 ± ± ± ± ± ± ± -value or probability that p 0 jets is only slightly larger, . . The data are found to agree . 5 6 = 1 4 is less than 3% in the range of . R +jets channels. 50 1130 50 500 1516 75 3 75 0.2 48 70 7.9 1840 µ = 0 R ± ± ± ± ± ± ± +jets Sum µ +jets and – 14 – e jets with t 130 events). The background expectation is broken 4034 620 23 300 30 202 34 0.2 27 60 4.5 1010 k ± ± ± ± ± ± ± ± yields a total of 1837 data events, in agreement with +jets 5 e 510 , separately for 3 ], a tool that searches for local data excesses or deficits of varying mass spectrum is presented in figure 0 jet that is selected as the hadronically decaying top quark candidate, +jets 202 . +jets 41 61 ¯ t ¯ t t Type t W Multijets 45 Z Single topDibosons 21 Total 3.4 Data 830 803 1034 1837 = 1 R Selected data events and expected background yields after the full selection. The uncer- The distributions of two key observables, the transverse momentum and the invariant mass region between 1.8 and 2.5 TeV. It is most pronounced in the electron channel. ¯ t When the systematicthe uncertainties observed are excess accounted is for, found under the the assumption that the null hypothesis (Standard 10 Interpretation The compatibility of theBumpHunter data code with [ thewidth SM-only compared (null) to hypothesis thet is expected background. evaluated with The the most significant excess is found in the mass of the fat are compared with the Standard Modelwith predictions the in expectation figure withinThe the reconstructed error band that indicates the normalization uncertainty. The selection described inthe section Standard Model prediction (1840 down by source in table measured mass of fatfections jets. in An the additional pile-up 1%The model uncertainty effects on and of the non-closure these JMS uncertainties of accounts on the for the Monte imper- event Carlo yields reweighting9 and procedure. sensitivity are shown Comparison in of table data to the Standard Model prediction tant. The uncertainty on thefrom scales a for combination the of jet in energyThe situ and energy measurements, mass test scale measurements beam uncertainty is dataenergies for estimated and relevant anti- Monte for Carlo this studieswhile search. [ the The uncertainty energy on scaledeposits for the due to jet additional mass proton-proton interactions scale (pile-up) (JMS) have a is strong impact approximately on 4 the Table 3. tainties on the normalization of the expected background yield are also listed. Among the uncertainties on reconstructed objects, those related to jets are the most impor- JHEP09(2012)041 t t t t [GeV] Data Data T Z+jets Z+jets W+jets W+jets Diboson Diboson Multijets Multijets SingleTop SingleTop Uncertainty Uncertainty 0 jets selected as the hadronically fat jet p . fat jet mass [GeV] = 1 R = 7 TeV 7 = TeV 7 = s s

-1 -1 +jets channels are combined. The shaded band µ (a) (b) – 15 – Ldt=2.05 fb Ldt=2.05 fb ATLAS ATLAS ∫ ∫ +jets and e ), including the look-elsewhere effect evaluated over the full σ 300 400 500 600 700 800 900 1000 1100 are found. -1 -1 1 1 100 150 200 250 300 350 400 450 -2 -2 σ

10 10

10 10 10 10

events / GeV / events events / GeV / events Comparison of the data and the Standard Model prediction for two kinematic distribu- Model) is true, ismass 0.08 range. (1.4 Nosignificance other beyond deviations 1 with respect to the Standard Model prediction with a Figure 5. tions: (a) transverse momentum anddecaying (b) top jet mass quark of candidate. theindicates fat The the normalization uncertaintythe on shape uncertainty the or Standard the Model impact prediction, of uncertainties but on does reconstructed not objects. include JHEP09(2012)041 variation. σ mass of 0.6 TeV 0 Z t t 15 TeV for the lepto- . Data Z+jets W+jets Diboson Multijets (1.3 TeV) (1.3 SingleTop Uncertainty KK g mass [GeV] t t candidates after signal selection. ¯ t t method reduces the sensitivity on s ]. The prior probability distribution = 7 TeV 7 = CL s 62

-1 are found to have a significant impact on the – 16 – 8 Ldt=2.05 fb ATLAS ∫ resonances and broad coloured resonances are pre- ] and is in good agreement with it. Not allowing the 0 Z generator dependence, which are constrained to about 65 , ¯ t t 64 . Upper limits on the production cross section times branching 4 resonance range from approximately 8 pb for a 1.5 TeV mass range the limit on the rate including all systematic method [ 0 500 1000 1500 2000 2500 3000 3500 0 -1 1 -3 -2 − s Z model considered here. The upper value of the excluded mass range 10 10 10

], and the likelihood is calculated using a Poisson function. The sys- 0 CL events / GeV / events and table Z +jets channels are combined. The shaded band indicates the uncertainty in the 63 µ 7 Reconstructed invariant mass distribution of the +jets and e The resulting limits for narrow We set 95% CL upper limits on the production cross section times branching fraction sented in figure fraction of a narrow to 610 fb atThese 1 lead TeV to and exclusion 220phobic fb of topcolor at the 1.6 mass TeV, range in between good 0.6 TeV agreement and with 1 the expected limits. a half or a third,with respectively, the of so-called their prior uncertainty.data The to constrain result the has systematic been uncertaintiesthe cross-checked in signal the cross section by no more than 20%, which is less than the expected 1 sensitivity: in the 1.0 uncertainties is typically astatistical factor uncertainties two only. weaker The thanthey systematic uncertainties the are are limit normally accounted that distributed fordistribution would by for and be assuming each convolving one. derived aare with They Gaussian the are with jet only energy the weakly scale constrained posterior and by probability the the data. Two exceptions of new massive statesused using in Bayesian this techniques [ method,reference prior which [ is flattematic uncertainties in described the in cross section section, is a good approximation of the normalization of the Standard Modelimpact prediction, of but uncertainties on does reconstructed notresolution objects. include for the The a shape variable resonant uncertainty bin signal. or size the is chosen to match the mass Figure 6. The JHEP09(2012)041 . 6 higher than [pb] [pb] σ σ σ 5 TeV, again in . [pb] +1 [pb] +1 σ σ 1 1 − − boson is stronger by approximately 0 3%) Kaluza-Klein gluon are slightly . Z limits = 15 limits ¯ t ¯ t t t /m – 17 – → → 0 KK Z g respectively, including systematic and statistical uncertainties. ¯ t ] is excluded for a resonance mass below 1 t limit to the KK gluon limit reaches two at 2 TeV. The KK boson: 650 fb at 1 TeV and 370 fb at 1.6 TeV. The impact of 19 0 0 → and a Kaluza-Klein gluon at 2 TeV are about 1.5 Z 0 Z Z KK g variation is also given. 600700 7.7800 2.2 1.4 10.4 2.7 1.6 7.0 1.8700 15.6 1.0800 4.0 2.8900 2.3 2.3 1.0 2.9 2.1 1.5 2.0 1.4 0.97 4.2 3.0 2.2 10001300 0.611600 0.562000 0.223000 0.34 0.72 0.27 0.39 0.25 0.49 0.18 0.27 0.27 0.17 1.0 1000 0.12 0.57 1150 0.19 0.36 0.651300 0.25 0.531600 0.41 0.801800 0.372000 0.99 0.49 0.64 0.61 0.60 0.69 0.40 0.45 0.38 0.42 1.4 0.38 0.28 0.94 0.26 0.87 0.26 0.58 0.55 0.55 σ 1 and ± ¯ t events with highly boosted top quarks, it is instructive to compare the t ¯ t Mass [GeV] Observed [pb] Expected [pb] Mass [GeV] Observed [pb] Expected [pb] → t 0 0 Z Z KK Observed and expected upper limits on the production cross section times branching g To establish the potential of a selection and reconstruction scheme specifically The observed limits on the broad (Γ 30%, but the ratiogluon of model the of Lilliegood et agreement al. with [ the expectation. designed for the expected value, reflecting the small data excess atweaker 1.8-2.5 than TeV, those seen on in the the figure width is observednance also masses: in at the 1 expected TeV limits the and expected is limit on most the pronounced for large reso- fraction for The expected limit agrees with the expectedcross sensitivity section within limits for the a estimated precision. The observed upper Table 4. JHEP09(2012)041 mass [GeV] Z’ mass [GeV] KK g ]. We observe that the current 12 uncertainty uncertainty uncertainty uncertainty uncertainty uncertainty uncertainty uncertainty σσ σσ σσ σσ 2 TeV range, where the expected − Obs. 95% CL upper upper limitlimit Obs.Obs.95%95%CL CL Exp. 2 Exp. 2 Exp. 95% CL upper upper limitlimit Exp.Exp.95%95%CL CL Exp. 1 Exp. 1 Kaluza-Klein gluonKaluza-Klein gluon Exp. 1 Exp. 1 Exp. 95% CL upper upper limitlimit Exp.Exp.95%95%CL CL Leptophobic Z’Leptophobic Z’ Obs. 95% CL upper upper limitlimit Obs.Obs.95%95%CL CL Exp. 2 Exp. 2 (a) and Randall-Sundrum (b) models. The band 0 (a) and (b) Kaluza-Klein gluons. The dark (green) and (b) ATLAS ATLAS 0 Syst.+stat. errorsSyst.+stat. errors Syst.+stat. errors errors Syst.+stat. Syst.+stat. Z – 18 – Z -1 -1 = 2.05 fb = 2.05 fb dt dt

=TeV 7 =TeV 7 L L s s 800 1000 1200 1400 1600 1800 2000

∫ ∫ 2 2 600 800 1000 1200 1400 1600 1800 2000 -1 -1 1 1 branching fraction of (a) 10 10 10 10 10 10

¯ t

t

KK

Z’

→ × σ BR(Z’ ) [pb] ) t t → × σ BR(g ) [pb] ) t t Expected (dashed line) and observed (solid line) upper limits on the production cross around the signal cross section curve is based on the effect of the PDF uncertainty on the prediction. current result to a previoussearch analysis of leads the same to data significantly set [ better limits in the 1 Figure 7. section times the light (yellow) bands show theexperiments, range respectively, in and which the the limit smoothcross is solid section expected (red) times to lines branching lie correspond fraction in to 68% for the and the 95% predicted of production pseudo- JHEP09(2012)041 1 ], ]. − 13 12 ]. The sensi- 66 mass spectrum in a 2.05 fb 15 TeV for the leptophobic top- ¯ t . ] is excluded for a resonance mass t 19 0 that is required to have significant . splitting scale. = 1 t boson decays to a charged lepton and a k R W – 19 – mass spectrum is compared with a template for the Standard ¯ t t resonance range from approximately 8 pb for a mass of 600 GeV 0 Z 3%). The KK gluon model of Lillie et al. [ . model considered here. Slightly weaker limits are derived on a broad resonance 5 TeV. These resonance searches reach the sensitivity in the high-mass region that . 0 = 15 Z We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Aus- The reconstructed 2 TeV region with respect to a previously published search using the same data set [ /m − China; COLCIENCIAS, Colombia; MSMTDNRF, CR, MPO DNSRC CR and and LundbeckUnion; VSC Foundation, CR, IN2P3-CNRS, ; Czech CEA-DSM/IRFU, Republic; EPLANETMPG France; and and GNAS, ERC, AvH Georgia; European Benoziyo Foundation, BMBF, Center, Germany; Israel; DFG, GSRT, INFN, HGF, Greece; Italy; ISF, MEXT and MINERVA, GIF, JSPS, Japan; DIP CNRST, and Morocco; FOM We thank CERN for thefrom very our successful institutions operation without of whom the ATLAS LHC, could as not well be astralia; the operated BMWF, support efficiently. Austria; staff ANAS,NSERC, Azerbaijan; NRC SSTC, and Belarus; CNPq CFI, and Canada; FAPESP, Brazil; CERN; CONICYT, Chile; CAS, MOST and NSFC, tivity of this search1 geared to highly boostedThe limit top on quarks the is KK significantly gluon enhanced is in the most the stringentAcknowledgments limit on this model to date. to exclusion of thecolor mass range between(Γ 600 GeV and 1 below 1 they can verify or exclude recent proposals such as that of Djouadi et al. [ Model prediction constructed usingsurements a using control combination samples. of Theuncertainties. Monte data Carlo are Upper found simulations to limits and beratio at mea- compatible of 95% with the the CL SM narrow to on within 220 the fb production for cross a mass section of times 1.6 branching TeV, in good agreement with the expected limits. These lead reconstruction are specificallythe designed decay of foridentified boosted as the a top single collimated jet quarks.substructure, with topology as radius measured parameter that by The the arises hadronically jet mass decaying from and top quark candidate is We present resultsdata of set a collected search withLarge for the Hadron resonances Collider ATLAS in detector atlepton+jets a the during final centre-of-mass the state energy 2011neutrino, of obtained proton-proton 7 and when runs TeV. the one of The other the analysis focuses decays on to the a quark and an anti-quark pair. The selection and is improved by aa factor partial 1.5 implementation to ofespecially 2. in the the algorithm It isolation designed requirement should in for be the highly noted lepton selection. boosted that11 the top current quarks result [ Summary represents limit on the production cross section times branching fraction for a narrow resonance JHEP09(2012)041 ]. ] Eur. ] SPIRE (2011) 2008 , , IN ] ][ ]. collisions at D 84 pairs in resonances in ¯ p ¯ t ¯ t p decaying to jets t t ¯ t SPIRE t IN ]. ][ arXiv:0911.3112 Phys. Rev. arXiv:1108.4755 [ , [ SPIRE arXiv:0710.5335 arXiv:0804.3664 IN [ production in [ TeV ][ ¯ t t 96 . ]. (2010) 183 = 1 ]. s (2008) 98 arXiv:0709.0705 (2011) 072003 √ [ SPIRE resonances in the lepton plus jets final state (2008) 051102 B 691 SPIRE IN ¯ t t IN ][ D 84 B 668 [ arXiv:1201.0008 D 77 [ – 20 – Search for resonant Limits on the production of narrow Search for new color-octet vector particle decaying to A search for resonant production of Search for resonant production of collisions at (2008) 231801 ¯ Phys. Lett. p Search for ]. p , Phys. Rev. (1994) 127 Phys. Lett. , , 100 Phys. Rev. TeV , SPIRE TeV 96 TeV C 62 IN . arXiv:1012.5412 (2012) 063001 [ ]. 96 TeV ][ 96 . . = 1 96 The ATLAS experiment at the CERN Large Hadron Collider s . = 1 Boosted objects: a probe of beyond the Standard Model physics = 1 G 39 √ s Jet substructure at the Tevatron and LHC: new results, new tools, new s SPIRE = 1 Z. Phys. √ √ IN , s [ Phys. Rev. Lett. Searches for new particles using cone and cluster jet algorithms: a √ (2011) 1661 , This article is distributed under the terms of the Creative Commons J. Phys. , TeV S08003 collaboration, C 71 of integrated luminosity of ]. ]. ]. collisions at arXiv:1107.5063 96 3 . 1 [ ¯ p collaboration, T. Aaltonen et al., collaboration, T. Aaltonen et al., collaboration, T. Aaltonen et al., collaboration, T. Aaltonen et al., collaboration, T. Aaltonen et al., collisions at collisions at − p collaboration, V. Abazov et al., ¯ ¯ p p = 1 collisions at p p SPIRE SPIRE SPIRE in s 8 fb ¯ p . ¯ t IN IN IN CDF in [ DØ in CDF p CDF t [ CDF 4 072004 CDF √ [ Phys. J. benchmarks ATLAS JINST comparative study The crucial computing support from all WLCG partners is acknowledged gratefully, A. Abdesselam et al., A. Altheimer et al., M.H. Seymour, [9] [7] [8] [5] [6] [3] [4] [1] [2] [10] References Open Access. Attribution License which permits anyprovided use, the distribution original and author(s) reproduction and in source any are medium, credited. in particular from CERN(Denmark, and Norway, ), the CC-IN2P3 ATLAS (France), Tier-1 KIT/GridKA(Italy), (Germany), facilities INFN-CNAF at NL-T1 TRIUMF (Canada), (Netherlands),(U.S.A.) NDGF and PIC in the (Spain), Tier-2 facilities ASGC worldwide. (Taiwan), RAL (U.K.) and BNL MERYS (MECTS), Romania; MES ofMSTD, Russia Serbia; and ROSATOM, MSSR, Russian Federation; ;MICINN, JINR; ARRS Spain; and SRC MVZT, andBern Slovenia; Wallenberg and DST/NRF, Foundation, Geneva, Sweden; South Switzerland; SER, Africa; and NSC, SNSF Leverhulme Trust, Taiwan; and United TAEK, Cantons Kingdom; Turkey; of DOE STFC, and the NSF, Royal United Society States of America. and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; JHEP09(2012)041 ] , ]. of ] 1 Phys. (1994) (2008) − , SPIRE (2007) Phys. 04 , IN , : version 09 ¯ t ][ 05 fb D 49 t . 2 collisions at ]. ]. ¯ p JHEP TeV using the TeV using the p , JHEP arXiv:1205.5371 , = 7 = 7 [ ]. SPIRE SPIRE s s arXiv:0805.3067 IN Single-top [ Phys. Rev. IN √ √ decaying to ][ , ]. (2001) 010 ][ 0 t SPIRE Z LHC signals from warped IN 01 [ arXiv:1101.2185 resonance in ]. [ SPIRE ¯ t (2012) 2083 t IN (2008) 029 ][ JHEP Single-top production in MC@NLO collisions at collisions at SPIRE , 07 ]. ]. C 72 IN pp pp ][ jet clustering algorithm hep-ph/0612015 , CERN, Geneva Switzerland (2011). t (2011) 1630 [ ]. arXiv:1111.1271 k SPIRE SPIRE JHEP [ , IN IN hep-ph/0210213 production in the highly-boosted all-hadronic ][ ][ , C 71 ¯ t SPIRE t IN Matching NLO QCD and parton showers in heavy – 21 – hep-ph/0305252 Eur. Phys. J. resonance searches using early ATLAS data The anti- Search for a narrow [ ][ Cross-section for topcolor resonances with the ATLAS detector in , ]. The bulk RS KK-gluon at the LHC ¯ t ¯ t t t (2008) 015003 hep-ph/0204244 TeV (2012) 051101 [ ]. ]. release note SPIRE Kaluza-Klein gluons as a diagnostic of warped models ]. 5 ]. = 7 IN Matching NLO QCD computations and parton shower : an event generator for hadron emission reactions with . [ Eur. Phys. J. D 77 s 6 6 (2003) 007 , ]. D 85 √ , CERN, Geneva Switzerland (2010). arXiv:0802.0007 arXiv:0706.3960 SPIRE SPIRE Top production: sensitivity to new physics SPIRE [ [ 08 ATLAS-CONF-2011-116 IN IN SPIRE IN Luminosity determination in Luminosity determination in Prospects for A search for (2002) 029 ][ ][ IN hep-ph/0512250 Implications of CTEQ global analysis for collider observables [ ][ SPIRE [ Search for anomalous 2011, 06 IN HERWIG HERWIG JHEP Phys. Rev. ][ , , Phys. Rev. , JHEP (2008) 013004 (2007) 115016 , arXiv:1204.2488 TeV (2006) 092 , collaboration, collaboration, collaboration, collaboration, ]. ]. 96 . 03 collaboration, hep-ph/9312324 D 78 D 76 hep-ph/0701166 arXiv:0802.1189 collaboration, V.M. Abazov et al., [ hep-ph/9911288 = 1 [ [ SPIRE SPIRE s 6, . hep-ph/0011363 IN IN [ ATLAS Rev. interfering gluons (including supersymmetric[ processes) JHEP hadroproduction in association with a[ W boson simulations flavor production ATLAS ATLAS detector at the LHC ATLAS ATLAS detector in Rev. 074 CMS final state 4454 extra dimensions ATL-PHYS-PUB-2010-008 063 2 ATLAS proton-proton collisions at DØ √ G. Corcella et al., G. Corcella et al., S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, P.M. Nadolsky et al., S. Frixione and B.R. Webber, S. Frixione, P. Nason and B.R. Webber, S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, B. Lillie, L. Randall and L.-T. Wang, C.T. Hill and S.J. Parke, K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, B. Lillie, J. Shu and T.M. Tait, M. Cacciari, G.P. Salam and G. Soyez, R.M. Harris, C.T. Hill and S.J. Parke, [28] [29] [26] [27] [23] [24] [25] [21] [22] [19] [20] [16] [17] [18] [14] [15] [12] [13] [11] JHEP09(2012)041 ] 02 , ]. D 0 . ]. 2 2 s D 82 , α 05 -channel C 55 B 644 Eur. JHEP t SPIRE , , IN ]. SPIRE ][ IN ]. (2007) 028 Phys. Rev. ]. JHEP ][ , , Phys. Rev. SPIRE 09 arXiv:0911.5166 , IN [ ]. SPIRE SPIRE ][ IN Eur. Phys. J. Erratum ibid. IN , [ ][ [ decaying to top-antitop JHEP 0 , SPIRE ]. Z IN Threshold expansion of the (2010) 483 ][ ]. arXiv:1103.2792 [ ]. arXiv:0709.2092 SPIRE ]. [ (1991) 343 IN physics and manual SPIRE ]. ][ B 690 4 . SPIRE IN arXiv:1005.4451 6 SPIRE Next-to-leading order QCD corrections to IN ][ [ hep-ph/0405247 IN arXiv:0804.1476 B 359 ][ Parton distributions for the LHC SPIRE A complete calculation of the order [ 5, ][ Multiparton interactions in photoproduction . (2007) 070 IN ]. 6 (2011) 091503 ][ arXiv:1007.1327 11 ]. Phys. Lett. PYTHIA [ : the new web generation – 22 – SPIRE ), ]. -channel single top quark production D 83 4 4 s ]. ]. s IN α hep-ph/9601371 Nucl. Phys. (2010) 054018 SPIRE ( Matching NLO QCD computations with parton shower ][ JHEP [ , The Monte Carlo event generator AcerMC version IN O , (2008) 034003 SPIRE arXiv:1112.4928 ][ hep-ph/0206293 SPIRE SPIRE [ IN and HERWIG hep-ph/0201195 [ D 82 (2011) 1034 IN IN factor [ ][ 2 Parton distributions for LO generators . ]. ][ ][ D 78 Phys. Rev. 6 K arXiv:0901.0002 , MadEvent: automatic event generation with MadGraph 182 (1996) 637 [ Cross sections for leptophobic topcolor Theoretical status and prospects for top-quark pair production at SPIRE ALPGEN, a generator for hard multiparton processes in hadronic (2003) 001 ]. IN (2012) 2072 C 72 Phys. Rev. (2002) 012 cross section at arXiv:1001.5034 ][ , New generation of parton distributions with uncertainties from global QCD 07 [ Phys. Rev. − X 07 MadGraph/MadEvent v HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR , arXiv:1004.0876 (2009) 189 H Next-to-next-to-leading-order collinear and soft gluon corrections for NNLL resummation for Two-loop soft anomalous dimensions for single top quark associated production SPIRE C 72 + [ IN ¯ hep-ph/0208156 arXiv:0711.2473 hep-ph/0603175 or Q Z. Phys. [ [ [ JHEP Q − , JHEP , C 63 ]. , → W ) ¯ q (2010) 054028 q SPIRE ( arXiv:0706.2334 IN Eur. Phys. J. the heavy resonance production and(2010) decay 014020 into top quark pair at the LHC Phys. J. (2003) 027 [ correction to the Drell-Yan (2002) 403] [ (2008) 553 collisions analysis with interfaces to PYTHIA simulations: the POWHEG method (2006) 026 81 with a [ Comput. Phys. Commun. single top quark production at HERA hadron colliders gg R.M. Harris and S. Jain, J. Gao, C.S. Li, B.H. Li, C.-P. Yuan and H.X. Zhu, F. Maltoni and T. Stelzer, J. Alwall et al., A. Sherstnev and R. Thorne, A. Martin, W. Stirling, R. Thorne and G. Watt, M.L. Mangano et al., J. Pumplin et al., R. Hamberg, W. van Neerven and T. Matsuura, S. Frixione, P. Nason and C. Oleari, T. Sj¨ostrand,S. Mrenna and P.Z. Skands, N. Kidonakis, N. Kidonakis, B.P. Kersevan and E. Richter-Was, M. Aliev et al., N. Kidonakis, S. Moch and P. Uwer, M. Beneke, M. Czakon, P. Falgari, A. Mitov and C. Schwinn, J. Butterworth, J.R. Forshaw and M. Seymour, [47] [48] [45] [46] [43] [44] [40] [41] [42] [38] [39] [35] [36] [37] [33] [34] [31] [32] [30] JHEP09(2012)041 ]. , ] , , Nucl. SPIRE (2010) 823 , pp IN (2012) 1896 , Comput. ][ (2012) 2039 (2005) 803 Nucl. Instrum. 1, (2002) 2693 . , TeV C 70 8 C 72 -tagging algorithms = 7 C 72 b s G 28 A 545 ]. √ arXiv:1201.1889 [ ]. (2012) 1909 SPIRE Eur. Phys. J. ]. IN J. Phys. ]. arXiv:1203.4606 Eur. Phys. J. , , ][ [ , SPIRE Eur. Phys. J. C 72 IN , (2012) 244 SPIRE : a simulation toolkit SPIRE 4 IN IN ]. , CERN, Geneva Switzerland (2011). ][ ]. technique ][ s (2012) 128 B 711 Nucl. Instrum. Meth. , SPIRE CL 05 GEANT SPIRE IN [ IN Eur. Phys. J. A brief introduction to PYTHIA , arXiv:1105.3158 ][ [ – 23 – Forward-backward asymmetries of the bottom and FastJet user manual JHEP An improved weighting algorithm to achieve software , Phys. Lett. A recipe for the construction of confidence limits , hep-ex/9902006 ]. [ arXiv:0710.3820 [ (2011) 458 ]. ]. ]. ]. ]. SPIRE ]. , CERN, Geneva Switzerland (2008). ATLAS-CONF-2011-102 , TeV using the ATLAS detector IN arXiv:1112.6426 [ , arXiv:1108.4270 (1999) 435 Commissioning of the ATLAS high-performance Jet mass and substructure of inclusive jets in Measurement of the top quark pair production cross-section with Measurement of the charge asymmetry in top quark pair production Electron performance measurements with the ATLAS detector using Jet energy measurement with the ATLAS detector in proton-proton The ATLAS simulation infrastructure B 701 SPIRE SPIRE SPIRE SPIRE SPIRE [ , Fermilab, Batavia U.S.A. (2000) [ = 7 (2008) 852 SPIRE IN IN IN IN IN s TeV IN [ ][ ][ ][ ][ ][ √ Calorimeter clustering algorithms: description and performance On hypothesis testing, trials factor, hypertests and the BumpHunter 178 = 7 A 434 P01012 s (2003) 250 7 √ Reference analysis of the signal + background model in counting experiments Presentation of search results: the Phys. Lett. collaboration, S. Agostinelli et al., , Confidence level computation for combining searches with small statistics LHC proton-proton collision data collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, ]. ]. TeV collision data 7 A 506 collisions at JINST collaboration, I. Bertram et al., 2010 pp SPIRE SPIRE IN IN arXiv:1203.4211 arXiv:1111.6097 physics/0408129 arXiv:1110.3174 arXiv:1005.4568 [ top quarks in warped extra-dimensionalanomalies models: LHC predictions from the LEP and Tevatron 2012 Instrum. Meth. in the arXiv:1101.0390 DØ FERMILAB-TM-2104 [ ATLAS in [ ATLAS ATLAS collisions with the ATLAS experiment [ ATLAS ATLAS in the single lepton channel ATLAS collisions at compensation in a fine[ grained LAr calorimeter ATLAS the [ ATL-LARG-PUB-2008-002 Phys. Commun. GEANT4 Meth. ATLAS [ A. Djouadi, G. Moreau and F. Richard, D. Casadei, T. Junk, A.L. Read, G. Choudalakis, M. Cacciari, G.P. Salam and G. Soyez, C. Issever, K. Borras and D. Wegener, W. Lampl et al., T. Sj¨ostrand,S. Mrenna and P.Z. Skands, [66] [63] [64] [65] [61] [62] [59] [60] [56] [57] [58] [54] [55] [52] [53] [50] [51] [49] JHEP09(2012)041 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,b 20 24 20 92 27 16 37 21 78 54 81 87 69 46 64 86 44 29 14 63 98 95 162 88a 157 171 114 157 128 152 88a 100 117 142 160 137 19a 164 49b 57b , 123a 49a ˚ Akesson , Y. Arai , T. Bain , T. Adye , M. Aoki , N. Barlow , A. Annovi , L. Barak , G. Avolio , S.P. Ahlen 142 , J. Almond , S. Albrand , D. Berge 157 74 , D. Arutinov , J. Beringer , A. Battaglia , P. Banerjee 17 , N. Benekos 80 , M. Backhaus , A.J. Barr 142 , C.F. Anders 52 131a , L. Adamczyk 123a 168 27 104 , K. Assamagan 144a 38 , G. Alimonti 48 , A. Amorim 48 34 104 , K. Belotskiy , G. Baccaglioni , T.P.A. 5 , X.S. Anduaga , R. Bartoldus 131b ∗ , O.S. AbouZeid , M. Beimforde , , D.P. Benjamin , G. Alexander , , D. Barberis , M. Beckingham 145b 15 ,f , A.J. Armbruster , , L. Bellagamba 29 163b 87 , 18a 85 57a 97 114 , V.A. Bednyakov , P.H. Beauchemin 151 25a 127 106 18a 131a 152 158b 77 145a 175 163a , S. Abdel Khalek , B. Alvarez Gonzalez 11 , I. Aracena , N. Anjos , D.C. Bailey , F. Anulli 69 , P. Adragna , J. Albert , T. Barklow , E. Banas 87 , H.S. Bansil , M. Backes , T. Andeen , J.R. Batley 97 75 106 , L. Asquith 32a 76 29 , M. Aliev 174 , S. Becker 143b , G. Barone 168 , M. Arik , M.A. Baak 114 , E. Berglund , M. Aharrouche ∗ , M. Abolins , T. Beau , , G. Artoni 143a , C. Alexa , V. Andrei , G. Bella , M. Aurousseau 145b , T. Akdogan 16 174 , , S. Bentvelsen 163c 154 97 168 94 , 133a , K. Bendtz 48 111 , P. Barrillon 18a 88a , E.L. Barberio 88b 126 , 129 56 132b 145a , , S.E. Allwood-Spiers 47 , Y. Bai , V.V. Ammosov , S. Bedikian 163a 134a , B.S. Acharya 2 88a 72 22 , F. Alonso 18c , S. Baker 132a 88b , K. Bachas , J. Antos , S. Behar Harpaz , , J. Abdallah , O. Beloborodova 78 , N. Andari , M.A. Alam , S. Adomeit , G. Arabidze 24 , B. Abi , V. Bansal 1 95 24 ,c 56 , S. Beale , E. Arik ˚ Asman 135 16 , A. Anisenkov , M. Barisonzi 88a 110 , J.A. Benitez Garcia , L. Batkova 175 , Y. Azuma ,e 104 149 14 – 24 – 29 98 117 48 ,d , A.K. Becker 52 , M. Agustoni , W.H. Bell 142 , B. 92 16 , F. Berghaus , K. Augsten ,a , T. Barber 48 , A. Artamonov 4 27 , G. Aielli 14 , A. Baroncelli 114 114 40 , M. Alhroob 123b , F. Alessandria 14 , C. Amelung , K. Benslama , S. Bahinipati , P.P. Allport 9 , A. Beddall 63 , A. Andreazza 64 22 , L.S. Ancu , A. Alonso , R. Aben 17 , E. Acerbi , M.S. Alam , M. Begel , D. Benchekroun , M.D. Baker 30 29 18c 10 , A. Antonov 131b , A. Belloni , 93 , H. Bachacou , S. Ask 171 , R. Apolle 135 , J. Adelman , R.L. Bates 104 152 , T. Barillari , A. Bangert , J-F. Arguin 46 175 4 , B. Abbott 29 , H.P. Beck 14 , H.S. Bawa , G. Azuelos 55 172 63 , F. Anghinolfi , P.J. Bell 29 , E. Auge 20 131a 20 148 , N. Berger 147 4 34 84 135 167 , M. Ahsan 41 , C. Arnault 147 79 , K. Amako , E. Benhar Noccioli , R. Alon , H. Abreu , O. Abdinov , R.M. Barnett 101b , O. Benary , 152 , D. Banfi , A.M. Bach , T. Alexopoulos 48 152 , P. Bechtle , A. Barbaro Galtieri , D. Axen 29 , A.J. Beddall 101b , A.V. Akimov , O.K. Baker 128 , F. Bauer , , T.N. Addy , S. Arfaoui , V. Bartsch 48 , B. Aubert 9 , P. Bagnaia , J.R. Bensinger , J. Barreiro Guimar˜aes da Costa , M. Antonelli , K.J. Anderson , D.Y. Bardin 172 , C. Anastopoulos 93 101a , M. Bellomo , I.N. Aleksandrov 8 29 24 44 133b 49a 70 174 154 , B.M.M. Allbrooke , V. Arnal 128 , 79 , L.J. Beemster 20 , J.A. Aguilar-Saavedra 168 25a 114 29 29 57a 101a , A. Angerami , T. Abajyan 152 , L. Aperio Bella , A. Ahmad 80 , R. Asfandiyarov 82 22 119 43 47 82 133a 47 154 A. Astbury R. Avramidou C. Bacci E. Badescu A. Antonaki S. Aoun A.T.H. Arce O. Arnaez S. Asai A. Aloisio M.G. Alviggi N. Amram G. Anders P. Anger S. Aefsky F. Ahles G. Akimoto M. Aleksa G. Alexandre J. Alison G. Aad A.A. Abdelalim H. Abramowicz D.L. Adams The ATLAS collaboration F. Bellina O. Beltramello Y. Benhammou M. Benoit E. Bergeaas Kuutmann A.E. Barton M. Battistin R. Beccherle K.H. Becks C.P. Bee C. Belanger-Champagne Sw. Banerjee S.P. Baranov M. Barbero B.M. Barnett F. Barreiro J.T. Baines JHEP09(2012)041 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 29 63 72 97 29 79 11 56 87 27 98 76 21 38 35 74 92 17 83 29 27 34 38 19a 117 116 142 25a 172 106 124 127 114 103 19b 19b , , 101a 134a 133b 133b , , 19a 19a 133a 133a , R. Cama- , B. Brau , J. Blocki , M. Bona , S. Burdin 33 , L. Bugge , S. Cabrera , J. Bracinik 22 , S. Bethke , B. Butler , J. Bohm , M. Caprini 155 77 29 , J. Bremer , G. Carlino 80 , N. Boelaert , K.M. Black , P. Calfayan 27 , M. Bruschi , J. Cantero , A. Chafaq , E. Castaneda- , P. Catastini 12b 135 , S. Campana 29 ,i 165 47 , S. Caughron 77 25a , A. Bertin , A. Borisov 157 , J. Bouchami 174 145a 19a , S.P. Bieniek , M.P. Casado , F.M. Brochu 18b , G. Brooijmans 14 , M. Bindi , A. Cheplakov 71a 158a 82 , J.D. Chapman 16 172 , F. Ceradini 97 52 98 104 46 107 132b 34 , C. Bourdarios 84 , , R.M. Buckingham , M.A. Chelstowska , V.B. Bobrovnikov 33 121b 63 , C.A. Chavez Barajas , 140 , V. Bortolotto , S. Calvet 132a 104 81 , T. Carli , C. Blocker 86 33 , G.D. Carrillo Montoya , J. Boek 121a , V. B¨uscher , I. Caprini , U. Bratzler , G. Bruni , U. Bitenc , M. Bomben 47 , N. Besson 132a 143a 29 31b , H. Burckhart 53 , C. Bohm 107 , S.A. Cetin , B. Brelier ∗ 19a 177 , G. Calderini 135 , 103 , C. Bertella , G. Cataldi , W. Buttinger , P.A. Bruckman de Renstrom 46 116 , C.P. Buszello , C. Borer , A. Canepa , Y. Chen , J. Bronner 7 14 89 , O. Biebel 75 76 163c ,g , D. Britton 52 77 , 87 , H. Bilokon , D. Casadei 172 123a 30 , B. Chapleau 71b ,h , L.M. Caminada , 171 , P. Buchholz 2 , I. Bozovic-Jelisavcic , V. Chavda 163a , G.A. Chelkov , D. Calvet , G. Cattani 133a 63 17 71a 116 117 , S. Borroni 29 , H. Boterenbrood 123a , G.J. Bobbink , T. Blazek , V. Cavasinni 158a , B. Budick 81 , A. Bruni , M. Boehler 131b 11 , D. Boumediene , O. Brandt , E. Carquin 53 29 , 11 , R. Cardarelli , T. Buran 63 59 70 , F. Cerutti , H. Brown , T. Berry 117 , C. Biscarat 117 103 80 42 , G.J. Besjes 74 131a – 25 – 81 , N.M. Bolnet , P. Bussey 24 , P. Calafiura , X. Chen , A. Bogouch 33 131b 88b , K. Chan , , 3a 25a , F. Canelli , S. Bordoni , C. Bromberg , A.M. Castaneda Hernandez , N.F. Castro 32c ∗ , I.R. Boyko 106 , S. Bressler , 125 88a 138 131a 88a 29 101b , A. Cattai 166 , J. Buchanan , , M. Borri 165 49b , M. Biglietti , M. Bianco , D. Cameron , S.F. Brazzale , 29 , J.M. Butterworth 48 , S. Brunet , D.G. Charlton , M.D.M. Capeans Garrido ∗ , S. Caron , J. Carvalho 14 , 29 , G. Blanchot , M. Bunse , R. Caputo 12a 101a , R. Caloi 52 47 77 , M. Bosman 49a 84 27 , G. Brandt , G. Brown , L. Cerrito , S.V. Chekulaev 132b , I.A. Budagov 72 , C.R. Boddy 7 , 174 135 5 101b , C. Bernius 36b 23a 29 , , 19a , O. Cakir 44 , E. Busato 31b , M. Cavalli-Sforza 25a 47 , U. Blumenschein , V. Boldea , J. Boyd , C. Bini , S. Chen 132a 36a 19b 80 101a , 128 37 88a 30 24 , F. Broggi 18c , F. Bucci 19a 87 , M.I. Besana 54 , C. Caso , I. Chalupkova , C.N. Booth , B. Caron , R. Brenner , A. Cerri 121b , V. Canale , , E. Chareyre , A. Bocci 105 135 , J. Biesiada , A. Brandt , A. Bogdanchikov , E.V. Bouhova-Thacker 88b , J.R. Catmore 121b 119 , , 76 , S.I. Buda , R. Bruneliere 86 23b , J.R. Carter 78 , S. Chekanov 53 29 , C.M. Buttar , I. Borjanovic 29 , M. Capua , L.P. Caloba , T. Bold , R.M. Bianchi 122 121a 45 , H.M. Braun , A.C. Bundock 88a , D. Cavalli , S. Burke , A. Boveia 74 , W. Blum 84 133a 21 70 , L. Capasso 121a 98 , W.K. Brooks , Q. Buat 75 45 , R. Bernhard 143b , P. Camarri 95 , J.-B. Blanchard 77 13 , H. Chen 82 , A. Bingul , V. Castillo Gimenez 48 105 113 , D. Boscherini 75 , R. Brock 5 75 13 76 33 62 , D. Caforio 20 114 172 104 166 L. Carminati R. Calkins cho Toro M. Campanelli R. Cantrill D. Capriotti A.G. Buckley O. Bulekov T. Burgess J.M. Butler Urb´an K. Brendlinger I. Brock T. Brooks D. Bruncko T. Buanes K. Bos J. Boudreau N. Bousson P. Branchini J.E. Brau A. Blondel S.S. Bocchetta J.A. Bogaerts V. Boisvert M. Boonekamp G. Borissov F. Bertolucci W. Bhimji K. Bierwagen S. Binet R.E. Blair P. Bernat A.S. Cerqueira D. Chakraborty J.W. Chapman S. Cheatham C. Chen A.A. Carter M. Cascella Miranda A. Catinaccio P. Cavalleri JHEP09(2012)041 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ∗ 4 ,j ,j , 48 41 92 77 79 63 38 39 29 30 73 54 62 83 75 20 59 72 37 172 136 175 104 172 31a 135 71a 150 25a 104 174 88a 175 88b , 95 131a 131b 121b 132b , , , 101a 101a 88a 131a 121a 132a , R.K. Daya- , V. Cindro , M. Davies , F. Dittus , G. Cowan , M.L. Chu , G. Costa , G. Colon ,c , M.A. Diaz , B. Clement 138 , T.K.O. Doan 33 , S. Demers , C. Doglioni , P. Cwetanski 29 , J. Cochran , A.P. Colijn , G. Chiodini 98 , L. Chevalier 25a 168 , S. De Cecco 82 ,n , A. Di Mattia , W. Dabrowski , D.S. Damiani 34 117 19b , A. Dos Anjos 70 , M. Ciubancan 118b , 104 149 137 , 105 , A. De Salvo 81 157 , D.V. Dedovich , D. Derendarz , F. Conventi , P.O. Deviveiros , H. De la Torre 19b , M. D’Onofrio , T. Cornelissen , G. Choudalakis , , M. Cristinziani 49b 123a , J.A. Dassoulas 133b 88a , 54 19a 56 , , M. Della Pietra , G. De Zorzi 101a , B.A. Dolgoshein 52 14 63 127 147 114 118a 131a , A. Di Ciaccio 19a 21 , K. Dindar Yagci 49a 25b 121b 114 125 , ,m 133a 85 , S.M. Consonni , T. Del Prete , D. Cinca , S. Dita 24 , C. Cuenca Almenar , I. Dawson 11 79 121a , S. Cole 3a , J. Dodd 4 25a , E. Davies 25a ,o 141 , C. Da Via , G. Cortiana 70 , C. Deluca 29 , C. Cuthbert , A. Doria , L. Courneyea , J.C. Clemens , G. Conti , S.L. Cheung 54 , A. Coccaro , M. Citterio , K. Copic 164 17 123a 6 29 29 , A. Chilingarov , R. Di Sipio , E. Devetak 122 , M. Dameri 118b 12b 117 29 20 , Z. Dolezal , L. Dell’Asta 163c , , S. D’Auria , , S. Di Luise , B. Dechenaux 35 , D. De Pedis , T. Colombo , S. Diglio 132b 73 , S. De Castro 29 , S.P. Denisov , R. Ciftci , M.V. Chizhov , , P. Dita 29 , J. Colas 45 175 54 , G.L. Darlea , E. Dawe 118a 3a 104 163a , D. Chromek-Burckhart , C. De La Taille 57a 162 25a , R. Dhullipudi 177 101a 132a 49a 47 57a 131b , A. Do Valle Wemans , F. Crescioli , , E. Cheu 104 , D. Cˆot´e , J. Dopke , E. Dobson 157 , M.C. Conidi , J. Del Peso , R. Davidson 24 23c 107 , C.J. Curtis 30 33 29 , C.-M. Cuciuc , K. Desch 131a 85 – 26 – , M. Dam 46 117 , P.A. Delsart , W. Cleland 54 , P. Cirkovic 72 163c , 4 83 , I. Dolenc , J.B. De Vivie De Regie 14 86 , J.T. Childers , C. Conta , J. Collot ∗ 125 163a , 148 , J. Deng , M. Cobal , A.K. Ciftci , A. Dell’Acqua 52 , A. Chitan ,l 25a 82 50a 73 , A. Cortes-Gonzalez , L. De Nooij , Z. Czyczula , A. Christov , B. Di Girolamo 76 11 , G. Darbo , E. Cogneras , P. de Jong , C. Debenedetti 131b , Y. Davygora ,k , J. Donini , S. Dhaliwal 70 , T. Costin , 43 76 29 , A. Di Simone 48 , D. Dobos , T.A. Dietzsch 24 76 164 84 ∗ , A.M. Cooper-Sarkar , C. Dionisi 103 , P. Dervan 46 , 23d 147 138 41 , M. Cirilli , K. Cranmer , M. Curatolo , R. de Asmundis , V. Chernyatin , N. Davidson 131a 76 77 29 7 25a , M.A.B. do Vale 14 81 , J. Dolejsi 138 125 , R.N. Clarke 134e ∗ , 50b , M. Delmastro , C. Dallapiccola , E. Coniavitis 45 64 , A. De Santo 86 , Y. Coadou , M.J. Da Cunha Sargedas De Sousa 101b 123a , V. Dao , L. Chikovani , , K. De , C. Del Papa 163c , S. Cr´ep´e-Renaudin , R. Debbe , 29 , F. Derue , R.T. Chislett , L. de Mora 22 , M. Deliyergiyev , B. Demirkoz 145b 70 , I.A. Christidi 131b , , A. Ciocio 119 101a , B. DeWilde , , F. Dinut 101b 36b 17 62 , , , A.R. Davison , C. Collins-Tooth 54 , G. Ciapetti , F. Corriveau , R. Di Nardo , J. Coggeshall 63 , A. Di Girolamo , M. Donadelli 163a , N. De Groot , D. Costanzo , S. Constantinescu , B.E. Cox , J. Dietrich 134d 20 , T. Dai 136 , Y. Doi 4 77 17 19b 128 29 , P. Czodrowski , 97 , R. Dobinson , B.D. Cooper 145a 36a 47 , T. Davidek 131a 27 124 86 19a 142 52 154 166 , T. Djobava 101a , P.J. Clark 117 84 14 20 19a 140 82 48 J. Dingfelder F. Djama M. Dobbs T. Doherty T. Dohmae M. Demichev J.E. Derkaoui A. Dewhurst L. Di Ciaccio B. Di Micco E.B. Diehl U. De Sanctis W.J. Dearnaley J. Degenhardt T. Delemontex D. della Volpe W. Davey O. Davignon Ishmukhametova J. de Graat F. De Lorenzi T. Cuhadar Donszelmann H. Czirr A. D’Orazio A. Dafinca H.O. Danielsson M. Cooke M. Corradi M.J. Costa C. Cowden G. Crosetti A. Clark C. Clement J.G. Cogan N.J. Collins P. CondeV. Consorti Mui˜no G. Chiefari A.S. Chisholm S. Chouridou J. Chudoba C. Ciocca R. Cherkaoui El Moursli JHEP09(2012)041 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 98 96 74 42 16 11 29 43 29 48 29 20 54 98 29 97 52 29 60 29 47 108 174 128 140 152 157 152 165 135 122 152 127 147 104 36b , 131b 143b , 36a 131a , A. Fer- , H. Du- 86 , B. Epp 29 , M. Fincke- , M. Garcia- , T. Flick , B. Gaur , N. Ellis 97 , J. Ebke , Ch. Geich- , T. Ekelof , S. Franz , J. Farley 74 51 103 , J. Dubbert 175 , C. G¨ossling , P. Ferrari 174 74 , N. Garelli 9 , E. Etzion , S. Gadomski , A. Gibson , J. Ernwein 104 , B.J. Gallop , S. Fazio , M.J. Fisher 118a , L.K. Gladilin , M. D¨uhrssen 171 , J. Ferencei 80 , F. Friedrich , C. Escobar , J.R. Goddard 30 , G. Gaycken 24 165 24 24 , P. Fassnacht , P. Giovannini 133a 16 , J. Ginzburg 41 , P. Francavilla 62 135 , M.H. Genest , S. Giagu , A. Gershon 41 42 114 63 116 ,d 127 29 15 , N.C. Edwards 70 167 2 52 19a 174 75 , A. Engl , C. Ferretti 48 , M. Fehling-Kaschek 147 , R.M. Fakhrutdinov , M. Dris , K. Ellis , T. Fonseca Martin , M. Dunford , E. Fullana Torregrosa 87 29 52 80 98 , M. D¨uren , F. Filthaut 75 , V. Gallo , G. Gaudio 155 , M. Ernst 29 , T. Frank 73 , H. Fox , T. Gadfort , F. Garberson , H. Esch , A. Farilla 1 , A. Ferrari 46 , G. Fischer , L. Fayard 117 7 29 , C. Goeringer , C. Gay , F. Dudziak 14 , S. Fleischmann , B. Gibbard 41 , G.L. Glonti 39 114 , E. Eisenhandler 171 114 43 93 29 , D.A.A. Geerts 88b , F.M. Giorgi 29 , B.K. Gjelsten , , C. Friedrich 14 , A.B. Fenyuk 173 174 , A.I. Etienvre 5 , R.W. Gardner , P. Farthouat , D. Ferrere 27 128 , B. Giacobbe , A. Gemmell , P. Gerlach 88a 82 19a 101b , , D.M. Gingrich 33 166 169 , C. Fabre 75 166 49a , A.T. Doyle , C.A. Edwards , C. Gatti , L. Duguid , J. Ernst , R. Engelmann 128 1 , W. Fedorko 19b , A. Filipˇciˇc 101a , F. Dydak , 17 84 104 , A. Firan , A. Farbin 80 128 , C. Fukunaga 37 , F. Ellinghaus , E.J. Gallas 120 145a 19a 4 , V. Ferrara , D. Francis , O. Gabizon , T. G¨opfert 166 27 97 88b , D. Fournier , , A. Dudarev 52 , P. Giusti , M.J. Flowerdew 29 , E.J. Feng , M. Escalier 41 – 27 – , A. Gaponenko , F. Gianotti , K.W. Glitza 97 92 118b , K. Einsweiler 80 ,e 88a , , A. Ferrer 172 11 32d 158a 41 , C.N.P. Gee , A. Favareto 13 , F. Etienne , S.T. French , P. Fleischmann 52 142 , I.L. Gavrilenko 46 118a , S. George 80 167 157 , J. Garvey 119 , N. Ghodbane , C. Gemme 53 , F. Fiedler , W. Edson , S. Elles 29 131b , C. Galea , R. Giordano , 30 , L. Fiorini , L. Fabbri 80 , A.R. Gillman , J.A. Frost 134b 145b , S.M. Farrington , O.L. Fedin 165 59 , M-A. Dufour , D. Eriksson , , A.D. Doxiadis ,h 59 , M. Dwuznik , M. Goebel 28 29 163c 131a , D. Emeliyanov , C. Feng 16 69 , E. Ertel , M. Fanti , M. Giunta 162 114 , J. Ferrando , C. Gabaldon 5 , G. Eigen 29 143a 145a 29 138 , A. Glazov , G. Duckeck , D. Fortin 123a , Y.S. Gao 52 164 , J.E. Garc´ıa Navarro 172 88a 166 142 47 81 171 , Z. Gecse 108 , J. Fleckner 166 , S. Fratina , V. Giangiobbe , B. Esposito 32d 8 140 , V. Garonne , S. Franchino 11 , M. George , M. Ellert , P. Gagnon , M. Fiascaris , H. Evans 118b , 104 19b , H. Ghazlane , 53 , M.T. Dova , L. Duflot , B. Fatholahzadeh , M. Elsing , S. Farrell 49b , P. Gauzzi 49b 131b , , K. Edmonds , J. Fuster , T. Eifert 134c , Y. Fang , D. Gillberg , 8 , , L.R. Flores Castillo , P. Federic , D. Giugni , S. Ferrag , A. Forti 81 118a , A. Ereditato 97 19a 57a , J. Glatzer , D.E. Ferreira de Lima 5 , D. Fellmann , J. Godlewski , D. Froidevaux 80 , S. Errede 41 29 157 78 135 33 , M.P. Giordani 49a , R. Duxfield 121b , P. Ge 142 49a 53 , , K.K. Gan 79 135 8 135 82 29 9 131a , I. Fleck 131a 3a 141 164 , E. Duchovni 118a , C. Garc´ıa 47 124 , K. Gellerstedt , M.C.N. Fiolhais 121a 14 14 20 168 S.M. Gibson N. Giokaris P.F. Giraud L. Gauthier E.N. Gazis Gimbel S. Gentile C. Geweniger V. Giakoumopoulou B.G. Fulsom G. Gagliardi P. Gallus Sciveres H. Garitaonandia A. Floderus A. Formica M. Franchini M. Fraternali R. Froeschl W. Fernando R. Ferrari retto Parodi Keeler M. Flechl S. Falciano T. Farooque D. Fassouliotis R. Febbraro L. Feligioni M. ElJ. Kacimi Elmsheuser J. Erdmann D. Errede X. EspinalD. Curull Evangelakou S. Dube I.P. Duerdoth ran Yildiz S. Eckweiler W. Ehrenfeld A. Dotti C. Glasman J. Godfrey JHEP09(2012)041 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 8 20 65 35 11 76 17 47 15 82 70 56 75 29 48 34 72 17 45 64 100 166 147 102 126 147 104 137 114 175 157 117 117 160 57a 159 156 114 153 32d , K- 19b , 19a , M. He , J. Huth , N. Grau , S. Henrot- , T. Holy , B. Gorini , K. Hara , B. Guo 87 29 , S. Horner , D. Hall , H. Iwasaki 128 , S.J. Hillier , I. Hristova , J. Hobbs 120 , C. Helsens , D. Iliadis , P. Hanke 174 , F. Hubaut 142 , D. Guest 38 145a 20 81 , G. Hughes 124 , R. Gon¸calo , S. Hamilton , C. Gwenlan 142 176 , D.R. Hadley 20 64 80 , S. Hasegawa 174 , M. Havranek , J. Griffiths , M. Gosselink , J.J. Goodson , J.-F. Grivaz , M.P. Goulette ,q 34 5 41 , T. Hayakawa , K. Iordanidou 126 , M. Ishitsuka 140 39 55 87 , S. Gonz´alezde la 48 135 , T. Greenshaw 96 , S. Heisterkamp 142 , G.G. Hesketh 66 162 134c 14 144b 172 133a 29 120 , R.D. Harrington , M.R. Hoeferkamp 86 , P. Grafstr¨om , J. Huston 29 , S. Hillert , C. Horn ,r 37 , L. Iconomidou-Fayard , G. Gorfine , V. Gratchev 41 , W. Iwanski 63 , P. Hansson , M. Ikeno , J. Howarth 107 , S.J. Haywood , Y. Hern´andez Jim´enez 140 102 , C. Handel , C. Guyot 35 64 , J. Gunther , A. Harvey , R. Hauser 147 , D. Hellmich 7 127 72 117 , S.O. Holmgren ,p 14 , K. Grybel 64 , A.T. Goshaw 29 , Z. Hubacek , M. Ishino 172 , H. Hakobyan , P. Grenier 84 , D. Hirschbuehl , M. Iodice 41 14 140 145b , E.W. Hughes 171 38 , 8 , S. Gonzalez 41 , A. Hamilton 165 , D. Hawkins , D. Goujdami , L. Hervas 42 , H.K. Hadavand 20 53 78 117 , B. Heinemann 97 14 , D. Harper 145a , Y.V. Grishkevich , S. Gonzalez-Sevilla , A. Hoecker 134a , A.M. Henriques Correia 87 89 , K.H. Hiller 11 , I. Gorelov 26 , V. Grassi 53 , L.S. Gomez Fajardo , O.G. Grebenyuk 138 27 , N. Huseynov 24 , J. Howard 15 ,b , Y. Ikegami , I. Ibragimov , P.H. Hansen , M. Hance , A.V. Ivashin 41 , H. Guler 133a , M. Holder 81 35 , B. Gosdzik 104 134a , S.-C. Hsu , I. Grabowska-Bold 123a , H.S. Hayward 159 , T. Haruyama 18a 52 , F. Hirsch , M. Hauschild 80 – 28 – , O. Gutzwiller 38 , Z. Hajduk , M. Hamer 80 22 , P. Ioannou , C. Haber , L. Gonella 16 , C. Isaksson , S. Heim 117 104 29 115 , I.M. Gregor , C.M. Hernandez 7 152 29 29 41 112 , J.C. Hill , S. Hellman 35 166 , M. Gouighri 174 29 , J. Groth-Jensen 166 , A.D. Hawkins , A. Henrichs , T.B. Huffman , S. Grinstein , S. Istin 162 , S. Harkusha , P. Hodgson 53 29 41 , H.A. Gordon , L. Hooft van Huysduynen , U. Gul 57a 136 117 , R. Hertenberger 174 94 138 , S. Haug 53 , S. Grancagnolo , A. Gomes , U. Husemann , J.D. Hansen , P.J. Hsu 119 , M. Ibbotson 47 , E. Graziani , S. Haas , M. Hohlfeld , E. Gornicki , O. Igonkina 4 , K. Hanawa 9 , C.P. Hays , F. Hartjes 14 35 135 , M.L. Gonzalez Silva , P. Hamal , M. Hirose 71a , S. Gozpinar , L. Heelan 175 , A. Hoummada 82 73 , S. Haider 147 142 4 75 47 11 115 78 , N. Guttman 101a 174 29 , T. Henß 119 , M. Heller 150 53 97 110 , J. Inigo-Golfin , K. Gregersen , M. Henke , C. Issever 20 , A. Irles Quiles ,m 70 39 , A.A. Grillo , C. Goy 24 , T.M. Hong , A. Haas 63 , S. Guindon , S. Hou , R.J. Hawkings , S. Hassani 131b , , G. Herten , A. Goriˇsek , A. Huettmann 87 , J. Hartert , M. Hurwitz 137 , I. Gough Eschrich , G. Iakovidis 72 , E. Hig´on-Rodriguez , P. Iengo 33 54 , J.B. Hansen , T. Harenberg , T. Golling 17 , E. Hines , D. Hayden , T. Hryn’ova , P.A. Gorbounov , J.A. Gray 15 , F. Hahn 20 139 29 , D. Hoffmann 63 48 71b , J. Grosse-Knetter 35 86 137 14 , V. Hedberg , 29 104 , C. Heller 131a 29 114 20 136 159 114 39 , F. Grancagnolo , M.C. Hodgkinson , K. Hanagaki , K. Hamacher , C. Hensel 17 21 , T. Ince 171 71a 41 , P. Gutierrez 53 152 32b 114 157 34 , G. Gonzalez Parra 166 Versille R. Herrberg N.P. Hessey I. Hinchliffe C.M. Hawkes T. Hayashi S.J. Head L. Helary R.C.W. Henderson L. Han J.R. Hansen G.A. Hare O.M. Harris Y. Hasegawa C. Guicheney J. Guo C.B. Gwilliam P. Haefner J. Haller A.G. Goussiou J. Grahn H.M. Gray Z.D. Greenwood N. Grigalashvili E. Gross J. Goncalves Pinto FirminoHoz Da Costa L. Goossens E. Gorini M.I. Gostkin S. Goldfarb G. Iacobucci J. Idarraga N. Ilic V. Ippolito R. Ishmukhametov J. Hoffman J.L. Holzbauer J-Y. Hostachy J. Hrivnac F. Huegging M. Huhtinen N. Hod JHEP09(2012)041 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 6 29 41 77 35 44 87 47 44 37 73 62 72 16 56 41 63 124 159 128 122 171 104 103 104 142 153 127 126 119 110 172 156 138 172 154 175 108 106 137 154 174 , I. Jen- 56 , H. Ji , V. Kus , X. Ju , B.R. Ko , T. Koi , J. Kroll , T. Kuhl , J. Koll , P. Kluit 19a , M. Kuna , A. Klier 89 , J. Kirk , T.J. Jones , A. Kotwal 53 64 , S. Kabana 98 , M. Kagan 12b 72 , V. Kaushik 97 , J.S. Keller , B. Kaplan 84 57c 70 88a , D.K. Jana , K. Kessoku , R.D. Kass , F. Krejci 63 11 , A.C. K¨onig , M.R. Jaekel 117 , S.H. Kim , K. Kordas 41 63 64 , A.I. Kononov , N. Kanaya 108 , N. Krumnack , T.Z. Kowalski , E. Koffeman , P. Johansson , E.B. Klinkby 29 , O. Jinnouchi 126 174 ,s , M. Karnevskiy 38 107 57b 39 16 142 28 81 9 , G. Kramberger , T. Kittelmann , V.A. Kazanin , D. Kharchenko 168 145b 41 , 145a 32a , L. Jeanty , A. Khoroshilov 96 65 , V.A. Korotkov 104 111 78 20 145a , A. Knue 138 , M.K. Jha , H. Kroha , T. Kluge 4 82 , T. Jovin , A. Kugel 53 , T. Kohriki , J. Katzy 57a 9 , C. Kummer 47 146 , H. Kagan , V.M. Kotov , S. Jin , J. Kanzaki , M. Klemetti 126 , S. Kersten , T. Kono , T. Koffas , R.W.L. Jones , I. Koletsou , K. K¨oneke , T. Kruker , Y.A. Kurochkin , S. Kama 98 41 , S. Kreiss 95 31b 80 , J. Jakubek , K. Korcyl 114 , P. Jackson , R.S.B. King 73 64 20 63 20 63 , A. Juste Rozas 169 20 125 , G.D. Kekelidze 37 72 159 65 , J.A. Klinger , G. Kasieczka 124 60 , K. Karakostas 53 , H. Kim , R. Kowalewski , M.S. Kayl 42 , G. Jarlskog , A. Khanov , T. Kitamura 172 20 80 , K.E. Johansson 47 37 50b 164 , S. J´ez´equel 158a , G. Khoriauli , S. Kuehn 35 27 145b , S. Kotov , E.-E. Kluge , V.A. Kramarenko , 3a , G. Jones , Z. Kohout , M. Kado , E. Katsoufis , T. Kondo , K. Kroeninger 20 , J. Jovicevic , E.V. Korolkova , H. Kr¨uger , P. Kodys 104 , M. Keil 126 53 35 , P. Jussel , E.B.F.G. Knoops , S. Kuleshov 145a 81 , M. King 154 154 157 11 , M. Kurata 63 39 145b 142 , 60 89 – 29 – , B.P. Kerˇsevan , P. Koevesarki 72 65 , J.K. Kraus 124 , S. Koperny , J.N. Jackson , V.A. Kantserov , L. Kashif , K. Kleinknecht , M. Janus 29 , T. Jakoubek , P. Jeˇz , V. Kolesnikov 76 103 145a 72 107 98 35 29 119 156 127 15 , J. Khubua , R. Klingenberg , M. Karagounis , A. Koutsman , S. Kuday , V. Kral , L.V. Kalinovskaya , G. Kawamura , S. Klous 63 , D. Kisielewska , T.J. Khoo 24 52 , F. Kohn 85 , M. Jimenez Belenguer 153 65 127 , R. Kehoe 174 154 103 , H. Khandanyan , P. Krieger 57a , Y. Komori 174 , P. Kadlecik 32b , K.D. Joshi , Y. Kataoka , M. Johansen 10 , M. Kocian 53 93 168 38 4 , V. Juranek , B.T. King , I. Korolkov 39 , U. Klein 43 , U. Kruchonak , P. Jenni , E. Kneringer , V.V. Kostyukhin , H. Kurashige 29 , N. Kerschen , T. Kanno , Y. Kulchitsky 15 123a 72 , K. Jon-And , A. Jantsch 85 98 , D. Kar 106 12a , B. Jackson 157 6 , F. Koetsveld 27 63 , S. Jakobsen 124 29 124 29 80 47 101a , H. Kolanoski , P.F. Klok , T. Kubota ∗ , , A.N. Karyukhin , Y. Jiang , D. Joffe , S. Kalinin 29 , A. Klimentov , N. Konstantinidis 63 , R. Keeler , E. Khramov , V. Kouskoura , N. Krieger , A.S. Kozhin 70 ,t 35 8 , A. Krasznahorkay , T. Kishimoto , M. Kobel 106 63 147 94 , A. Khomich , A.A. Komar 151 72 , S. Kohlmann , T. Kawamoto , M. Klein 77 98 , J. Krstic , M. Kataoka 145b , O. Kind 135 107 , 95 154 47 , S. Kaneti , S. Kortner 68 , O. Kepka 20 13 , A. Kupco , F. Khalil-zada , R.M. Jungst 117 , A. Korol , D. Jennens , K.A. Johns , P.M. Jorge , H. Jansen , J. Kaplon , L. K¨opke , V. Izzo 170 29 , A. Kaczmarska 98 143b 52 , V. Kukhtin , N.S. Knecht 42 145a 30 41 29 76 30 80 119 40 157 , K. Jakobs 117 60 98 166 , J. Jia 59 80 J. Kretzschmar J. Kroseberg R. Konoplich A. Korn O. Kortner C. Kourkoumelis W. Kozanecki M.W. Krasny T. Kobayashi S. Koenig L.A. Kogan G.M. Kolachev M. Kollefrath A.E. Kiryunin E. Kladiva P. Klimek T. Klioutchnikova S. Kluth M. Kenyon J. Keung A. Khodinov V. Khovanskiy N. Kimura A. Kapliy V. Kartvelishvili A. Kastanas K. Kawagoe M.Y. Kazarinov S. Johnert C. Joram C.A. Jung M. Kaci E. Kajomovitz M. Kaneda V. Jain E. Jansen La Plante W. Ji M.D. Joergensen J.M. Izen Z.V. Krumshteyn D. Kuhn J. Kunkle JHEP09(2012)041 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 6 4 29 48 81 47 35 24 72 64 28 15 79 41 14 11 20 86 48 74 114 114 137 116 172 120 106 88a 23a 135 175 171 174 168 117 164 104 168 36b 32b , 145b , 36a 145a , X. Li , Y. Liu ,v , L. Lee , K. Lie , A. Lister , C. Lange , E. Lund , A. Lewis , Y. Makida , H. Lacker , A. Lounis 97 , W. Lampl , F. Linde 32b 32b 150 24 , S.L. Lloyd , J. Ludwig , L.L. Ma 6 , T. Lagouri ,x , T. Maeno 24 40 , B. Martin 57a , S. Mahmoud 79 47 24 171 , A. Manousakis- , W. Lavrijsen , J.F. Laporte 77 , V.P. Maleev , G. Lenzen 131a , V.P. Lombardo 131b , J-R. Lessard , , H.J. Lubatti , F. Marroquim , D. Lellouch 47 , L. Mandelli 57c 150 , R. Mackeprang , V. Malyshev 166 , J.F. Marchand 20 38 , F.K. Loebinger 9 136 92 36b 104 , 124 64 , E. Le Menedeu 79 , M. Lehmacher 32a 168 125 20 131a , S. Li , A.C. Martyniuk 123a , L. La Rotonda , L. Manhaes de An- , M. Liu 14 36a 157 ,u 56 , X. Lou 48 87 86 , S.C. Lee , O. Lundberg 172 , H. Ma , N. Lorenzo Martinez , B. Martin dit Latour , D. Lissauer 158a 115 , V.S. Lang 78 97 , I. Ludwig , S. Majewski 45 , F. Lu 145b , S.C. Lin , B. Laforge , 81 164 ,b 41 , C. Leroy ,e 4 , C. Lapoire , C.L. Lampen 61 , P. Malecki , L. March , T. Lenz , M. Lichtnecker , L. Luminari , L.J. Levinson , L. Liu 77 76 , K. Mahboubi 57a 145a 142 38 , F. Lacava 29 29 47 , H. Li , S. Maltezos 123a , R. Maenner 86 , M. Lokajicek , C.P. Marino 86 , R. Leitner 53 , A. Manabe , P.M. Manning 144b 82 43 , V. Lavorini 47 166 , A. La Rosa 142 124 53 , J. Llorente Merino , C. Leggett 23d 46 12b , S. Marti-Garcia 15 , C. Le Maner 54 97 , M.J. Losty 16 , J. Lorenz , J.S.H. Lee , T.M. Liss 82 , T. Loddenkoetter , J.L. Lane , P.S. Mangeard , E. Lytken 56 , R. Lafaye 13 104 74 , A. Maio 131b , B. Li , D. Ludwig 24 , V.J. Martin , J. Machado Miguens 136 , , J.B. Liu , M. Limper 63 , S. Laplace , D. Levin , F. Lepold , D. Lumb 123a 15 43 17 73 , L. Mapelli 4 23a , A.J. Lowe 9 86 85 , P. Lichard , Pa. Malecki 60 174 – 30 – 131a 29 , A. Mann 70 , R. Kwee 29 , C. Lacasta , E. Magradze , L. Lambourne , C. Malone , P. Laurelli , J. Lundberg , A. Lleres , K. Lohwasser 132a 135 29 5 141 29 , V. Martinez Outschoorn 29 , H. Lee 78 , W.F. Mader 15 134a , K.J.C. Leney 117 , J. Mamuzic , F. Legger 11 , M. Marcisovsky 54 70 , M.A.L. Leite , H. Liu , L.F. Marti 97 6 57a , D. Lynn 77 135 , B. Maˇcek , A. Lipniacka 150 80 157 , E. Ladygin 98 , A. Ludwig , M. Leyton , J. Maneira , J. Levˆeque , E. Le Guirriec , W. Lukas 119 , M.P.J. Landon , A. Mapelli 54 20 , P.A. Love 166 15 77 , K. Lantzsch , J. Kvita , T.A. Martin , W.S. Lockman , A. Limosani , S. Leontsinis , F. Lo Sterzo 119 6 47 104 , D. Lopez Mateos , T. Lohse 21 24 92 , C. Maidantchik 20 135 43 14 , B. Malaescu , B. Liberti 156 , D. Malon , L. Magnoni , S. Lablak , M. Lassnig 167 33 4 , X. Lei 61 , D. Liu 135 123a 135 41 , M. Lamanna 29 28 117 54 , M. Martinez , B. Lundberg , G. Marchiori , E. Lipeles , P. Loch 148 , S.S.A. Livermore 146 , J. Love , F. Lanni , A. Macchiolo , H.J. Maddocks 87 , M. Legendre 132b , M. Kuze 41 , A. Lucotte , M. Lungwitz , , R. Mameghani , P. Mal , F. Ledroit-Guillon 46 14 , F.K. Martens , A.M. Leyko , J.A. Manjarres Ramos 161 , V. Lendermann , G. Luijckx 162 , C. Liu , C.M. Lester 5 , H. Liao 35 , C.W. Loh 29 118b , O. Le Dortz 168 , U. Landgraf 146 , P. Loscutoff , J. Labbe , , C. Maiani 29 , L. Lopes , J.P. Martin , S. M¨attig 53 59 , V.R. Lacuesta , C. Limbach , R. Mandrysch 114 132a 131b 27 ,w 107 23b , U. Mallik , 72 , B. Mansoulie 79 136 17 175 70 , K. Leonhardt 87 135 161 77 13 8 73 , A. Larner 54 174 118a 117 29 , E. Laisne 131a 88a 47 G. Mahout N. Makovec B. Lund-Jensen J. Lundquist G. Maccarrone R.J. Madaras P. M¨attig R.E. Long M. Losada K.F. Loureiro C. Luci F. Luehring J.T. Linnemann A.M. Litke M. Livan E. Lobodzinska A. Loginov B. Lenzi C.G. Lester G.H. Lewis Z. Liang W. Liebig T. Lari P. Laycock T. LeCompte M. Lefebvre G. LehmannB. Miotto Lemmer L. Labarga D. Lacour S. Lai E. Lancon A.J. Lankford E.S. Kuwertz Katsikakis F. Marchese Z. Marshall B. Martin S. Martin-Haugh F. Malek S. Malyukov I. Mandi´c drade Filho JHEP09(2012)041 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 4 ,c 93 72 82 85 80 29 29 93 17 29 17 35 98 80 63 64 41 97 97 64 ,aa 108 57a 127 108 154 162 114 88a 128 174 172 88a 171 167 127 154 153 112 32d 76 29 , I. Nikolic- , J. Moss , S. Mitsui , C. Meyer , L. Nozka , S. Menke 127 , D. Moreno , M. Nash , J. Miao , A. Nelson , S. Odaka , L.B. Oakes , K. M¨onig 64 50b , E. Monnier , N. Massol , I. Nomidis , M. Mineev , M. Nessi 166 162 29 , F. Mueller 48 19b 68 52 36b 57b , , M. Mechtel 27 , A.K. Morley , C. Meroni , 76 , S. Mehlhase 37 , S.J. Maxfield , W.J. Mills 83 , A. Nagarkar 104 , Y. Ninomiya , R. Mashinistov , G.F. Moorhead , G. Mikenberg 115 23a 56 , P. Matricon 92 , M. Mazzanti 7 19a 2 104 , P.R. Newman 36a 82 87 , B. Nicquevert 64 , A.G. Myagkov , T. Nunnemann , N.A. McCubbin , K. Nakamura 101b , P.Yu. Nechaeva 154 135 , , A.A. Minaenko 24 154 , T. Mclaughlan 85 28 29 135 86 132b , 101b 171 , D. Muenstermann , 101a 50b 80 , S. Oda 132a , M. Nozaki , B.R. Mellado Garcia , J. Monk , A.S. Mete 101a , V. O’Shea 65 , V. Nikolaenko , M. Mosidze 30 125 , R. Narayan , M. Morii 166 , V.A. Mitsou 15 98 102 , V. Moeller 141 , B. Mindur , T.C. Meyer , G. Morello , P. Nilsson 43 , J. Maurer , S. Nektarijevic 160 , R.W. Moore 53 , M. Nomachi 136 , L. Mijovi´c 53 , K. Nagano ,c 47 107 5 , G. Massaro , J. Mechnich , T. Mashimo 145b , E.J.W. Moyse , P. Nevski , R. Mehdiyev , A. Mengarelli 72 , , R.J. Miller 19a 19b ∗ 83 , H.A. Neal , , 156 80 117 ,u 19b 30 , 107 115 93 , L. Merola 145a , D. Milstein 19a 161 150 , A.A. Nepomuceno , T.G. McCarthy , A. Ochi , T. Masubuchi , E. Musto 19a , R. Nicolaidou 48 , Y. Nakahama , T. Mueller 77 107 147 145b 29 97 , J. Morel 36b 104 , 117 , J. Novakova , , J. Metcalfe , A. Nikiforov , H.G. Moser , D.C. O’Neil , L. Mazzaferro , A. Napier , G. Mchedlidze , J. Meyer ,y ∗ 135 , S. Migas , H. Nilsen , 34 36a 128 20 20 145a , R. Moles-Valls 100 , G. Nunes Hanninger 29 , J. Mitrevski , C. Melachrinos – 31 – 17 138 17 , M. Negrini 173 , L. Masetti , R. Nagai , A. Meade , A.I. Mincer 128 47 20 78 29 , T. Moa , L. Nodulman ,k , Z. Meng 63 , M. Morgenstern 131a 110 159 , S. Monzani 78 , T. Meguro 156 168 161 , I. Massa 69 , C. Mattravers 49a , R.M. Neves , G. Navarro , D.W. Miller , J. Ocariz 110 65 80 41 , P. Mermod 73 106 98 , I. Mussche , S.V. Mouraviev , P. Nemethy 56 ,z , N. Morange , A.M. Nairz , L. Morvaj , T.A. M¨uller , G. Nanava 128 9 , R.L. McCarthy , N. Nikiforou , P.R. Norton 124 , G. Negri , W. Mohr , M. Mazur , A. Messina 52 98 , J. Meyer 74 20 29 109 164 , R.B. Nickerson 136 , A. Marzin 147 150 , S.W. O’Neale , B. Meirose , K. Nagai 108 , T. Nobe 135 118b , D.A. Milstead , 45 11 98 135 , G. Mirabelli , R.P. Middleton 57a 131a , K. Nikolopoulos 171 , F. Monticelli 11 118a , J.A. Mcfayden , P. Morettini , I.A. Minashvili 48 25a ∗ 11 , , A. Mastroberardino , M. Mikuˇz , A. Neusiedl 166 166 55 , J.U. Mj¨ornmark , A. Moraes , H. Oberlack , T. Naumann , R.A. McPherson , T. Matsushita 147 , A.-E. Nuncio-Quiroz 124 ,d , J. Nielsen , I. Nakano 48 164 20 , L. Mendoza Navas , M. Nagel , J.D. Morris 138 , S. Nemecek , R. Meera-Lebbai 128 154 28 , W.J. Murray , A. McCarn , H. Merritt , K. Mueller 58 29 114 , M. Nordberg , R. Mazini 154 41 , J. Nadal 88b , R. Nisius , E. Mountricha , K.M. Mercurio 158a 142 , 86 30 , K. Meier , J-P. Meyer , A. Negri 152 , A.L. Maslennikov , L. Micu 122 , S. Mohapatra , L.M. Mir 110 138 , A. Milov , B.J. O’Brien , F. Marzano 124 142 160 72 30 88a 81 81 29 131a 20 56 76 81 172 , K. Nikolics 77 T.J. Neep T.K. Nelson Y. Munwes M. Myska Y. Nagasaka T. Nakamura T. Nattermann C. Mora Herrera M. Moreno Ll´acer G. Mornacchi R. Mount J. Mueller M. Mi˜nano Moya Y. Ming P.S. Miyagawa N. M¨oser J. Montejo Berlingen F.S. Merritt C. Meyer S. Michal M. Mikestikova C. Mills K.W. McFarlane S.J. McMahon M. Medinnis A. Mehta F. Meloni E. Meoni J. Masik P. Mastrandrea H. Matsunaga A. Mayne S.P. Mc Kee M. Marx A. Nisati S. Norberg I.M. Nugent E. Nurse F.G. Oakham M.S. Neubauer V. NguyenF. Niedercorn Thi Hong Audit JHEP09(2012)041 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 5 7 9 ,b 24 85 29 14 24 20 61 39 40 38 30 52 26 98 29 30 41 29 150 157 147 153 57a 113 103 108 116 31a 135 104 49a 174 49b 88b 19b 88b 36b , , , , , 131a 123a 19a 88a 36a 49a 88a , M.I. Pe- , C. Pahl , A. Phan , P. Pani 9 , L.E. Price , J. Pina , M. Raas , H. Okawa , N. Ozturk , A. Pranko 143a 138 31b , R. Rezvani 72 , K. Reeves , Z.L. Ren 81 , A. Ouraou , K. Peters 82 , A. Olszewski , S. Poddar , C. Petridou , S. Palestini 31a , A.L. Read 100 18a , B. Penning 97 29 6 , S. Pataraia , F. Parodi 63 , A.M. Rahimi , L. Perini , S. Psoroulas 119 , M.J. Oreglia , C. Pizio 24 , S. Passaggio 29 116 119 , L. Pontecorvo , C.T. Potter 4 153 , Y. Pylypchenko 27 34 32b ,ad 177 29 , X. Portell Bueso , S. Protopopescu , M. Rijssenbeek 148 158a 123a 48 , M. Piccinini 131a 114 29 , A.S. Randle-Conde 74 , S.A. Olivares Pino , A. Policicchio 31b , Th.D. Papadopoulou , C. Oropeza Barrera 104 , J. Price , R. Pezoa , G. Otero y Garzon 63 , T. Perez Cavalcanti 140 , M. Pecsy 59 106 11 , E. Paganis 118a 141 145a ,ae 29 14 , P. Reznicek , D. Olivito , R. Reece 34 , T. Ohshima , V.E. Ozcan , P. Pralavorio , G. Rahal , P. Puzo , F. Quinonez , H. Peng , A. Petridis 24 , C.P. Paleari 29 4 135 , A.D. Pilkington 76 , C. Rembser 166 ,ac 138 , K. Pomm`es , M.A. Parker 172 88b , B. Pinto 165 , 30 , E. Panagiotopoulou 42 , M. Raymond , A. Poblaguev , F. Ould-Saada 2 24 22 , C.J. Oram , G. P´asztor ,ac 158b 47 63 88a , I. Orlov , D. Price 172 , C.J. Potter , V. Perez Reale , E. Piccaro 30 75 168 24 , H. Przysiezniak , A. Poppleton 16 98 48 , F. Prokoshin , E. Pasqualucci , C. Osuna , M. Rijpstra 71b , M. Petteni , M. Rammes 37 , V.D. Peshekhonov , T. Pauly 166 , 4 12a 53 77 41 , E. Petit 47 , K. Perez 107 , A. Papadelis 119 71a , A.G. Olchevski , G. Polesello 35 101b , S. Owen , , C.C. Ohm , R. Prabhu , B. Resende 23a 25a 48 25a 81 44 63 , S. Pagan Griso , J.E. Pilcher , M. Purohit 88a – 32 – , G. Redlinger , W. Park 101a , D. Pelikan , Y.B. Pan , D. Pomeroy , F. Ragusa 11 , W.B. Quayle 86 , I. Reisinger 33 , E. Oliver Garcia , T.C. Rave 108 17 24 , K. Pretzl 173 , J.L. Pinfold , G. Palacino 106 14 18a 24 97 , Fr. Pastore 62 113 ∗ , A. Picazio 117 116 , , E. Plotnikova , M. Ridel , E.A. Ouellette , P.U.E. Onyisi , I.N. Potrap 29 , D. Petschull 24 , P. Perrodo , D.S. Popovic , N. Orlando , S.H. Oh ,af ,ab , R. Ospanov , D. Pantea 133b , A. Olariu , M. Pohl , M. Owen 4 , K. Prokofiev 126 , S. Pashapour , 134d , M. Przybycien 81 71a 25a , S. Resconi 24 133b , T.C. Petersen , M. Rammensee 14 47 , 133b 49b 43 154 114 71a , , 123a 29 24 133a , M. Perantoni , S. Prell , T. Rador , J. Purdham , S. Patricelli 131a 133a 59 , V. Pozdnyakov 49a 24 , J.D. Palmer 133a 83 81 113 , D.T. Pignotti 59 , D.R. Quarrie , A. Oh 26 , A. Reinsch , K. Pajchel , A. Pinder , F. Rauscher , A. Redelbach 123a 53 59 , M.T. P´erez Garc´ıa-Esta˜n , V. Polychronakos 83 28 , C. Padilla Aranda 152 74 163c 118b , M. Ouchrif , , M.-A. Pleier 11 , , S.V. Peleganchuk 158a , S. Pospisil , S. Panitkin , G. Piacquadio , D. Oliveira Damazio , R. Perrino 104 , J. Petersen 168 , A. Onofre , D. Paredes Hernandez 98 86 , U. Parzefall 172 163a ,h , T. Okuyama , X. Prudent , F. Pastore 118a 5 , L. Poggioli 29 128 , A. Ovcharova 29 , F. Petrucci 38 5 , M. Rescigno 34 , P. Radloff , E. Richter-Was , J. Poveda , J. Penwell 30 , M. Primavera , G.A. Popeneciu 33 , E. Pueschel , B. Osculati , J.R. Pater , R. Pravahan , J. Poll 41 32a , R. Piegaia 98 , S. Rajagopalan 29 123a , D. Orestano 34 , A. Palma 133a , P. Pais 87 114 , H. Ogren 131a 122 29 113 , A. Quadt 41 24 157 33 24 149 19a 82 152 86 K. Randrianarivony D.M. Rebuzzi E. Reinherz-Aronis A. Renaud R. Richter D. Prieur J. Proudfoot E. Ptacek J. Qian V. Radescu D. Rahm A. Polini B.G. Pope G.E. Pospelov G. Poulard S. Prasad P.W. Phillips S.M. Piec M. Pinamonti M. Plamondon F. Podlyski A. Penson E. Perez Codina H. Pernegger B.A. Petersen E. Petrolo A. Paramonov J.A. Parsons A. Passeri N. Patel draza Morales J.P. Ottersbach Q. Ouyang A. Pacheco Pages F. Paige D. Pallin N. Panikashvili Y. Okumura M. Oliveira J. Olszowska Y. Oren R.S. Orr J. Odier JHEP09(2012)041 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ∗ , ,d 35 98 97 86 20 29 47 20 39 85 76 93 95 62 97 62 98 64 57c 152 12a 19a 142 120 110 124 117 135 117 148 174 88b 36b , , 14 131a 131a 123a 121b 131b 143b 101b , , , 157 36a 88a 121a 131a 101a , C. San- 46 , D. Schaile , P. Sicho , O. Sasaki , P. Schacht , S. Rosati , S.J. Sekula , Q.T. Shao 6 , M. Schott , Y. Silver , M. Schmitz , C. Sbarra , H. Severini , D. Salihagic , B. Ruckert , P. Savard , D. Scheirich , E. Sedykh , Lj. Simic , A. Shmeleva , T. Schwindt , C.R. Royon 114 21 , N.C. Ryder 174 , F. Salvatore 53 114 , M. Sandhoff 98 , N. Schroer 29 41 166 , C. Ruwiedel 41 , C. Roda 119 , M. Seman 57b 114 63 101a , P. Sherwood 6 120 123a , A. Romaniouk , J.G. Saraiva 135 97 80 , M. Schumacher , M. Simonyan 135 114 114 36b , E. Rossi 72 , 105 , A. Sanchez 15 , A. Ruiz-Martinez 175 , E.I. Rosenberg 160 11 , F. Safai Tehrani , M. Schioppa 88b 6 123a , , A. Sansoni 36a 63 97 , G. Rivoltella 116 157 , A. Schwartzman 88a , E. Ros 128 11 , D. Salek 81 77 , R. Seuster , J. Saxon , J. Silva , G. Sedov 110 , M.A. Shupe , J.T. Shank , S. Schmitt 53 52 , S. Rolli , A.C. Schaffer , J.B. Sauvan 95 , G. Sartisohn , F. R¨uhr 80 , I. Rubinskiy , G. Rybkin 171 113 , H. Schulz 4 32a , A. Robichaud-Veronneau , G. Sellers , M. Shiyakova , O. Simard 60 , D. Rousseau 11 116 , M.P. Sanders 57b ,k , G. Sekhniaidze 125 , H. Santos 57a 55 121b , C. Schroeder , J. Schaarschmidt , 80 , J. Schwindling , I. Riu 126 , V. Rossetti , V.A. Schegelsky 84 137 , R. Sadykov , J. Schieck , L. Roos , D. Salvatore , D. Sherman 145a , J.P. Rutherfoord 84 23a 5 43 39 , B.H. Samset 48 149 132b 63 57a , 136 49b 166 121a , A.L.S. Schorlemmer , 163c , L. Serkin , 153 , M. Saleem , D.P.C. Sankey , J.G. Rocha de Lima , R. Simoniello 49a 57b 132a 98 114 52 , J. Searcy , E. Sauvan , E. Shulga , C. Schmitt , T. Shin 76 163a 132a , D.H. Saxon ∗ , L.Y. Shan , O. Silbert , O. Røhne , , G.A. Rosenbaum , F. Rubbo 62 20 99 4 , M. Rybar 128 , G. Rudolph ,m 29 75 , S. Schaetzel – 33 – 113 12a ,ag 87 43 24 , F. Sarri , V. Simak 20 , V. Scharf , J. Rothberg , H.G. Sander , J.M. Seixas 7 , B. Sellden 32a , R. Schwierz , C. Schwanenberger , M. Schram 13 43 , R.R. Rios , M. Scarcella , L. Serin , L. Rosselet 106 171 145a 87 120 97 135 124 19a 162 140 , A. Robson , C. Schiavi , S. Roe , S.H. Robertson , K. Shaw , A. Salamon , N.A. Rusakovich 81 34 53 , H.-C. Schultz-Coulon 74 , R. Santonico , D. Sampsonidis 94 , E. Romero Adam , P. Ryan , A. Schoening , G. Sauvage 74 47 , R. Sandstroem , S. Shrestha 33 29 , M. Rose , B. Simmons 26 , H.F-W. Sadrozinski , W.G. Scott 43 174 89 , L. Sawyer , K. Schmieden 120 , Dj. Sijacki , X. Ruan , C. Rudolph , M. Shamim , I. Roth , S. Schaepe , M. Shimojima 80 22 161 , F. Seifert 117 148 29 47 152 47 96 53 80 29 151 25a , B.M. Salvachua Ferrando , C. Serfon 136 , H. Sandaker , A. Roe 166 19b , 29 , A.G. Schamov 166 , L. Rinaldi , E. Rizvi 19a , Ph. Schune 147 , R. Schwienhorst , O. Rosenthal , G. Romeo , S.B. Silverstein , Z. Rurikova , I. Sadeh , J. Schovancova , J. Schultes , C. Santoni 118b 111 77 13 , M.I. Scherzer , V.I. Rud , , D.A. Scannicchio , D.M. Seliverstov 136 , D. Short , G. Salamanna 63 , U. Schnoor , G. Sciolla 19b 20 , A. Rose 84 142 , , J. Salt , J.E.M. Robinson , A. Salzburger , U. Sch¨afer 149 , D.O. Savu 4 , E. Schmidt , P.B. Shatalov 45 , Y. Rozen , C. Sandoval 30 , E. Sarkisyan-Grinbaum , Y.F. Ryabov , S. Shimizu , A. Seiden , F. Siegert , E. Simioni 16 162 104 158a 19b , M. Rotaru 48 154 , 118a 27 29 14 82 27 19a 142 103 119 122 , E. Shabalina 172 124 107 102 114 , I. Satsounkevitch 49a 19a 131a 29 66 A. Shibata M.J. Shochet A. Sidoti D. Silverstein S. Simion M. Schwoerer S.C. Seidel K.E. Selbach N. Semprini-Cesari A. Sfyrla M. Shapiro B. Schneider D. Schouten M.J. Schultens B.A. Schumm Ph. Schwemling A. Sbrizzi D. Schaefer R.D. Schamberger M. Schernau S. Schlenker T. Sandoval tamarina Rios T. Sarangi N. Sasao V. Savinov A.F. Saavedra H. Sakamoto A. Salnikov A. Salvucci V. Sanchez Martinez P.L. Rosendahl L.P. Rossi A. Rozanov N. Ruckstuhl L. Rumyantsev P. Ruzicka F. Rizatdinova D. Robinson D. Roda DosM. Santos Romano K. Rosbach A. Rimoldi JHEP09(2012)041 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ∗ , ,k 69 47 41 67 24 28 14 29 34 82 77 56 78 93 38 98 39 41 ,ah 105 124 141 114 119 124 102 171 152 120 106 57a 116 126 25a 146 110 141 104 173 63 143a 157 125 , E. Sol- , T. Tic 166 , I. Stekl , C. Suhr , H. Torres 14 , M. Svatos 24 , S. Stern , A. Soffer , F. Tarrade 115 , S. Tisserant , K. Toms 65 , E. Thomson 113 51 , S. Stapnes , N.A. Styles , S. Tok´ar , M. Strauss , R. Takashima , M.C. Tamsett , R. Stamen , H. Ten Kate , G. Stoicea , A.A. Snesarev 126 , M. Teinturier , V. Smakhtin , T. Trefzger 30 151 , K. Tackmann , O. Smirnova , M. Tsiakiris 35 , H.P. Skottowe , A. Soukharev 41 , M. Spousta 175 68 24 ,f , V. Solovyev , M.F. Tripiana 47 47 174 , A.N. Sisakyan , R. Staszewski 142 , E.N. Thompson , R. Stroynowski 119 96 , J. Strandberg 126 14 , R.J. Teuscher 29 160 138 104 77 117 ∗ 24 158b 41 , 106 17 127 , J.E. Sundermann , M. Tatarkhanov 163c 43 46 , 75 54 , A.J. Tanasijczuk 36b , 163a 64 , U. Soldevila , Y. Suzuki , M. Trottier-McDonald 36a , H. Takai , Y. Sugaya , P. Steinberg 95 , D. Ta 64 , S. Tarem , M.J. Tibbetts , E. Torrence , P. Tipton 11 , J. Tojo 88a 43 , K. Sliwa 100 , H. Stenzel , P. Sturm , K. Smolek , A. Sircar 34 166 29 , J. Sodomka 95 , W. Taylor 157 , X. Sun , E. Strauss 162 , R. Spiwoks 70 , M. Testa , K. Stoerig ,k , L.A. Thomsen 126 147 85 173 66 , A. Talyshev 158a , L. Tompkins 29 79 84 52 , D.R. Tovey 108 , L.A. Skinnari , J. Stahlman , J.P. Thomas 168 , K.K. Temming 82 , J.C-L. Tseng 82 13 , J.A. Strong 52 100 47 , L.N. Smirnova 75 , R. Soualah , A. Straessner , P. Starovoitov 29 , E. Tassi , M. Stanescu-Bellu 7 7 95 113 , S. Tanaka , Y. Suzuki 124 , S. Trincaz-Duvoid , F. Tian 124 , O.V. Solovyanov 133a 130 148 86 , C. Troncon , D. Tardif , A. Succurro , J. S´anchez , Y. Takahashi 127 , G. Spigo 2 158a , I. Torchiani , P. Steinbach 54 80 , J. Stupak , J. Terron , M. Talby , T. Slavicek , E.Yu. Soldatov – 34 – , G.N. Taylor , T. Sumida 63 52 , G. Siragusa ∗ 125 , R. Sobie 152 19a , , M. Smizanska , S. Timoshenko 64 17 , M. Strang 91 3d , S. Thoma 154 24 126 24 52 ,f 140 , B. Toggerson 77 116 , A.S. Thompson , T.B. Sjursen , M. Sosebee 106 160 , F. Touchard , M. Tomoto , M.C. Stockton 157 , Y. Smirnov , D.M. Strom 87 126 , P. Staroba ,ad 20 145b , C. Tsarouchas , , P. Teixeira-Dias , R.P. Thun 95 , R.D. St. Denis , O. Stelzer-Chilton , S. Tanaka 54 , M.R. Sutton , A.R. Stradling 82 173 , C. Stanescu 7 , M. Tasevsky 38 74 85 , B. Trocm´e , R. Spighi 5 , G. Steele 87 , J. Solc 145a ∗ , T. Sykora , M. Slater 114 125 , N. Taiblum , I.M. Trigger 36b , , Y. Takubo 75 125 , , V. Sipica 157 , S. Tapprogge , F.E. Taylor , S. Snyder , N.D. Topilin , K. Terashi 126 29 , I. Stumer 110 , K.M. Smith 139 36a 143a 82 76 , A.A. Solodkov 113 16 , S. Sultansoy 158a , HS. Subramania 64 143a 13 110 93 142 , B. Sopko 142 , A. Strandlie 131b , , J. Toth 126 , J. Stark , Y.A. Tikhonov , J. Sj¨olin 145b , P. Tas , , F. Span`o 166 131a , P.D. Thompson 93 , K. Tollefson 127 96 , A. Trzupek , J.A. Stillings , R. Str¨ohmer , B. Spurlock 88a 17 64 , M. Solar , W.M. Thong 71b , C. Taylor , P. Skubic 38 145a , 29 , A. Tricoli , S.Yu. Smirnov , R.W. Stanek , D. Su , T. Theveneaux-Pelzer , R. Tanaka , I. Sykora , H.J. Stelzer , C. Topfel , S. Todorova-Nova , J. Snow 27 , S. Terada , W. Trischuk , G. Susinno , D. Smith , N.B. Sinev 157 , P. Strachota , R. Tafirout , B. Stugu 4 29 166 45 38 143b ,w , P. Stavina 20 , T. Takeshita 13 106 71a 81 24 154 167 141 56 134d 98 150 97 , V.V. Sulin 138 157 65 162 , N. Tannoury 128 150 , V. Sopko 65 125 85 J. Therhaag P.D. Thompson M. Thomson K. Tani G.F. Tartarelli Y. Tayalati M. Teixeira DiasP.K. Castanheira Teng K. Suruliz S. Swedish A. Taffard H. Takeda J. Tanaka S. Strandberg P. Strizenec J. Strube D.A. Soh M. Suk E.A. Starchenko A. Staude B. Stelzer G.A. Stewart S. Stonjek C.A. Solans faroli Camillocci N. Soni S. Spagnolo T. Spreitzer E. Stanecka S.Yu. Sivoklokov K. Skovpen B.H. Smart B.C. Smith S.W. Snow P. Sinervo A. Tonoyan E. Torr´o Pastor L. Tremblet N. Triplett M. Trzebinski V.O. Tikhomirov T. Todorov K. Tokushuku JHEP09(2012)041 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 4 ,s 47 29 52 35 98 70 44 41 17 16 22 29 85 20 34 38 64 30 34 29 55 47 46 166 104 174 150 160 114 154 166 104 104 104 171 126 19b 41 , 131a 123a 118b 144b , 19a 118a , I. Ueda , G. Unal , S. Xella , J. Walder , W. Willis , R. Vari , M. Vos , S. Wenig 20 , O. Vitells 45 , C. Wang , P.M. Tuts , C. Wasicki , F. Wicek , S. Tsuno 159 86 , J. Wetter 77 , E. Vilucchi 11 29 14 , M. Vlasak , F. Veloso 45 119 , M.S. Weber , W. Wagner , M.A. Wildt 59 20 175 88b , M. Wright , , S.M. Wang , M. Venturi , I. van Vulpen , H. Wellenstein 97 , M.W. Wolter 57a 166 , J.M. Tuggle 30 , M.J. White 114 5 52 128 , M.F. Watson 166 7 , V. Tsiskaridze 83 , J. Wotschack , P. Wienemann 47 80 88a 102 25a 11 38 , J.A. Valls Ferrer 149 , J.C. Vermeulen , S. Valentinetti 128 , I. Wingerter-Seez , M. Uslenghi 7 , R. Van Der Leeuw 151 , H. von der Schmitt , J. Virzi 104 86 124 , V.I. Vassilakopoulos , K. Uchida , S. Walch ∗ , 8 , O.E. Vickey Boeriu 104 88a 149 100 , F. Ukegawa 135 , B. Walsh , B.M. Wynne ,aj , T. Wengler , F. Vannucci , I. Vukotic 53 , V. Vorwerk , C. Weiser , M. Vranjes Milosavljevic , R. Turra 72 34 , M. Weber ,w 41 , D. Vladoiu , A. Washbrook , M. Wessels 29 , H.H. Williams , J.J. Veillet , R. Wang 53 9 , A. Wildauer , J.-W. Tsung 76 , A. White 144b 125 , C. Wright 135 47 104 34 150 , G. Usai 54 , D. Whittington 162 76 14 , D. Ventura 52 88b , 162 34 , M. Wielers , J. Valenta , S.J. Wollstadt , I.J. Watson 162 71b , P. van Gemmeren , B.K. Wosiek , S. Tsiskaridze , 14 88a , V. Tudorache , S. Vallecorsa 17 , A. Wilson 9 172 142 29 86 , G. Volpini , G. Tzanakos , M. Villaplana Perez , W. Verkerke , E. Wulf 71a 25a 166 142 85 , K.E. Varvell , M. Virchaux 128 ,al 19b 137 , P. Waller , P. Vankov , 7 5 63 , Z. Weng , E. Turlay , J. Wakabayashi , T. Vickey , S. Vlachos , J. Wang 32b 175 , N. Vranjes 19a , H. van der Graaf 2 , M. Uhrmacher 15 3e , M. Werth , R. Vuillermet 43 , E. Williams , V. Vorobel , J. Weingarten , B.M. Waugh – 35 – 164 72 150 , M. Warsinsky 20 , V. Tsulaia 29 47 104 97 20 98 , S. Vahsen , G. Vegni 27 94 149 , P.A. Wijeratne , K. Wraight , D. Urbaniec 84 53 , D. Whiteson 47 38 64 , M. Volpi , M. Wittgen , N. van Eldik , G. Tsipolitis , Y. Wu , M. Tyndel 46 117 , G. Wooden 29 29 , A.T. Watson , A. Ventura 48 , M. Villa ,ai , R. Wall 40 17 4 , S.J. Wheeler-Ellis 145b , A. Tudorache , M. Verducci , M.G. Wilson , W. Wiedenmann , 167 , J.Z. Will 140 , I. Vichou 28 131a , J. Wang , A. Vaniachine , P. Weigell 17 , P. Werner , A. Vartapetian ,d 29 138 , T. Vu Anh 128 , S. Wahrmund , I. Turk Cakir , C.P. Ward 29 118a , D. Wendland 145a ,ak , V.B. Vinogradov , B. Vachon 117 47 14 , Y. Unno 84 141 , E. Valladolid Gallego 24 104 29 174 126 , F. Vives Vaque , X. Wu , A.T. Waugh , J.H. Vossebeld , M. Uhlenbrock , G. Volpi 32b 126 162 47 81 125 13 , R. van der Geer , E. von Toerne 172 , S. Viel 174 126 , I.I. Tsukerman 47 104 117 , D. Tsionou 50a , K.W. Wozniak , D. van der Ster , F. Winklmeier , A. Tua , L.A.M. Wiik-Fuchs , W.C. Wong , S.R. Whitehead 89 81 47 ,h 74 104 , P.M. Watkins , E. Vinek , M. Tylmad 147 , K. Whalen , V. Vercesi , W. Vandelli , V. Vacek , H.G. Wilkens , M. Werner , J.A. Wilson 65 28 121b , H. Wahlen 73 , T. Vazquez Schroeder , S. Veneziano , G. Unel 54 , , W. Walkowiak , F.J. Wickens , H. Wang , T. Wenaus , S. Valkar , S. Watts , D. Turecek 98 123a 82 , S.L. Wu 20 83 157 33 29 24 , M. Vreeswijk , A.R. Weidberg , P. Vokac 97 , D. Varouchas 125 , A. Warburton 29 119 , M. Ugland 38 72 , M.C. Vetterli 174 , T.T. Voss , I. Vivarelli 172 166 137 121a 53 20 83 20 28 124 43 29 41 N. Wermes C. Weydert S. White D. Wicke C. Wiglesworth T. Wang I. Watanabe G. Watts P. Weber P.S. Wells R. Voss V. Vrba P. Wagner R. Walker H. Wang G.H.A. Viehhauser M.G. Vincter M. Viti A. Vogel H. von Radziewski T. Varol F. Vazeille R. Veness N. Venturi A. Vest A. Undrus L. Vacavant A. Valero P.C. Van Der Deijl E. van der Poel M. Vanadia E.G. Tskhadadze D. Tsybychev M. Turala A. Tykhonov R. Ueno P.V. Tsiareshka S. Willocq S. Winkelmann H. Wolters M.J. Woudstra B. Wrona I. Wilhelm JHEP09(2012)041 , , , , , , , , , , , , , , ∗ , 64 86 64 38 86 97 20 154 170 111 127 114 32d 127 29 , J. Yu , B. Zhou , Y. Yasu 7 , H. Yang , A. Zemla 14 117 , X. Zhang 21 , K. Yorita , X. Zhuang 5 124 , M. Yamada , D. Zerwas 122 , A.M. Zaitsev 14 32b , T. Yamamura 144b 61 , J. Yu , S. Zimmermann 154 24 , Y. Yao 20 , V.V. Zmouchko , Z. Yan Department of Physics, , J. Zhong and L. Zwalinski ) 34 65 32a Vinca Institute of Nuclear b , J. Zhang 63 ( ) b , M. Zeman , S. Zenz , Y. Zhu ( 87 105 86 174 , R. Zaidan , D. Yu , S. Yacoob 121b , 38 21 ˇ Zivkovi´c 149 , L. Yao 121a , R. Yoosoofmiya 90 , S. Yamamoto 3c , J. Zhu , L. , H. Zhang , V. Zutshi 62 4 , Y. Yamazaki 41 15 ,ak , R. Zimmermann , C. Zeitnitz , A. Zhemchugov 154 63 32b 106 , B. Zabinski , S. Youssef 32b , B. Yabsley 29 , S. Yanush – 36 – Department of Physics, Gazi University, Ankara; 117 , Z. Zinonos ) 138 c , H. Zhu , M. Yilmaz ( 145b , , R. Zitoun 24 143a 32d , Z. Zhao 140 , K. Yamamoto 145a , D. Zhang , N.I. Zimin 64 , D. Xu , A. Zaytsev ˇ Zeniˇs 137 , M. zur Nedden , T. Yamazaki 32d ,z 59 , S. Ye 44 19b , 131b 39 , 32b , C.J. Young , M. Byszewski , T. 19a , C.G. Zhu 131a 142 , Z. Yang 105 127 , T. Zhao 59 150 , Z. Zhan , J. Ye , C. Xu 107 56 47 , M. Ziolkowski 129 , A. Yamamoto 47 , J. Yamaoka , D. Zieminska , A. Zoccoli 154 154 98 , L. Zanello , O. Zenin , Y. Yang , C. Young 172 , L. Zhao 29 5 , Y. Zhou , S. Xie 20 81 , A. Yurkewicz 114 162 135 Institute of Physics, University of Belgrade, Belgrade; Department of Physics, Ankara University, Ankara; Division of Physics, TOBB University of Economics and Technology, Ankara; Turkish Atomic Energy Authority, Ankara, Turkey 65 ) ) ) ) d e a a nia, Berkeley CA, United States of America Physics, University of Bern, Bern, Switzerland Aut`onomade Barcelona and ICREA,( Barcelona, Spain Sciences, University of Belgrade, Belgrade, Serbia States of America ( ( States of America ( Dumlupinar University, Kutahya; Physics Department, SUNY Albany, AlbanyDepartment NY, of United Physics, States University of of America Alberta, Edmonton AB, Canada Physics Division, Lawrence Berkeley National Laboratory and University ofDepartment Califor- of Physics, Humboldt University,Albert Berlin, Germany Einstein Center for Fundamental Physics and Laboratory for High Energy Institute of Physics, Azerbaijan AcademyInstitut of de Sciences, Baku, F´ısica d’Altes Azerbaijan Energies and Departament de F´ısica de la Universitat Department for Physics and Technology, University of Bergen, Bergen, Norway Department of Physics, University ofDepartment Arizona, of Tucson Physics, AZ, The United University States of of Texas America at Arlington, ArlingtonPhysics TX, Department, United University of Athens,Physics Athens, Department, Greece National Technical University of Athens, Zografou, Greece LAPP, CNRS/IN2P3 and Universit´ede Savoie, Annecy-le-Vieux,High France Energy Physics Division, Argonne National Laboratory, Argonne IL, United : : : : : : : : : : : : : : : : 7 8 9 4 5 6 1 2 3 14 15 16 11 12 13 10 V. Zhuravlov S. Zimmermann G. Zobernig L. Yuan Z. Zajacova C. Zendler G. Zevi della Porta Z. Zhang N. Zhou H. Yamaguchi T. Yamanaka U.K. Yang G.V. Ybeles Smit R. Yoshida M. Xiao JHEP09(2012)041 Federal ) b ( University ) b ( School of Physics, ) d ( Division of Physics, Dogus ) b ( Federal University of Sao Joao ) c ( Dipartimento di Fisica, Universit`adella ) b ( West University in Timisoara, Timisoara, Ro- Instituto de Fisica, Universidade de Sao Paulo, ) ) – 37 – c d ( ( Dipartimento di Fisica, Universit`a di Bologna, ) b ( Department of Physics Engineering, Gaziantep University, ) c ( Department of Physics, Istanbul Technical University, Istanbul, Turkey ) d ( Department of Physics, Nanjing University, Jiangsu; ) c ( INFN Gruppo Collegato di Cosenza; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; Departamento de F´ısica, Pontificia Universidad Cat´olica de Chile, Santiago; National Institute of Physics and Nuclear Engineering, Bucharest; Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; Department of Physics, Bogazici University, Istanbul; INFN Sezione di Bologna; Department of Modern Physics, University of Science and Technology of China, Departamento de F´ısica,Universidad T´ecnicaFederico Santa Mar´ıa,Valpara´ıso, ) ) ) ) ) ) ) ) ) a b a b a a a a a Science, Krakow, Poland ences, Krakow, Poland America Pascal and CNRS/IN2P3, Aubiere Cedex, France ( Calabria, Arcavata di Rende, Italy ( Anhui; Shandong University, Shandong, China ( ( Chile ( Politehnica Bucharest, Bucharest; mania del Rei (UFSJ), Sao JoaoSao del Paulo, Rei; Brazil America ( Bologna, Italy ( University of Juiz de Fora (UFJF), Juiz de Fora; Kingdom ( University, Istanbul; Gaziantep; ( The Henryk Niewodniczanski Institute of Nuclear Physics,Physics Polish Department, Academy Southern of Sci- Methodist University, Dallas TX, United States of Nevis Laboratory, Columbia University, IrvingtonNiels NY, Bohr United Institute, States University of of America Copenhagen, Kobenhavn, Denmark AGH University of Science and Technology, Faculty of Physics and Applied Computer Laboratoire de Physique Corpusculaire, Clermont Universit´eand Universit´eBlaise CERN, Geneva, Switzerland Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America Departamento de F´ısica,Universidad de BuenosCavendish Aires, Laboratory, Buenos University Aires, of Argentina Cambridge,Department Cambridge, of United Physics, Kingdom Carleton University, Ottawa ON, Canada Physics Department, Brookhaven National Laboratory, Upton NY, United States of Physikalisches Institut, University of Bonn,Department Bonn, of Germany Physics, Boston University,Department Boston of MA, Physics, Brandeis United University, States Waltham MA, of United America States of America School of Physics and Astronomy, University of Birmingham, Birmingham, United : : : : : : : : : : : : : : : : : : : : : : : 38 39 34 35 36 37 33 29 30 31 32 26 27 28 24 25 20 21 22 23 18 19 17 JHEP09(2012)041 High ) b ( – 38 – Dipartimento di Fisica, Universit`adi Genova, Genova, ) b ( Physikalisches Institut, Ruprecht-Karls-Universit¨atHeidelberg, Heidelberg; ) b ( Kirchhoff-Institut f¨ur Physik, Ruprecht-Karls-Universit¨at Heidelberg, Heidel- INFN Sezione di Genova; E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; ZITI Institut f¨urtechnische Informatik, Ruprecht-Karls-Universit¨atHeidelberg, ) ) ) ) a c a a States of America roshima, Japan ica Austria United States of America ( berg; ( Mannheim, Germany and CNRS/IN2P3 andFrance Institut National Polytechnique de Grenoble, Grenoble, Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia Kingdom many ( Italy ( many United Kingdom America Germany University of Iowa, Iowa CityDepartment IA, United of States Physics of America and Astronomy, IowaJoint State Institute University, for Nuclear Ames Research,KEK, IA, JINR High Dubna, United Energy Dubna, Accelerator Russia Research Organization, Tsukuba, Japan Faculty of Applied Information Science, Department Hiroshima of Physics, Institute Indiana University, of Bloomington IN, Technology, United Hi- States ofInstitut Amer- f¨ur Astro-und Teilchenphysik, Leopold-Franzens-Universit¨at, Innsbruck, Laboratoire de Physique Subatomique et de Cosmologie, Universit´eJoseph Fourier Department of Physics, Hampton University, HamptonLaboratory VA, United for States Particle of Physics America and Cosmology, Harvard University, Cambridge MA, II Physikalisches Institut, Justus-Liebig-Universit¨atGiessen, Giessen,SUPA Germany - School of Physics and Astronomy, UniversityII of Physikalisches Glasgow, Institut, Glasgow, Georg-August-Universit¨at,G¨ottingen,Germany United Section de Physique, Geneva, Universit´ede Gen`eve, Switzerland Department of Physics, Duke University,SUPA Durham NC, - United School States of of America Physics andINFN Astronomy, Laboratori Nazionali University di of Frascati,Fakult¨atf¨urMathematik Frascati, Edinburgh, und Italy Physik, Edinburgh, Albert-Ludwigs-Universit¨at,Freiburg, Ger- DESY, Hamburg and Zeuthen, Germany Institut f¨urExperimentelle Physik IV, Technische Universit¨atDortmund, Dortmund, Institut f¨urKern-und Teilchenphysik, Technical University Dresden, Dresden, Ger- Physics Department, University of Texas at Dallas, Richardson TX, United States of : : : : : : : : : : : : : : : : : : : : : : : : : 61 62 63 64 59 60 57 58 54 55 56 51 52 53 48 49 50 44 45 46 47 41 42 43 40 JHEP09(2012)041 – 39 – Dipartimento di Fisica, Universit`adi Milano, Milano, Dipartimento di Matematica e Fisica, Universit`adel ) ) b b ( ( INFN Sezione di Milano; INFN Sezione di Lecce; ) ) a a Republic of Belarus Minsk, Republic of Belarus United States of America of America United States of America ( Italy America Spain Kingdom Kingdom Paris-Diderot and CNRS/IN2P3, Paris, France Kingdom dom ( Salento, Lecce, Italy Slovenia Plata, Argentina National Scientific and Educational Centre for ParticleDepartment and of High Physics, Energy Physics, Massachusetts Institute of Technology, Cambridge MA, Department of Physics and Astronomy, Michigan State University, East Lansing MI, B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Department of Physics, University of Massachusetts, Amherst MA, UnitedDepartment States of of Physics, McGill University,School Montreal of QC, Physics, Canada University ofDepartment Melbourne, of Victoria, Physics, Australia The University of Michigan, Ann Arbor MI, United States Institut f¨urPhysik, Universit¨atMainz, Mainz, Germany School of Physics and Astronomy, UniversityCPPM, of Aix-Marseille Manchester, Universit´eand CNRS/IN2P3, Manchester, Marseille, United France Laboratoire de Physique Nucl´eaireet de HautesFysiska Energies, institutionen, UPMC Lunds universitet, and Lund,Departamento Universit´e Sweden de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, School of Physics and Astronomy, Queen Mary University of London, London, United Department of Physics, Royal Holloway University of London, Surrey,Department United of King- Physics and Astronomy, University College London, London, United Physics Department, Lancaster University, Lancaster, United Kingdom Oliver Lodge Laboratory, University ofDepartment Liverpool, of Physics, Liverpool, JoˇzefStefan Institute United and Kingdom University of Ljubljana, Ljubljana, Faculty of Science, Kyoto University,Kyoto Kyoto, University Japan of Education, Kyoto,Department Japan of Physics, Kyushu University,Instituto Fukuoka, Japan de F´ısicaLa Plata, Universidad Nacional de La Plata and CONICET, La Graduate School of Science, Kobe University, Kobe, Japan : : : : : : : : : : : : : : : : : : : : : : : : : : : 90 91 87 88 89 84 85 86 80 81 82 83 77 78 79 74 75 76 71 72 73 67 68 69 70 65 66 JHEP09(2012)041 – 40 – Dipartimento di Scienze Fisiche, Universit`adi Napoli, ) Dipartimento di Fisica, Universit`adi Pavia, Pavia, Italy b ( ) Dipartimento di Fisica E. Fermi, Universit`adi Pisa, Pisa, b ) ( b ( INFN Sezione di Napoli; INFN Sezione di Pisa; INFN Sezione di Pavia; ) ) ) a a a of America ( Italy America ( Norman OK, United States of America America ica sterdam, Netherlands America Napoli, Italy United States of America Nijmegen/Nikhef, Nijmegen, Netherlands Nagoya, Japan ( Moscow, Russia Department of Physics, University of Pennsylvania, Philadelphia PA, UnitedPetersburg States Nuclear Physics Institute, Gatchina, Russia LAL, Universit´eParis-Sud and CNRS/IN2P3, Orsay, France Graduate School of Science, OsakaDepartment University, of Osaka, Physics, Japan University ofDepartment Oslo, of Oslo, Physics, Norway Oxford University, Oxford, United Kingdom Department of Physics, Oklahoma State University, Stillwater OK, United RCPTM,Palack´yUniversity, States Olomouc, of Czech Republic Center for High Energy Physics, University of Oregon, Eugene OR, United States of Department of Physics, New York University, New York NY, United StatesOhio of State Amer- University, Columbus OH,Faculty United of States Science, of Okayama University, America Okayama,Homer Japan L. Dodge Department of Physics and Astronomy, University of Oklahoma, Nikhef National Institute for Subatomic Physics and University ofDepartment Amsterdam, Am- of Physics, Northern Illinois University, DeKalbBudker Institute IL, of United Nuclear States Physics, SB of RAS, Novosibirsk, Russia Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, Institute for Mathematics, Astrophysics and Particle Physics, Radboud University F kl¨t¨rhsk uwgMxmlasUiestaMuce,Muce,Germany M¨unchen, Ludwig-Maximilians-Universit¨atM¨unchen, Fakult¨atf¨urPhysik, Max-Planck-Institut f¨urPhysik (Werner-Heisenberg-Institut), Germany M¨unchen, Nagasaki Institute of Applied Science,Graduate Nagasaki, School Japan of Science and Kobayashi-Maskawa Institute, Nagoya University, P.N. Lebedev Institute of Physics,Institute Academy for of Theoretical Sciences, and Moscow, ExperimentalMoscow Russia Physics Engineering (ITEP), and Moscow, Physics Russia InstituteSkobeltsyn (MEPhI), Moscow, Institute Russia of Nuclear Physics, Lomonosov Moscow State University, Group of Particle Physics, University of Montreal, Montreal QC, Canada : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98 99 94 95 96 97 92 93 119 120 121 114 115 116 117 118 111 112 113 107 108 109 110 104 105 106 102 103 100 101 JHEP09(2012)041 Centre National de l’Energie des Sci- ) b ( Dipartimento di Fisica, Universit`adi Roma ) b ( autee SciencesFacult´edes Semlalia, Universit´eCadi ) c ( – 41 – Dipartimento di Fisica, Tre, Universit`aRoma Roma, Facult´edes Sciences, Universit´eMohamed Premier ) ) b ( d Dipartimento di Fisica, Sapienza, Universit`aLa Roma, ( ) b ( autee sciences,Facult´edes Universit´eMohammed V-Agdal, Rabat, ) e ( Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad ) b ( Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; INFN Sezione di Roma Tor Vergata; INFN Sezione di Roma Tre; Facult´edes Sciences Ain Chock, Universitaire R´eseau de Physique des Hautes INFN Sezione di Roma I; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak ) ) ) ) ) ) ) a b a a a a a ( ( Academy of Sciences, Kosice, Slovak Republic America Kingdom Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France Cruz CA, United States of America Energies - Universit´eHassan II, Casablanca; ences Techniques Nucleaires, Rabat; Ayyad, LPHEA-Marrakech; and LPTPM, Oujda; Morocco ( Tor Vergata, Roma, Italy ( Italy ( dom ( Italy public Republic United States of America ( Portugal; de Granada, Granada, Spain SLAC National Accelerator Laboratory, Stanford CA, United States of America Department of Physics and Astronomy, UniversityDepartment of of Physics, Sheffield, Shinshu Sheffield, University,Fachbereich Nagano, Physik, United Japan Universit¨atSiegen, Siegen, Germany Department of Physics, Simon Fraser University, Burnaby BC, Canada DSM/IRFU (Institut de Recherches sur les Lois Fondamentales deSanta Cruz l’Univers), Institute CEA for Particle Physics, University of California SantaDepartment Cruz, of Santa Physics, University of Washington, Seattle WA, United States of Physics Department, University of Regina,Ritsumeikan Regina University, Kusatsu, SK, Shiga, Canada Japan Faculty of Mathematics and Physics, Charles UniversityCzech in Technical University Prague, in Praha, Prague,State Praha, Czech Research Czech Center Republic Institute forParticle Physics High Department, Energy Rutherford Physics, Appleton Laboratory, Protvino, Didcot, Russia United King- Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Re- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, : : : : : : : : : : : : : : : : : : : : : : 142 143 138 139 140 141 136 137 135 132 133 134 129 130 131 125 126 127 128 123 124 122 JHEP09(2012)041 School of ) b ( Dipartimento di Chimica, ) c ( The Oskar Klein Centre, Stock- ) b ( ICTP, Trieste; ) b ( – 42 – Department of Physics and Astronomy, York Univer- ) b ( Department of Physics, University; Department of Physics, University of Johannesburg, Johannesburg; INFN Gruppo Collegato di Udine; TRIUMF, Vancouver BC; ) ) ) ) a a a a ular y Nuclear andelectr´onicade Departamento de Barcelona Ingenier´ıaElectr´onicaand Instituto (IMB-CNM), de UniversitySpain Micro- of Valencia and CSIC, Valencia, United States of America ( Fisica e Ambiente, Universit`adi Udine, Udine, Italy sity, Toronto ON, Canada Tsukuba, Ibaraki 305-8571, Japan America Japan ( Tel Aviv, Israel The University of Tokyo, Tokyo, Japan Brook NY, United States of America dom Physics, University of the( Witwatersrand, Johannesburg, South Africa holm, Sweden ( Department of Physics, University ofDepartment British of Columbia, Physics Vancouver and BC, Astronomy,Department Canada University of of Physics, Victoria, University Victoria of BC,Waseda Warwick, University, Canada Coventry, Tokyo, United Japan Kingdom Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel Department of Physics, University ofDepartment Illinois, of Urbana Physics IL, and United Astronomy,Instituto University States de of of F´ısicaCorpuscular (IFIC) Uppsala, America and Uppsala, Departamento Sweden de F´ısicaAt´omica,Molec- Centro de Investigaciones, Universidad AntonioDepartment Narino, of Bogota, Physics Colombia and Astronomy, University of California Irvine, Irvine CA, Institute of Pure and AppliedScience Sciences, and University Technology Center, of Tufts Tsukuba,1-1-1 University, Medford Tennodai, MA, United States of Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Department of Physics, Tokyo InstituteDepartment of of Technology, Tokyo, Physics, Japan University of Toronto, Toronto ON, Canada Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Department of Physics, Aristotle UniversityInternational of Center Thessaloniki, Thessaloniki, for Greece Elementary Particle Physics and Department of Physics, Department of Physics and Astronomy, University of Sussex, Brighton, United King- School of Physics, University ofInstitute Sydney, of Sydney, Physics, Australia Academia Sinica,Department Taipei, of Taiwan Physics, Technion: Israel Institute of Technology, Haifa, Israel Physics Department, Royal Institute ofDepartments Technology, of Stockholm, Physics Sweden & Astronomy and Chemistry, Stony Brook University, Stony : : : : : : : : : : : : : : : : : : : : : : : : : : : : 167 168 169 170 171 165 166 162 163 164 159 160 161 155 156 157 158 152 153 154 148 149 150 151 145 146 147 144 JHEP09(2012)041 – 43 – Taipei, Taiwan CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France United Kingdom dade Nova de Lisboa, Caparica, Portugal United Kingdom of America Cedex, France Lisboa, Portugal ica Germany Also at Dipartimento di Fisica,Also at Universit`aLa Sapienza, DSM/IRFU Roma, (Institut de Italy Recherches sur les Lois Fondamentales deAlso l’Univers), at section de Physique, Geneva, Universit´ede Gen`eve, Switzerland Also at Institut f¨urExperimentalphysik, Universit¨atHamburg, Hamburg,Also Germany at Manhattan College, NewAlso York at NY, School United of States Physics,Also of Shandong at America University, CPPM, Shandong, Aix-Marseille China Universit´eandAlso CNRS/IN2P3, at Marseille, School France of Physics andAlso Engineering, at Sun Yat-sen Academia University, Guanzhou, Sinica China Grid Computing, Institute of Physics, Academia Sinica, Also at Department of Physics and Astronomy, University College London,Also London, at Group of ParticleAlso Physics, at University Department of of Montreal, Physics,Also Montreal University at QC, of Institute Canada Cape of Town, Physics, Cape Azerbaijan Town, Academy South of Africa Sciences, Baku, Azerbaijan Also at Institute of ParticleAlso Physics at (IPP), Department Canada of Physics,Also Middle at East Louisiana Technical Tech University, University, Ankara,Also Ruston Turkey at LA, United Dep States Fisica of and America CEFITEC of Faculdade de Ciencias e Tecnologia, Universi- Also at Novosibirsk State University,Also Novosibirsk, at Russia Fermilab, Batavia IL,Also United at States Department of of America Physics,Also University at of Department Coimbra, of Coimbra, Physics,Also Portugal UASLP, at San Universit`adi Napoli Luis Potosi, Parthenope, Mexico Napoli, Italy Also at Particle Physics Department, Also Rutherford at Appleton TRIUMF, Vancouver BC, Laboratory,Also Canada at Didcot, Department of Physics, California State University, Fresno CA, United States Yerevan Physics Institute, Yerevan, Armenia Domaine scientifique de la Doua, Also Centre at de Laboratorio Calcul de CNRS/IN2P3, Instrumentacao e Villeurbanne FisicaAlso Experimental at Faculdade de de Ciencias Particulas and - CFNUL, Universidade LIP, de Lisboa, Lisboa, Portugal Fakult¨atf¨urPhysik und Astronomie, Julius-Maximilians-Universit¨at, W¨urzburg, Fachbereich C Physik, Bergische Universit¨atWuppertal, Wuppertal,Department Germany of Physics, Yale University, New Haven CT, United States of America Department of Physics, University of Wisconsin, Madison WI, United States of Amer- : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : l i t b c j s e r q o p z g d v y a k x h u f n w m aa 177 173 174 175 176 172 JHEP09(2012)041 – 44 – States of America ica United Kingdom Columbia SC, United States of America Physics, Budapest, Hungary Also at Department of Physics,Also Oxford at University, Institute Oxford, of United Physics,Also Kingdom Academia at Sinica, Department Taipei, of Taiwan Physics, The University of Michigan,Deceased Ann Arbor MI, United Also at Institute of Physics,Also Jagiellonian at University, LAL, Krakow, Universit´eParis-Sud Poland andAlso CNRS/IN2P3, at Orsay, Nevis France Laboratory, Columbia University, Irvington NY, United States of Amer- Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, Also at Department of PhysicsAlso and at Astronomy, Institute University for of Particle South andAlso at Nuclear Carolina, California Physics, Institute of Wigner Technology, Pasadena Research CA, United Centre States for of America Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal : : : : : : : : : : : : ∗ al ai ab ac aj ae ag ad ak ah af