Terrestrial and Freshwater Turtles of Early Cretaceous Australia

Total Page:16

File Type:pdf, Size:1020Kb

Terrestrial and Freshwater Turtles of Early Cretaceous Australia TERRESTRIAL AND FRESHWATER TURTLES OF EARLY CRETACEOUS AUSTRALIA ELIZABETH T. SMITH Research Associate The Australian Museum, Sydney A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy February 2009 Vertebrate Palaeontology Laboratory School of Biological, Earth and Environmental Sciences University of New South Wales, Sydney ABSTRACT An unusual turtle fauna from Lightning Ridge, New South Wales (Albian) reveals that Australian turtles had a more extensive Mesozoic history than previously indicated. Reevaluation of several primitive groups provides novel information on turtle evolution in the southern hemisphere. Seven turtle taxa are identified at Lightning Ridge. Two are Testudines indet. and two indeterminate chelid groups are evinced by isolated elements. Three new taxa are assigned to the new family Spoochelyidae in the superfamily Meiolanoidea. Spoochelys ormondea n. fam., gen. et sp., Sunflashemys bartondracketti n. gen. et sp. and Opalania baagiwayamba n. gen. et sp. are predominantly land-living turtles with high-domed shells and short manus and pes. The sister-group relationship with the Meiolaniidae, supported by a suite of cranial and postcranial synapomorphies, increases the stratigraphic range of the horned turtles by around ~ 50 my. Primitive structures in Spoochelys (postparietal, supratemporal and interpterygoid vacuity), occur with derived features that are variably developed across Triassic and Jurassic turtles. Phylogenetic analysis precariously resolves the meiolanoids as sister group to a clade containing Palaeochersis and Proterochersis. Limited pleurodiran attributes suggest that meiolanoids may be pleurodiromorphs, closer to primitive pleurodires than to cryptodires. As basal ‘side-necked’ turtles, the Lightning Ridge meiolanoids permit first insights into cranial and postcranial progressions in pleurodiran stem taxa. Evidence of diverse meiolanoids in Early Cretaceous Australia and ancient radiations of meiolanoid-like turtles in southern Pangea, suggest that the horned turtles are a Triassic group and that the dichotomy between Pleurodira and Cryptodira occurred well before the Late Triassic. Early Cretaceous chelids at Lightning Ridge occur at higher palaeolatitude than in South America. The temporal range of Australian chelids is extended by ~ 50 my, demonstrating that chelids had a Jurassic history in Australia, with broad diversifications across the polar supercontinent. The palaeoecological setting of Lightning Ridge is comprehensively described for the first time. Diverse invertebrates and vertebrates include terrestrial, freshwater aquatic and rare marine forms that are anomalous at this near-polar palaeolatitude (~65-70oS). The anachronistic occurrence in Early Cretaceous Australia of distinctive radiations of ‘Triassic-type’ turtles, and other relic groups, implies prolonged intervals of biogeographic isolation in the eastern provinces of Pangea. Keywords: Early Cretaceous Australia; Lightning Ridge; Meiolanoidea; Chelidae. ACKNOWLEDGEMENTS My sincere appreciation and thanks to my supervisors Dr Michael Archer and Dr Suzanne Hand, University of New South Wales, for expertise, wisdom and encouragement when it was most needed; Henk Godthelp for his enthusiasm for search and research at Lightning Ridge and for the braincase of cf. Warkalania from Riversleigh; Robin Beck for perseverance and utmost patience (PAUP); Karen Black and Anna Sainsbury for molding and casting the Spook skull and braincase; Dr Thomas Rich, National Museum of Victoria; Lesley and Gerry Kool and Dr Patricia Vickers-Rich, Monash Science Centre, Melbourne; Dr Alex Ritchie and Robert Jones of the Australian Museum, Sydney; Dr Ralph Molnar and Joanne Wilkinson of the Queensland Museum, Brisbane; Dr Ben Kear; Dr Susan Turner; Dr Jeffrey Stilwell, James Bresnahan, Rodney Berrell - all helped in various capacities, and deserve my gratitude. Dr Gene Gaffney offered advice, goodwill, reprints and instruction, sent photographs of the Niolamia type skull and provided access to type material of Chubutemys. Dr P M Datta, Subhash Sen and Asish Kumar Ray at the Geological Survey of India, Kolkata, permitted me to examine, sketch and photograph the type material of Indochelys spatulata at short notice, and graciously. Thanks are due to Walgett Shire Council for supporting the Australian Opal Centre project; and to the Lightning Ridge Bowling Club for helping with fossil acquisitions. I am indebted – the science of palaeontology is indebted - to the opal miners of Lightning Ridge. Palaeontology at Lightning Ridge is a community enterprise, relying heavily on the energetic and generous involvement of the opal miners. Over the past twenty five years, hundreds of opalised fossils have been made available to the Australian Museum, Sydney, and the Australian Opal Centre, Lightning Ridge. Thankyou to Peter and Brett Barton who donated the Sunflash Turtle to the Australian Museum under the Federal Government’s Cultural Gifts Program. Peter and Brett met the Sunflash Turtle underground on the Coocoran and allowed me to collect further material. Dave Roussel, Rod Abels and my daughter Clytie helped to rescue the turtle from the Tyrone’s site. Warmest thanks to many other CGP donors - Bob Sutherland, Neroli and Stephen Bevan, Imo and Louise Stein, Rob and Debbie Brogan, Ken and Marie Lindquist, Dave Roussel and Lalja Petersson, John Cucuk, Stephen Turner, George and Bill Molder, Graeme and Christine Thomson, Clytie Smith, Peter and Vicki Drackett, Joe Walker, Paul Burza, Brian Senior, Dave Sanders, Stewart-Tranter Brown, David and Greg Lane, Colin and Marie Fletcher, Marcel and Sam Miltenburg, Adrian Boot, Dave Barclay, Matthew Goodwin, Mick and Doris Cooke, Jack Fahey and Emilia Katajisto. Praise to the valiant - Ormie Molyneux who loaned the Spook skull and braincase for study over many years, with commendable fortitude and good humour; Ed Long and Henny Kunzelman, Nils and Bea Tape, Bob Cropp, Dave and Alan Galman, Chris Underwood, Ken Hudson, Les Price, Fred Mallouk, Ian Cops, Peter Hall, Dusan, Brownie, Andrew Lindsay, Jo Babic, Virgil, Peter and Lisa Carroll, Andrew Cody, Barefoot Mick Dundee, New Blue from Kellies Two, Doug and Loppy, Martin, Crain Johannson, Slim, Michelle and Gussy Knee, Eric the Viking, Greg Bateup, Hydro Tony, Richard Wagner, James Haverhoek, Peter McKenzie, Geoff Peady, Stan the Man, Greg Johnston, Arthur and Joe Molyneux, Larry White, Richard Slip, Max Caslick, Orange Joe, Silly Pinkies, Smith Boys, Chris Gawthorpe, Graeme Lester, Brian Casement, Fraser Island George, Rod McCracken, Joe Belicka, Laurie Kree, John McCabe, Ken Stephenson, Darren Mack, Bill Kotru, Bob Barrett, Drago Panich, Franz Roehleder, Lennie Cram, Butch McFadden, The Warlords, Darryl Ferguson, Norm, Stardust Clive, Alf White, Col Duff, Vic Morgan, Toby and Matthew Egan, Sali Money, Alan Summers, Mick and Donna Lund, Michael and Rebel Matson, Marilyn Milas, Anne-Marie Deane, Kerry Reid, Murray Gatt, Lizard, June Barker and Rose Fernando. Thankyou one and all. Margie and Warwick Schofield, Tony and Karola, Shovel, Graeme Anderson, Barbara Moritz, Bev Ogle, Roland Beckett, Gwen Jenkins, and the little Scotties and cohorts from next door, contributed in many special ways. Jenni Brammall helped with powerpoints, photographs, layout of figures for chapters four, five and seven, general support and commitment. Thanks also to Tiggen, my Mum and Dad, Rohan, Brinny, David and Penny, for keeping this slow old turtle on track. My husband Robert photographed, photoshopped and held the fort. Gurukangaroo doesn’t believe in turtles but he sacrificed at least two trips to India for this. My eternal gratitude. TABLE OF CONTENTS Page ABSTRACT Acknowledgements Table of contents Abbreviations CHAPTER ONE 1 INTRODUCTION CHAPTER TWO 13 Spoochelys ormondea n. fam., gen. et sp. (Meiolanoidea: Spoochelyidae), an archaic meiolaniid-like land turtle from Lightning Ridge, New South Wales, Australia CHAPTER THREE 55 Sunflashemys bartondrackettii n. gen. et sp. (Meiolanoidea: Spoochelyidae), a primitive swamp turtle from the opal fields of Lightning Ridge, New South Wales, Australia CHAPTER FOUR 90 Opalania baagiiwayamba n. gen. et sp. (Meiolanoidea: Spoochelyidae), a near-polar land turtle from the Early Cretaceous of Lightning Ridge, New South Wales, Australia CHAPTER FIVE 106 New cranial material of a meiolaniid cf. Warkalania from the Miocene of Riversleigh, North Queensland CHAPTER SIX 116 Redescription and reinterpretation of the Liassic turtle Indochelys spatulata Datta et al. 2000 from Maharashtra, India CHAPTER SEVEN 129 Redescription of the Casterton steinkern, Chelycarapookus arcuatus Warren 1969, from the Albian of western Victoria CHAPTER EIGHT 141 Australia’s oldest chelid pleurodires from Lightning Ridge, New South Wales - first evidence of chelids from Mesozoic near-polar Australia CHAPTER NINE 151 Phylogenetic analysis - non-marine turtles of Early Cretaceous Australia, and relationships of the superfamily Meiolanoidea CHAPTER TEN 216 The Lightning Ridge fossil flora and fauna – a diverse high- latitude, warm climate biota from Early Cretaceous Australia CHAPTER ELEVEN 294 Palaeoecology of terrestrial and freshwater turtles of Lightning Ridge, New South Wales CHAPTER TWELVE 301 Biogeography of non-marine turtles of Early Cretaceous Australia CHAPTER THIRTEEN 308 Possible Triassic origin for the horned turtles (Testudines: Meiolanoidea) and implications for turtle relationships CHAPTER FOURTEEN 312 CONCLUSIONS REFERENCES
Recommended publications
  • A New Xinjiangchelyid Turtle from the Middle Jurassic of Xinjiang, China and the Evolution of the Basipterygoid Process in Mesozoic Turtles Rabi Et Al
    A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Rabi et al. Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 Rabi et al. BMC Evolutionary Biology 2013, 13:203 http://www.biomedcentral.com/1471-2148/13/203 RESEARCH ARTICLE Open Access A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles Márton Rabi1,2*, Chang-Fu Zhou3, Oliver Wings4, Sun Ge3 and Walter G Joyce1,5 Abstract Background: Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results: Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes.
    [Show full text]
  • Interpreting Character Variation in Turtles: [I]Araripemys Barretoi
    A peer-reviewed version of this preprint was published in PeerJ on 29 September 2020. View the peer-reviewed version (peerj.com/articles/9840), which is the preferred citable publication unless you specifically need to cite this preprint. Limaverde S, Pêgas RV, Damasceno R, Villa C, Oliveira GR, Bonde N, Leal MEC. 2020. Interpreting character variation in turtles: Araripemys barretoi (Pleurodira: Pelomedusoides) from the Araripe Basin, Early Cretaceous of Northeastern Brazil. PeerJ 8:e9840 https://doi.org/10.7717/peerj.9840 Interpreting character variation in turtles: Araripemys barretoi (Pleurodira: Pelomedusoides) from the Araripe Basin, Early Cretaceous of Northeastern Brazil Saulo Limaverde 1 , Rodrigo Vargas Pêgas 2 , Rafael Damasceno 3 , Chiara Villa 4 , Gustavo Oliveira 3 , Niels Bonde 5, 6 , Maria E. C. Leal Corresp. 1, 5 1 Centro de Ciências, Departamento de Geologia, Universidade Federal do Ceará, Fortaleza, Brazil 2 Department of Geology and Paleontology, Museu Nacional/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 3 Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brazil 4 Department of Forensic Medicine, Copenhagen University, Copenhagen, Denmark 5 Section Biosystematics, Zoological Museum (SNM, Copenhagen University), Copenhagen, Denmark 6 Fur Museum (Museum Saling), Fur, DK-7884, Denmark Corresponding Author: Maria E. C. Leal Email address: [email protected] The Araripe Basin (Northeastern Brazil) has yielded a rich Cretaceous fossil fauna of both vertebrates and invertebrates found mainly in the Crato and Romualdo Formations, of Aptian and Albian ages respectively. Among the vertebrates, the turtles were proved quite diverse, with several specimens retrieved and five valid species described to this date for the Romualdo Fm.
    [Show full text]
  • Carettochelys Insculpta) in the KIKORI REGION, PAPUA NEW GUINEA
    NESTING ECOLOGY, HARVEST AND CONSERVATION OF THE PIG-NOSED TURTLE (Carettochelys insculpta) IN THE KIKORI REGION, PAPUA NEW GUINEA by CARLA CAMILO EISEMBERG DE ALVARENGA B.Sc. (Federal University of Minas Gerais – UFMG) (2004) M.Sc. (National Institute for Amazon Research) (2006) Institute for Applied Ecology University of Canberra Australia A thesis submitted in fulfilment of the requirements of the Degree of Doctor of Philosophy at the University of Canberra. October 2010 Certificate of Authorship of Thesis Except where clearly acknowledged in footnotes, quotations and the bibliography, I certify that I am the sole author of the thesis submitted today, entitled Nesting ecology, harvest and conservation of the Pig-nosed turtle (Carettochelys insculpta) in the Kikori region, Papua New Guinea I further certify that to the best of my knowledge the thesis contains no material previously published or written by another person except where due reference is made in the text of the thesis. The material in the thesis has not been the basis of an award of any other degree or diploma.The thesis complies with University requirements for a thesis as set out in Gold Book Part 7: Examination of Higher Degree by Research Theses Policy, Schedule Two (S2). …………………………………………… Signature of Candidate .......................................................................... Signature of chair of the supervisory panel ………15-Mar-11…………………….. Date Copyright This thesis (© by Carla C. Eisemberg, 2010) may be freely copied or distributed for private and/or commercial use and study. However, no part of this thesis or the information herein may be included in a publication or referred to in a publication without the written consent of Carla C.
    [Show full text]
  • From the Early Cretaceous Wonthaggi Formation (Strzelecki Group)
    Journal of Paleontology, 93(3), 2019, p. 543–584 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/19/1937-2337 doi: 10.1017/jpa.2018.95 New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999 Matthew C. Herne,1,2 Jay P. Nair,2 Alistair R. Evans,3 and Alan M. Tait4 1School of Environmental and Rural Science, University of New England, Armidale 2351, New South Wales, Australia <ornithomatt@ gmail.com> 2School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia <[email protected]> 3School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> 4School of Earth, Atmosphere & Environment, Monash University, Melbourne, Victoria 3800, Australia <[email protected]> Abstract.—The Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarc- tica. Known from its dentary, Qantassaurus intrepidus Rich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n.
    [Show full text]
  • R / 2J�J Ij Rjsj L)J J �� __Rj Ljlj F LANDED! VOLUME 2 - RAPTORS to PRATINCOLES
    -_r_/ 2J�J iJ_rJsJ l)J_J �� __rJ lJlJ_f LANDED! VOLUME 2 - RAPTORS TO PRATINCOLES In 1990 Oxford Univer sity Press published Volume One Over 70 colourpl ates illustr ated of the Ha11dbook of Austra­ by JeffDavies feature nearly lia 11, New Zeala11d a11d every species. Antarctic Birds to widespread acclaim. Now Volume Two, VOLUME2 covering Raptors to Pratin­ Contains vultures, hawks and coles, has been completed. eagles, falcons, galliformes and quail, Malleefowl a11d megapodes, Four more volumes are to be cranes,crakes and rails, bustards, published making this the the Australian and New Zealand most detailed and up-to-date resident waders, a11d plovers, reference work of the birds of lapwi11gs a11d douerels. Australasia. COMPREHENSIVE Each volume exami11es all aspects of bird lifeinc luding: • field i£Jentiflca1ion • dis1ribu1io11 and popula1io11 • social orga11iza1io11 The Handbook is the most ex­ • social behaviour citing and significant project •movements in Australasian ornithology to­ •plumages day and will have an •breeding • habitat enormous impact on the direc­ • voice tion of future research and the •food conservation of Au stralasian and Antarctic birds. _ • AVAI�!�! BER t�n�r? Volume 2 $250 RAOU Volumes 1 & 2 $499 -- m! CJOlltlllllCOIIIIYIOOI ORDER FORM Place your order with Oxford University Press by: cgJ Reply Paid 1641, Oxford University Press, D Please send me __ copy/copies of the Handbook of GPO Box 2784Y, Melbourne3001 Aus1ralia11, New Zealondand A111arc1ic Birds Volume 2 at the 11 (03) 646 4200 FAX (03) 646 3251 special pre-publication price of $250 (nonnal retail price $295) plus $7.50 for po stage and handling OR D I enclose my cheque/money order for$ _______ D Please send me set/sets of Volumes I a11d 2 of the D Please charge my Visa/Mastercard/Bankcard no.
    [Show full text]
  • Palaeontological Impact Assessment Phase 1: Desktop Study Proposed
    Palaeontological Impact Assessment Phase 1: Desktop Study Proposed Dinosaur Interpretation Center, Golden Gate Highlands National Park, Free State Dr. Jonah Nathaniel Choiniere Senior Researcher Evolutionary Studies Institute, University of the Witwatersrand Johannesburg [email protected] 011 717 6684 For South African National Parks (SANParks) Wednesday, 11 March 2015 EXECUTIVE SUMMARY This Phase I Palaeontological Impact Assessment concerns the South African National Park authority’s proposal to build a Dinosaur Interpretation Center at Golden Gate Highlands National Park, Free State. The proposed development will overlie sedimentary bedrock that is extremely likely to contain vertebrate fossils of scientific and cultural importance. It is strongly recommended that a trained palaeontologist be on hand during site work to monitor all excavations into the sedimentary bedrock. This palaeontologist should have a collection permit from the South African Heritage Resources Agency so that they can legally excavate any important material that is discovered while the site is developed. With this mitigation recommendation in place, it will be possible to simultaneously complete the proposed project and protect valuable heritage resources. BACKGROUND INFORMATION This Phase I Palaeontological Impact Assessment (PIA) is a part of an Environmental Impact Assessment being performed by EnviroWorks and commissioned by the developer, South African National Parks (SANParks). The contact person for EnviroWorks is: Adel Groenewald 072 460 3333
    [Show full text]
  • A Phylogenomic Analysis of Turtles ⇑ Nicholas G
    Molecular Phylogenetics and Evolution 83 (2015) 250–257 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A phylogenomic analysis of turtles ⇑ Nicholas G. Crawford a,b,1, James F. Parham c, ,1, Anna B. Sellas a, Brant C. Faircloth d, Travis C. Glenn e, Theodore J. Papenfuss f, James B. Henderson a, Madison H. Hansen a,g, W. Brian Simison a a Center for Comparative Genomics, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA b Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA c John D. Cooper Archaeological and Paleontological Center, Department of Geological Sciences, California State University, Fullerton, CA 92834, USA d Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA e Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA f Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA g Mathematical and Computational Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 9171, USA article info abstract Article history: Molecular analyses of turtle relationships have overturned prevailing morphological hypotheses and Received 11 July 2014 prompted the development of a new taxonomy. Here we provide the first genome-scale analysis of turtle Revised 16 October 2014 phylogeny. We sequenced 2381 ultraconserved element (UCE) loci representing a total of 1,718,154 bp of Accepted 28 October 2014 aligned sequence. Our sampling includes 32 turtle taxa representing all 14 recognized turtle families and Available online 4 November 2014 an additional six outgroups. Maximum likelihood, Bayesian, and species tree methods produce a single resolved phylogeny.
    [Show full text]
  • Membros Da Comissão Julgadora Da Dissertação
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA COMPARADA Evolution of the skull shape in extinct and extant turtles Evolução da forma do crânio em tartarugas extintas e viventes Guilherme Hermanson Souza Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para obtenção do título de Mestre em Ciências, obtido no Programa de Pós- Graduação em Biologia Comparada Ribeirão Preto - SP 2021 UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA COMPARADA Evolution of the skull shape in extinct and extant turtles Evolução da forma do crânio em tartarugas extintas e viventes Guilherme Hermanson Souza Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para obtenção do título de Mestre em Ciências, obtido no Programa de Pós- Graduação em Biologia Comparada. Orientador: Prof. Dr. Max Cardoso Langer Ribeirão Preto - SP 2021 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte. I authorise the reproduction and total or partial disclosure of this work, via any conventional or electronic medium, for aims of study and research, with the condition that the source is cited. FICHA CATALOGRÁFICA Hermanson, Guilherme Evolution of the skull shape in extinct and extant turtles, 2021. 132 páginas. Dissertação de Mestrado, apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP – Área de concentração: Biologia Comparada.
    [Show full text]
  • Universidad Nacional Del Comahue Centro Regional Universitario Bariloche
    Universidad Nacional del Comahue Centro Regional Universitario Bariloche Título de la Tesis Microanatomía y osteohistología del caparazón de los Testudinata del Mesozoico y Cenozoico de Argentina: Aspectos sistemáticos y paleoecológicos implicados Trabajo de Tesis para optar al Título de Doctor en Biología Tesista: Lic. en Ciencias Biológicas Juan Marcos Jannello Director: Dr. Ignacio A. Cerda Co-director: Dr. Marcelo S. de la Fuente 2018 Tesis Doctoral UNCo J. Marcos Jannello 2018 Resumen Las inusuales estructuras óseas observadas entre los vertebrados, como el cuello largo de la jirafa o el cráneo en forma de T del tiburón martillo, han interesado a los científicos desde hace mucho tiempo. Uno de estos casos es el clado Testudinata el cual representa uno de los grupos más fascinantes y enigmáticos conocidos entre de los amniotas. Su inconfundible plan corporal, que ha persistido desde el Triásico tardío hasta la actualidad, se caracteriza por la presencia del caparazón, el cual encierra a las cinturas, tanto pectoral como pélvica, dentro de la caja torácica desarrollada. Esta estructura les ha permitido a las tortugas adaptarse con éxito a diversos ambientes (por ejemplo, terrestres, acuáticos continentales, marinos costeros e incluso marinos pelágicos). Su capacidad para habitar diferentes nichos ecológicos, su importante diversidad taxonómica y su plan corporal particular hacen de los Testudinata un modelo de estudio muy atrayente dentro de los vertebrados. Una disciplina que ha demostrado ser una herramienta muy importante para abordar varios temas relacionados al caparazón de las tortugas, es la paleohistología. Esta disciplina se ha involucrado en temas diversos tales como el origen del caparazón, el origen del desarrollo y mantenimiento de la ornamentación, la paleoecología y la sistemática.
    [Show full text]
  • M a R Y L a N D
    ' o J x l C a JJ¿ ' u¿»... /io hC i M A R T ü R J LES Y L w : A • i v & v ' :À N sr\lài«Q3/ D FRANK J. SCHWARTZ *IES 23102 Vlaams Instituut voor dl Zu Planden Marina Instituts MARYLAND TURTLE FRANK J. SCHWARTZ, Curator C h e s a p e a k e B i o l o g i c a l L a b o r a t o r y S o l o m o n s , M a r y l a n d University of Maryland Natural Resources Institute Educational Series No. 79 J u n e 1967 FOREWORD The 1961 publication of MARYLAND TURTLES resulted in an increased awareness of these interesting members of Maryland’s vertebrate fauna. New in­ formation stemming from this effort has been incorporated into this revision. The researches of Dr. J. Crenshaw, Jr. on the genus Pseudemys, especially Pseudemys floridana, Florida Cooter, has resolved much of the confusion regarding this species’ true distribution and systematica in the state. Its occurrence must now be relegated to an "introduced” or "escape” category. Additional information is also on hand to confirm the Bog Turtle’s tenacious survival in swampy-bog habitats adjacent to the Susquehanna River. Recent information has helped delineate the occurrence of the Atlantic Ridley turtle in the upper Chesapeake Bay. A new section has been added which discusses fossil turtles. It is hoped this edition will maintain interest in and further expand our knowledge of the turtles of the area.
    [Show full text]
  • An Early Bothremydid from the Arlington Archosaur Site of Texas Brent Adrian1*, Heather F
    www.nature.com/scientificreports OPEN An early bothremydid from the Arlington Archosaur Site of Texas Brent Adrian1*, Heather F. Smith1, Christopher R. Noto2 & Aryeh Grossman1 Four turtle taxa are previously documented from the Cenomanian Arlington Archosaur Site (AAS) of the Lewisville Formation (Woodbine Group) in Texas. Herein, we describe a new side-necked turtle (Pleurodira), Pleurochayah appalachius gen. et sp. nov., which is a basal member of the Bothremydidae. Pleurochayah appalachius gen. et sp. nov. shares synapomorphic characters with other bothremydids, including shared traits with Kurmademydini and Cearachelyini, but has a unique combination of skull and shell traits. The new taxon is signifcant because it is the oldest crown pleurodiran turtle from North America and Laurasia, predating bothremynines Algorachelus peregrinus and Paiutemys tibert from Europe and North America respectively. This discovery also documents the oldest evidence of dispersal of crown Pleurodira from Gondwana to Laurasia. Pleurochayah appalachius gen. et sp. nov. is compared to previously described fossil pleurodires, placed in a modifed phylogenetic analysis of pelomedusoid turtles, and discussed in the context of pleurodiran distribution in the mid-Cretaceous. Its unique combination of characters demonstrates marine adaptation and dispersal capability among basal bothremydids. Pleurodira, colloquially known as “side-necked” turtles, form one of two major clades of turtles known from the Early Cretaceous to present 1,2. Pleurodires are Gondwanan in origin, with the oldest unambiguous crown pleurodire dated to the Barremian in the Early Cretaceous2. Pleurodiran fossils typically come from relatively warm regions, and have a more limited distribution than Cryptodira (hidden-neck turtles)3–6. Living pleurodires are restricted to tropical regions once belonging to Gondwana 7,8.
    [Show full text]
  • The Oldest Platypus and Its Bearing on Divergence Timing of the Platypus and Echidna Clades
    The oldest platypus and its bearing on divergence timing of the platypus and echidna clades Timothy Rowe*†, Thomas H. Rich‡§, Patricia Vickers-Rich§, Mark Springer¶, and Michael O. Woodburneʈ *Jackson School of Geosciences, University of Texas, C1100, Austin, TX 78712; ‡Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia; §School of Geosciences, PO Box 28E, Monash University, Victoria 3800, Australia; ¶Department of Biology, University of California, Riverside, CA 92521; and ʈDepartment of Geology, Museum of Northern Arizona, Flagstaff, AZ 86001 Edited by David B. Wake, University of California, Berkeley, CA, and approved October 31, 2007 (received for review July 7, 2007) Monotremes have left a poor fossil record, and paleontology has broadly affect our understanding of early mammalian history, been virtually mute during two decades of discussion about with special implications for molecular clock estimates of basal molecular clock estimates of the timing of divergence between the divergence times. platypus and echidna clades. We describe evidence from high- Monotremata today comprises five species that form two resolution x-ray computed tomography indicating that Teinolo- distinct clades (16). The echidna clade includes one short-beaked phos, an Early Cretaceous fossil from Australia’s Flat Rocks locality species (Tachyglossus aculeatus; Australia and surrounding is- (121–112.5 Ma), lies within the crown clade Monotremata, as a lands) and three long-beaked species (Zaglossus bruijni, Z. basal platypus. Strict molecular clock estimates of the divergence bartoni, and Z. attenboroughi, all from New Guinea). The between platypus and echidnas range from 17 to 80 Ma, but platypus clade includes only Ornithorhynchus anatinus (Austra- Teinolophos suggests that the two monotreme clades were al- lia, Tasmania).
    [Show full text]