Ariane Steps Into the Future! New Glenn Space in the GDR Bruce Mccandless Exoplanet Puzzles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Aerospace Update
The Aerospace Update Dec. 28, 2017 Top 2017 Space Images Video Credit: NASA SpaceX Concludes 2017 With Fourth Iridium Next launch SpaceX closed out its most successful year to date Dec. 22nd with the launch of 10 satellites for mobile satellite services operator Iridium, notching a personal best of 18 launches in a single year. The Falcon 9 mission, which took off from Vandenberg Air Force Base in California at 8:27 p.m. Eastern in an instantaneous launch window, was the fourth of eight missions for Iridium, carrying the McLean, Virginia- based operator’s second generation satellites, called Iridium Next. In what now is considered a rarity, SpaceX opted not to recover the rocket’s first stage, instead letting the booster fall into the Pacific Ocean. Video Credit: SpaceX Source: Caleb Henry @ SpaceNews.com Zenit Rocket Launches AngoSat-1 but Ground Control Loses Contact A Russian-Ukrainian Zenit rocket was launched on Tuesday, December 26th, with the aim of delivering into orbit Angola’s first satellite, known as AngoSat-1. However, it appears that contact with the spacecraft was lost after its deployment into orbit. The booster lifted off from Site 45/1 at the Baikonur Cosmodrome in Kazakhstan. Tuesday’s launch marked the first Zenit flight in more than two years when it orbited the Elektro-L № 2 weather satellite for Roscosmos. The rocket returned to flight despite fears that the Russian-Ukrainian conflict, which started in 2014, would kill any joint efforts between these two countries. Video courtesy of SciNews Source: Tomasz Nowakowski @ SpaceFlightInsider.com Land Imaging Satellite Launched for Chinese Military A land imaging satellite soared to a 300-mile-high perch above Earth Saturday, Dec 23rd after lifting off on top of a Long March 2D rocket from the Jiuquan space base in the Gobi Desert, joining a similar military reconnaissance craft launched earlier this month in the same type of orbit. -
Roundup LYNDON B
National Aeronautics and Space Administration Roundup LYNDON B. JOHNSON SPACE CENTER Winter | 2014 JSC 2.0.13: A LOOK BACK JSC Director In this edition… I’D LIKE TO START OFF 2014 by relating a couple of JSC 2.0 stories. The 3 ISS Science Corner first one involves the External Relations Office taking a fresh look at how 4 Orion sets the stage in 2013 they communicate about the International Space Station on NASA TV. They for Exploration Flight Test-1 determined they could more effectively and efficiently communicate by morphing the daily one-hour show called “Space Station Live” into a daily half- 6 Milestones hour show, primarily aimed at media representatives who follow NASA closely 8 2013 Social Media Spotlight and are interested in details, plus a weekly two-minute video called “Space to 10 NASA’s ‘what’s next’ team Ground” designed for the general public. The snappy “Space to Ground” has the advantage that it can be easily used in a variety of venues, including the 12 NASA hails success of NASA home page, outreach events, airport kiosks, museums/science centers, commercial space program, traveling exhibits and various social media. The changes allow us to reach plans readied for astronauts more people, produce products better suited to two different audiences and overall make better use of our resources. We’re getting good feedback on the PHOTO changes, but one of the first responses came in an email from a woman who NASA/ said her 79-year-old mother, who is a big NASA fan and avid watcher of NASA TV, was very disappointed that her 60-minute show had been cut in half! While I don’t like disappointing anyone (and I’ve sent a signed photo to the mom in a gesture of goodwill), it’s actually a nice reminder that there are people everywhere who are inspired by what we do and really want to hear all about it. -
Space Shuttle Program
Space Shuttle program The Space Shuttle Columbia seconds after engine ignition, 1981 (NASA). For the first two missions only, the external fuel tank spray-on foam insulation (SOFI) was painted white. Subsequent missions have featured an unpainted tank thus exposing the orange/rust colored foam insulation. This resulted in a weight saving of over 1,000 lb (450 kg), a savings that translated directly to added payload capacity to orbit. NASA's Space Shuttle, officially called Space Transportation System (STS), is the United States government's sole manned launch vehicle currently in service. The winged shuttle orbiter is launched vertically, carrying usually five to seven astronauts and up to about 22,700 kg (50,000 lbs) of payload into low earth orbit. When its mission is complete, it reenters the earth's atmosphere and makes an unpowered gliding horizontal landing, usually on a runway at Kennedy Space Center. The Space Shuttle orbiter was manufactured by North American Rockwell, now part of the Boeing Company. Martin Marietta (now part of Lockheed Martin) designed the external fuel tank and Morton Thiokol (now part of Alliant Techsystems (ATK)) designed the solid rocket boosters. The Shuttle is the first orbital spacecraft designed for partial reusability. It carries large payloads to various orbits, provides crew rotation for the International Space Station (ISS), and performs servicing missions. While the vehicle was designed with the capacity to recover satellites and other payloads from orbit and return them to Earth, this capacity has not been used often; it is, however, an important use of the Space Shuttle in the context of the ISS program, as only very small amounts of experimental material, hardware needing to be repaired, and trash can be returned by Soyuz. -
Session Highlights
March 16, 2018 The Caller Christian Community Presbyterian Church Newsletter There are two very interesting conversations in Christian circles I could eagerly share with you this month. One is the European Catholics grappling with various translations to the Lord’s Prayer. You might think the prayer Jesus gave his disciples 200 years ago would be above controversy. Yet, the Spanish, French, and the Italian Catholic’s are changing the sixth petition: “Do not submit us to temptation” to “Let us not enter into temptation.” Pope Francis, who is at odds with Vatican theologians, agrees with the change, saying, “A father does not push someone into temptation.” I also wanted to comment on the passing of Billy Graham, who Martin Marty said in 2013, would be with Jonathan Edwards and Martin Luther King Jr, part of the Mount Rushmore of American religious history. Instead I decided to share more local concerns. The Session has been very busy with important leadership duties during the past two months. Since some of you are interested in process, “how the sausage is made.” To catch you up on what we have been working on, I had our Clerk, Amy Littlefield, write up some extended Session highlights. It is joy to serve with you, James Brassard Session Highlights for February & March 2018 Mexico Mission Trip Justin reported that the July mission trip to Mexico now has 30 people (youth and adults) signed up to go at this time. Besides Scrip sales, the youth will be conducting several other fundraising opportunities, The Mission council will consider a congregation-wide appeal for support. -
2015152450 Presentation-Airbus
Accès Européen à l’Espace, pourquoi Ariane 6 et Airbus Safran Launchers ? Assemblée Générale ISAE 11/06/2015 H. GILIBERT – CTO - Airbus Safran Launchers 1 Eléments de contexte This document is the property of Airbus Safran Launchers. It shall be not communicated to third parties without prior written agreement. Its content shall not be disclosed. Airbus Safran Launchers Holding/SAS/GmbH. All rights reserved. Janvier 2015 2 Le contexte des lanceurs spatiaux en Europe • Les lanceurs spatiaux servent avant tout la Garantie de l’Accès Stratégique à l’Espace pour les Etats Européens. • L’activité est supportée par les Etats Membres de l’Agence Spatiale Européenne (esa). • Quelques lancements institutionnels à l’année (essentiellement avec VEGA, et SOYOUZ actuellement). • L’économie de la filière est rendue supportable pour les Etats Européens par la capture de lancements commerciaux, qui assurent la récurrence de production et forcent à la compétitivité. • Ariane 5 (6 à 7 lancements par an) réalise > 80 % de ses lancements sur le marché commercial (leader mondial ~50 % du marché ouvert). This document is the property of Airbus Safran Launchers. It shall be not communicated to third parties without prior written agreement. Its content shall not be disclosed. Airbus Safran Launchers Holding/SAS/GmbH. All rights reserved. janvier 2015 3 L’activité Lancements Spatiaux dans le monde This document is the property of Airbus Safran Launchers. It shall be not communicated to third parties without prior written agreement. Its content shall not be disclosed. Airbus Safran Launchers Holding/SAS/GmbH. All rights reserved. janvier 2015 4 Les évolutions du marché des lancements (1/2) Les « moyens à gros » Les lancements sur le marché commercial sont essentiels pour soutenir l’Accès Européen Autonome à l’Espace Apparition de satellites à propulsion électrique, plus légers -> modifiera peu à peu les besoins mission sur la décennie à venir. -
Variations of Solid Rocket Motor Preliminary Design for Small TSTO Launcher
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications Space Propulsion 2012 – ID 2394102 Variations of Solid Rocket Motor Preliminary Design for Small TSTO launcher Etienne Dumont Space Launcher Systems Analysis (SART), DLR, Bremen, Germany [email protected] NGL New/Next Generation Launcher Abstract SI Structural Index (mdry / mpropellant) Several combinations of solid rocket motors and ignition SRM Solid Rocket Motor strategies have been considered for a small Two Stage to TSTO Two Stage To Orbit Orbit (TSTO) launch vehicle based on a big solid rocket US Upper Stage motor first stage and cryogenic upper stage propelled by VENUS Vega New Upper Stage the Vinci engine. In order to reach the target payload avg average during the flight performance of about 1400 kg into GTO for the clean s.l. sea level version and 2700 to 3000 kg for the boosted version, the vac vacuum influence of the selected solid rocket motors on the upper 2 + 2 P23 4 P23: two ignited on ground and two with a stage structure has been studied. Preliminary structural delayed ignition designs have been performed and the thrust histories of the solid rocket motor have been tweaked to limit the upper stage structural mass. First stage and booster 1. Introduction combinations with acceptable general loads are proposed. Solid rocket motors (SRM) are commonly used for boosters or launcher first stage. Indeed they can provide high thrust levels while being compact, light and Nomenclature relatively simple compared to a liquid rocket engine Isp specific impulse s providing the same thrust level. -
PERSEVERANCE: Rocketing to Mars with STEM
PERSEVERANCE: Rocketing to Mars with STEM GRADE LEVELS MISSION This activity is appropriate for grades 3-8. Design fins for a foam rocket. VOCABULARY MATERIALS LAUNCH VEHICLE: A launch vehicle provides the velocity » 30 cm piece of polyethylene foam pipe insulation needed by a spacecraft to escape Earth’s gravity and set it (for 1/2” size pipe) on its course for space exploration. » Rubber band (size 64) TRAJECTORY: The path followed by a projectile flying or » Duct tape an object moving under the action of given forces. » Scissors » Meter stick/ruler » Two 4x6 index cards ABOUT THIS ACTIVITY On July 30, 2020, at 4:50 a.m., an Atlas V-541 rocket was launched from Cape Canaveral Air Force Station, Florida. The Atlas V is one of the largest rockets available for interplanetary flight and delivering things into space. The rocket departed Earth at a speed of about 24,600 mph (about 39,600 kph). Its launch was the start of the mission to deliver the Mars rover, Perseverance. After six-and-a-half months and about 300 million miles (480 million kilometers), the rover will reach Mars and land on the 28-mile-wide Jezero Crater (Feb. 18, 2021). Once the rover reaches Mars, its mission will be to look for signs of ancient life and collect samples of rock and soil. However, the rover could not do all of this important data collection without an energy source to power it. Idaho National Laboratory is playing a major role in powering Perseverance. INL’s Space Nuclear Power and Isotope Technologies Division assembles and tests Radioisotope Power Systems. -
Advanced Space Propulsion
ADVANCED SPACE PROPULSION Robert H. Frisbee, Ph.D. Jet Propulsion Laboratory California Institute of Technology Pasadena California Transportation Beyond 2000: Engineering Design for the Future September 26-28, 1995 693 ABSTRACT This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and overnment sectors identified in the Commercial Space Transportation Study (CSTS). imilarly, in the area of space exploration, all of the relatively "easy" missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, Isp) and typically show the most benefit for relatively "big" missions (i.e., missions with large payloads or &V, or a large overall mission model). -
OCTOBRE 2018 2 NOUVEAUX TIMBRES COSMOS ET THÈMES ASSOCIÉS — PRIX NETS EN 3 MONNAIES - ARGENT Avec ORDRE
Téléphone : 04 93 81 08 69 - 06 76 24 01 38 eMail : [email protected] ESPACE LOLLINI - Galaxie - 1762 Route du Mont Chauve F-06950 - FALICON - France - www.espacelollini.com SPÉCIALISTE en TIMBRES, AUTOGRAPHES et ENVELOPPES COSMOS OO CC TT OO BB RR EE 22001188 DDÉÉCCEEMMBBRREE 22001177 2 0 1 5 SPOUTNIK 1 O C T O B R E 60 ANS ÈRE SPATIALE REVUE PAR ABONNEMENT 1 AN - 12 NUMÉROS 39 € GRATUIT POUR NOS ABONNÉS AUX NOUVEAUTÉS PAIEMENTS ACCEPTÉS : CARTES CRÉDIT, VIREMENT, BANK TRANSFER « HSBC » IBAN: FR76 3005 6002 9102 9120 0055 404 SWIFT/BIC : CCFRFRPP PayPal + Compte : Account : [email protected] ALBUM ESPACE ▲ GAGARINE - MISE À JOUR UPDATE 2018 98 PAGES - 7 1 € 2 REVUE DE L’ESPACE OCTOBRE 2018 2 NOUVEAUX TIMBRES COSMOS ET THÈMES ASSOCIÉS — PRIX NETS EN 3 MONNAIES - ARGENT avec ORDRE. - PAIEMENT en EURO. ( Prix en US $ et YEN donnés à TITRE INDICATIF ) — ENGLISH - NEW PERFORATED AND IMPERFORATED ISSUES : PRICE in US $ ( 2nd column ) — DEUTSCH — MONATLICHES ANGEBOT - EURO. (Sehen N 1. Spalte) — ITALIANO — FRANCOBOLLI NOVITÀ. — PREZZI IN EURO ( 1° Colonna ) € $YEN TRAGÉDIE APOLLO PRIX NOBEL 2017 50e ANNIVERSAIRE DJIBOUTI CENTRAFRIQUE 24 Octobre. 2017. - Lauréats du 20 Déc. 2017. - 50e anniversaire de la Prix Nobel 2017. DÉTAIL disparition du premier équipage de la Sheetlet de 5 timbres. mission Apollo 1 - Grissom, White et Chaffee. - Sheetlet de 4 timbres + feuillet. atome DJI 74 B 950 fr dent. 10558 CAR 1/4 C 900 fr x 4 val. Robert Fludd - Rainer Weiss Equipage sur pas de tir Barry Barish - Kip Thorne Capsule incendiée atome DJI 74 B 1 Bloc 8,- 9.- 1040 DÉTAIL Equipage à l'entrainement atome DJI 74 F a 1 FDC 12,- 14.- 1560 Position des 3 pilotes 10558 CAR 5 B 3600 Fr Equipage, intérieur cabine. -
BRUCE Mccandless II '58, USN (RET.)
Program Guide 2012 SEPHIA_Q8.qxp_Layout 1 3/12/12 12:32 PM Page 7 CAPTAIN BRUCE McCANDLESS II ’58, USN (RET.) “I am deeply moved by my classmates’ efforts in nominating me and advancing my nomination for the Distinguished Graduate Award.” aptain Bruce McCandless II ’58, USN during which he made the first untethered C(Ret.), the first human to fly untethered solo flight. This earned him the Department in space, led the way to on-orbit servicing of Defense Superior Service Medal and of satellites such as the Solar Maximum the NASA Exceptional Engineering Mission, the Hubble Space Telescope and, Achievement Award. In 1985, he received ultimately, the International Space Station. the National Aeronautic Association Collier McCandless was born in Boston to Trophy and the first Smithsonian National a well-known Navy family. Two ships, Air and Space Museum Trophy. He was BRADLEY and MCCANDLESS , are named inducted into the NASA Astronaut Hall in honor of his grandfathers and father. of Fame in 2005. The third generation to attend the Naval He served a leadership role in the design Academy, he graduated at the top of his and development of the Hubble Space class academically. Telescope and was a member of the space He served in Fighter Squadron 102 shuttle crew that deployed the telescope from 1960 to 1964 in three deployments into orbit in 1990. Captain McCandless with the Sixth Fleet, including the Cuban also holds a patent for a “drop-proof” tool Missile Crisis naval blockade, during which tethering system still used in space today. he flew night missions off Cuba to protect After a 32-year career with the Navy and U.S. -
The European Launchers Between Commerce and Geopolitics
The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3. -
Redalyc.Status and Trends of Smallsats and Their Launch Vehicles
Journal of Aerospace Technology and Management ISSN: 1984-9648 [email protected] Instituto de Aeronáutica e Espaço Brasil Wekerle, Timo; Bezerra Pessoa Filho, José; Vergueiro Loures da Costa, Luís Eduardo; Gonzaga Trabasso, Luís Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review Journal of Aerospace Technology and Management, vol. 9, núm. 3, julio-septiembre, 2017, pp. 269-286 Instituto de Aeronáutica e Espaço São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=309452133001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative doi: 10.5028/jatm.v9i3.853 Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review Timo Wekerle1, José Bezerra Pessoa Filho2, Luís Eduardo Vergueiro Loures da Costa1, Luís Gonzaga Trabasso1 ABSTRACT: This paper presents an analysis of the scenario of small satellites and its correspondent launch vehicles. The INTRODUCTION miniaturization of electronics, together with reliability and performance increase as well as reduction of cost, have During the past 30 years, electronic devices have experienced allowed the use of commercials-off-the-shelf in the space industry, fostering the Smallsat use. An analysis of the enormous advancements in terms of performance, reliability and launched Smallsats during the last 20 years is accomplished lower prices. In the mid-80s, a USD 36 million supercomputer and the main factors for the Smallsat (r)evolution, outlined.