USDA Biological Assessment on Brazilian Pepper P. Ichini

Total Page:16

File Type:pdf, Size:1020Kb

USDA Biological Assessment on Brazilian Pepper P. Ichini United States Department of Biological assessment for the proposed field Agriculture release of a Pseudophilothrips ichini Marketing and Regulatory (Thysanoptera: Phlaeothripidae) for classical Programs biological control of Brazilian peppertree, Animal and Plant Health Schinus terebinthifolia, (Anacardiaceae) in the Inspection Service contiguous United States. March 2017 Contents I. POLICY ...................................................................................................................................... 1 II. DESCRIPTION OF THE PROPOSED ACTION, P. ICHINI INFORMATION, AND HOST SPECIFICITY TESTING RESULTS ............................................................................................. 1 Proposed Action and Action Area .............................................................................................. 1 APHIS Process for Permitting of Weed Biological Control Organisms .................................... 2 1. Nature of the Problem ............................................................................................................. 3 2. Biological Control Agent Information .................................................................................. 10 3. Host Specificity Testing ........................................................................................................ 16 4. Other Issues ........................................................................................................................... 30 IV. LITERATURE CITED ......................................................................................................... 122 Appendix 1 133 Appendix 2 139 I. POLICY United States Department of Agriculture (USDA) Departmental Regulation, Fish and Wildlife Policy No. 9500-4, dated August 22, 1983 and updated April 28, 2008, sets forth the purpose, policy, and responsibilities of USDA with respect to fish and wildlife. Agencies of the USDA will not fund or take any action that is likely to jeopardize the continued existence of threatened or endangered species or destroy any habitat necessary for their conservation. The USDA will coordinate with the Secretaries of the Department of the Interior and the Department of Commerce in the administration of the Endangered Species Act (ESA) and animal and plant quarantine laws. II. DESCRIPTION OF THE PROPOSED ACTION, P. ICHINI INFORMATION, AND HOST SPECIFICITY TESTING RESULTS The purpose of this biological assessment (BA) is to assess the potential effects of the release of the thrips Pseudophilothrips ichini (Hood) (Thysanoptera: Phlaeothripidae), for classical biological control of Brazilian peppertree, Schinus terebinthifolia Raddi. (Sapindales: Anacardiaceae), in the contiguous United States, on species that are listed as endangered or threatened (listed), species proposed to be listed as endangered or threatened (proposed), and habitats designated or proposed to be designated as critical, in accordance with Section 7 of the ESA. In the contiguous United States, there is one plant that is federally listed in the family Anacardiaceae (Michaux's sumac (Rhus michauxii)), the same family as the target weed. Based on the host specificity of P. ichini reported in testing, field observations, and in the scientific literature, APHIS has determined that environmental release of P. ichini may affect, but is not likely to adversely affect Michaux's sumac or the Everglade snail kite and its critical habitat. APHIS has also determined that P. ichini may affect beneficially, the Florida panther, Key deer, Florida scrub-jay, gopher tortoise, Bartram’s hairstreak butterfly and its critical habitat, Florida leafwing butterfly and its critical habitat, Miami blue butterfly, Schaus swallowtail butterfly, beach jacquemontia, Everglades bully, Florida pineland crabgrass, pineland sandmat, and Florida prairie-clover. The USDA, Animal and Plant Health Inspection Service (APHIS) is requesting concurrence from the U.S. Fish and Wildlife Service (FWS) on these determinations. Proposed Action and Action Area The USDA, APHIS, has the authority to regulate the release of biological control organisms in the United States under the Plant Protection Act of 2000. APHIS is proposing to issue permits for release of P. ichini into the contiguous United States. If approved by APHIS and participating states, releases will be made initially into the State of Florida. However, if P. ichini establishes, the insect could spread throughout the contiguous United States wherever host plants are available and the climate is suitable. Also, additional permits may be issued by APHIS after this initial release in Florida, such as Texas and California where Brazilian peppertree is a problem weed. Therefore, the action area is considered the contiguous United States. A permit is not 1 issued until APHIS conducts a National Environmental Policy Act (NEPA) evaluation for the release of P. ichini. APHIS Process for Permitting of Weed Biological Control Organisms A Plant Protection and Quarantine (PPQ) Form 526 permit is required for both the importation and the interstate movement of weed biological control organisms intended for environmental release. Organisms released for use as biological controls of weeds may be arthropods, nematodes, or microbial pathogens. Permits for importation of these organisms generally require them to be received and maintained in biocontainment facilities. APHIS also issues permits for first-time environmental release from containment of nonindigenous weed biological control organisms. Further, APHIS issues permits for interstate redistribution of approved weed biological control organisms. A PPQ Form 526 permit is not needed for interstate movement when pathogens used for weed biological control are listed as an active ingredient in an EPA- registered product. Permits for first-time releases of nonindigenous weed biological control organisms are issued only after a scientific review of the potential effects of the release. RSPM No. 7, “Guidelines for Petition for First Release of Non-indigenous Phytophagous or Phytopathogenic Biological Control Agents” (NAPPO, 2015) describes the information that researchers must provide to APHIS before the release of new organisms can be permitted. Information requested includes aspects of the biology, regulatory status, distribution and economic impact of the target weed, and host specificity of the proposed biological control organism, its expected impact after release, and post-release monitoring plans. For first-time releases of weed biological control organisms, an advisory group composed of Federal regulators and researchers (known as the Technical Advisory Group for Biological Control Agents of Weeds (TAG)) provides assistance to APHIS (https://www.aphis.usda.gov/aphis/ourfocus/planthealth/import-information/permits/regulated- organism-and-soil-permits/biological-control-organism- permits/sa_tag/ct_technical_advisory_group_biological_control_agents_weeds ). The TAG evaluates the scientific information submitted by researchers requesting first-time environmental release of nonindigenous weed biological control organisms in the contiguous United States. The TAG makes recommendations to APHIS that are used as part of permitting decisions (7 CFR 330.202(a)). Once the TAG recommends release of an organism, APHIS proceeds with the preparation of an environmental evaluation of the release based on their assessment of those recommendations. For APHIS’ approval of new organisms proposed for release in the United States or its territories, compliance with environmental statutes (such as NEPA and ESA) is required (7 CFR 372.5(b)(4)). Interstate movement of weed biological control organisms for environmental release require permits from APHIS for the movement of the organism to the site of release. If the organism is widely established in the United States (within its potential range) and has not caused adverse effects, a permit may be issued for interstate movement for environmental release. If the requested organism is established only in part of its potential geographic range, permits may be 2 issued for release only in those States where establishment or prior releases are documented. If the organism is new to the requested destination State, a permit is not issued until an environmental evaluation is conducted. PPQ 526 permits are issued by APHIS after the applicant/permit holder agrees to the required conditions for receiving the permit. Conditions included in permits for environmental release require verification of identity and purity of the organisms. For both importation and interstate movement of approved weed biological control organisms, permit conditions may require that the species are reared in laboratory colonies, or their identification is verified by a qualified person, and that the organisms are free from contaminant species, such as hyperparasites or propagative parts of noxious weeds. These conditions are to ensure that unwanted organisms, whether contaminants or misidentified biological control organisms, are not spread to the destination location to cause unintended consequences. The following information regarding Brazilian peppertree, P. ichini, and the host specificity testing conducted is from two petitions submitted to the TAG (Wheeler et al., 2014; Overholt et al., 2015). 1. Nature of the Problem 1.1 History of introduction: Brazilian peppertree is one of the worst invasive species in Florida (Schmitz et al., 1997). Rodgers et al. (2012) estimate that approximately
Recommended publications
  • Botanical Name: Acacia Common Name: Wattle Family: Fabaceae Origin: Australia and Africa Habit: Various Habitats Author: Diana Hughes, Mullumbimby
    Botanical Name: Acacia Common Name: Wattle Family: Fabaceae Origin: Australia and Africa Habit: various habitats Author: Diana Hughes, Mullumbimby I like to turn to PlantNET-FloraOnline to learn more about plants. Here you will find a wealth of information about plants, their growing habits and distribution. Much can be learnt from Latin names given, plus the variety of common names attributed to each plant. A more familiar name for Acacia is Wattle - Australia's floral emblem, in this case Acacia pycantha, Golden Wattle, which is native to South Eastern Australia. We have beautiful wattles in our region, most of which are coming into flower now. Mullumbimby is famous for the rare Acacia bakeri, (Marblewood), a rainforest species. It is found on the banks of the Brunswick River, with insignificant white flowers, hidden in glossy leaves. Searches through several websites confirm my fears that many Acacias are considered as needing 'environmental management' - meaning they have weed potential. But who could find a field of beautiful Queensland Silver Wattle an unpleasant sight? Negatively they are 'seeders', and positively, they are nitrogen fixers. Managing the four species in my garden is a pleasure. My pride and joy is an Acacia macradenia, or Zig Zag wattle because its phyllodes (leaves) are arranged in that manner along weeping branches. It's about to flower for the 6th year. Motorists stop to photograph it as it is such a sight. I prune it hard each year. My rear raised garden bed holds 3 different species. The well-known Queensland Silver Wattle, or Mt Morgan wattle (Acacia podalyriifolia) is now flowering.
    [Show full text]
  • Flora and Vegetation Survey of the Proposed Kwinana to Australind Gas
    __________________________________________________________________________________ FLORA AND VEGETATION SURVEY OF THE PROPOSED KWINANA TO AUSTRALIND GAS PIPELINE INFRASTRUCTURE CORRIDOR Prepared for: Bowman Bishaw Gorham and Department of Mineral and Petroleum Resources Prepared by: Mattiske Consulting Pty Ltd November 2003 MATTISKE CONSULTING PTY LTD DRD0301/039/03 __________________________________________________________________________________ TABLE OF CONTENTS Page 1. SUMMARY............................................................................................................................................... 1 2. INTRODUCTION ..................................................................................................................................... 2 2.1 Location................................................................................................................................................. 2 2.2 Climate .................................................................................................................................................. 2 2.3 Vegetation.............................................................................................................................................. 3 2.4 Declared Rare and Priority Flora......................................................................................................... 3 2.5 Local and Regional Significance........................................................................................................... 5 2.6 Threatened
    [Show full text]
  • Palynological Evolutionary Trends Within the Tribe Mentheae with Special Emphasis on Subtribe Menthinae (Nepetoideae: Lamiaceae)
    Plant Syst Evol (2008) 275:93–108 DOI 10.1007/s00606-008-0042-y ORIGINAL ARTICLE Palynological evolutionary trends within the tribe Mentheae with special emphasis on subtribe Menthinae (Nepetoideae: Lamiaceae) Hye-Kyoung Moon Æ Stefan Vinckier Æ Erik Smets Æ Suzy Huysmans Received: 13 December 2007 / Accepted: 28 March 2008 / Published online: 10 September 2008 Ó Springer-Verlag 2008 Abstract The pollen morphology of subtribe Menthinae Keywords Bireticulum Á Mentheae Á Menthinae Á sensu Harley et al. [In: The families and genera of vascular Nepetoideae Á Palynology Á Phylogeny Á plants VII. Flowering plantsÁdicotyledons: Lamiales (except Exine ornamentation Acanthaceae including Avicenniaceae). Springer, Berlin, pp 167–275, 2004] and two genera of uncertain subtribal affinities (Heterolamium and Melissa) are documented in Introduction order to complete our palynological overview of the tribe Mentheae. Menthinae pollen is small to medium in size The pollen morphology of Lamiaceae has proven to be (13–43 lm), oblate to prolate in shape and mostly hexacol- systematically valuable since Erdtman (1945) used the pate (sometimes pentacolpate). Perforate, microreticulate or number of nuclei and the aperture number to divide the bireticulate exine ornamentation types were observed. The family into two subfamilies (i.e. Lamioideae: bi-nucleate exine ornamentation of Menthinae is systematically highly and tricolpate pollen, Nepetoideae: tri-nucleate and hexa- informative particularly at generic level. The exine stratifi- colpate pollen). While the
    [Show full text]
  • Restoration Fremontia Vol
    VOL. 48, NO.1 NOVEMBER 2020 RESTORATION FREMONTIA VOL. 48, NO.1, NOVEMBER 2020 FROM THE EDITORS What kind of world do we want, and how do we get there? These are Protecting California’s native flora since the questions that drive restoration, the central theme of this issue. They 1965 are also the questions that have led the California Native Plant Society Our mission is to conserve California’s native leadership to initiate an important change to this publication, which will plants and their natural habitats, and increase take effect in the spring 2021 issue. understanding, appreciation, and horticultural The name of this publication, Fremontia, has been a point of concern use of native plants. and discussion since last winter, when members of the CNPS leader- ship learned some disturbing facts about John C. Frémont, from whom Copyright ©2020 dozens of North American plants, including the flannelbush plant California Native Plant Society Fremontodendron californicum, derive their names. According to multi- ISSN 0092-1793 (print) ple sources, including the State of California Native American Heritage ISSN 2572-6870 (online) Commission, Frémont was responsible for brutal massacres of Native Americans in the Sacramento Valley and Klamath Lake. As a consequence, The views expressed by the authors in this issue do not necessarily represent policy or proce- the CNPS board of directors voted unanimously to rename Fremontia, a dure of CNPS. process slated for completion by the end of 2020. The decision to rename Fremontia, a name that dates back to the ori- gins of the publication in 1973, is about the people who have been—and 2707 K Street, Suite 1 continue to be—systematically excluded from the conservation commu- Sacramento, CA 95816-5130 nity.
    [Show full text]
  • South West Region
    Regional Services Division – South West Region South West Region ‐ Parks & Wildlife and FPC Disturbance Operations Flora and Vegetation Survey Assessment Form 1. Proposed Operations: (to be completed by proponent) NBX0217 Summary of Proposed Operation: Road Construction and Timber Harvesting New road construction – 3.75km Existing road upgrade – 14.9km New gravel pit construction – 2ha (exploration area) Contact Person and Contact Details: Adam Powell [email protected] 0427 191 332 Area of impact; District/Region, State Forest Block, Coupe/Compartment (shapefile to be provided): Blackwood District South West Region Barrabup 0317 Period of proposed disturbance: November 2016 to December 2017 1 2.Desktop Assessment: (to be completed by the Region) ‐ Check Forest Ecosystem reservation. Forest Ecosystems proposed for impact: Jarrah Forest‐Blackwood Plateau, Shrub, herb and sedgelands, Darling Scarp Y Are activities in a Forest Ecosystem that triggers informal reservation under the FMP? The Darling Scarp Forest Ecosystem is a Poorly Reserved Forest Ecosystem and needs to be protected as an Informal Reserve under the Forest Management Plan (Appendix 11) ‐ Check Vegetation Complexes, extents remaining uncleared and in reservation (DEC 2007/EPA 2006). Vegetation Complex Pre‐European extent (%) Pre‐European extent (Ha) Extent in formal/informal reservation (%) Bidella (BD) 94% 44,898 47% Darling Scarp (DS) Figures not available Corresponds to Darling Scarp Forest Ecosystem extent Gale (GA) 80% 899 17% Jalbarragup (JL) 91% 14,786 32% Kingia (KI) 96% 97,735 34% Telerah (TL) 92% 25,548 33% Wishart (WS2) 84% 2,796 35% Y Do any complexes trigger informal reservation under the FMP? Darling Scarp complex as discussed above Y Are any complexes significant as per EPA regionally significant vegetation? Gale (GA) complex is cleared below the recommended retention of 1,500ha (Molloy et.al 2007) ‐ Check Threatened flora and TEC/PEC databases over an appropriate radius of the disturbance boundary.
    [Show full text]
  • 23/01/2014 Cons Timber Habitat Status Harvest ID Forest Red-Tailed
    BMW0112 Detail Created: 23/01/2014 Cons Timber Habitat Common Name Scientific name Score FDIS Land System FDIS Landscape Unit Status Harvest ID Forest Red-tailed Black Cockatoo Calyptorhynchus banksii naso VU 12 High 32 Blackwood Plateau Jarrah Uplands Forest Red-tailed Black Cockatoo Calyptorhynchus banksii naso VU 12 High 34 Blackwood Plateau Depressions / Swamps Baudin's Cockatoo Calyptorhynchus baudinii EN 12 High 32 Blackwood Plateau Jarrah Uplands Baudin's Cockatoo Calyptorhynchus baudinii EN 12 High 34 Blackwood Plateau Depressions / Swamps Chuditch (Western Quoll) Dasyurus geoffroii VU Moderate 32 Blackwood Plateau Jarrah Uplands Chuditch (Western Quoll) Dasyurus geoffroii VU Moderate 34 Blackwood Plateau Depressions / Swamps Peregrine Falcon Falco peregrinus P4 Low 32 Blackwood Plateau Jarrah Uplands Peregrine Falcon Falco peregrinus P4 Low 34 Blackwood Plateau Depressions / Swamps Crested Shrike-tit Falcunculus frontatus P4 Low 32 Blackwood Plateau Jarrah Uplands Crested Shrike-tit Falcunculus frontatus P4 Low 34 Blackwood Plateau Depressions / Swamps Western Falspistrelle Falsistrellus mackenziei P4 12 High 32 Blackwood Plateau Jarrah Uplands Western Falspistrelle Falsistrellus mackenziei P4 12 High 34 Blackwood Plateau Depressions / Swamps Mud Minnow Galaxiella munda VU Moderate 34 Blackwood Plateau Depressions / Swamps White-bellied Frog Geocrinia alba CR 6 Low 32 Blackwood Plateau Jarrah Uplands Orange-bellied Frog Geocrinia vitellina VU 7 High 34 Blackwood Plateau Depressions / Swamps Quenda (Southern Brown Bandicoot) Isoodon
    [Show full text]
  • Vertebrate Fauna in the Southern Forests of Western Australia
    tssN 0085-8129 ODC151:146 VertebrateFauna in The SouthernForests of WesternAustralia A Survey P. CHRISTENSEN,A. ANNELS, G. LIDDELOW AND P. SKINNER FORESTS DEPARTMENT OF WESTERN AUSTRALIA BULLETIN94, 1985 T:- VertebrateFauna in The SouthernForests of WesternAustralia A Survey By P. CHRISTENSEN, A. ANNELS, G. LIDDELOW AND P. SKINNER Edited by Liana ChristensenM.A. (w.A.I.T.) Preparedfor Publicationby Andrew C.A. Cribb B.A. (U.W.A.) P.J. McNamara Acting Conservator of Forcsts 1985 I I r FRONT COVER The Bush R.at (Rattus fuscipes): the most abundantof the native mammals recordedby the surueyteams in WesternAustralia's southernforests. Coverphotograph: B. A. & A. C. WELLS Printed in WesternAustralia Publishedby the ForestsDepartmeDt of WesternAustralia Editor MarianneR.L. Lewis AssistantEditor Andrew C.A. Cribb DesignTrish Ryder CPl9425/7/85- Bf Atthority WILLIAM BENBOW,Aciing Cov€mmenaPrinter, Wesrern Ausrralia + Contents Page SUMMARY SECTION I-INTRODUCTION HistoricalBackground. Recent Perspectives SECTION II-DESCRIPTION OF SURVEY AREA Boundariesand PhysicalFeatures 3 Geology 3 Soils 3 Climate 6 Vegetation 6 VegetationTypes. 8 SECTION III-SURVEY METHODS 13 SECTION IV-SURVEY RESULTSAND LIST OF SPECIES. l6 (A) MAMMALS Discussionof Findings. l6 List of Species (i) IndigenousSpecies .17 (ii) IntroducedSpecies .30 (B) BIRDS Discussionof Findings List of Species .34 (C) REPTILES Discussionof Findings. List of Species. .49 (D) AMPHIBIANS Discussionof Findings. 55 List of Species. 55 (E) FRESHWATER FISH Discussionof Findings. .59 List of Species (i) IndigenousSpecies 59 (ii) IntroducedSpecies 6l SECTION V-GENERALDISCUSSION 63 ACKNOWLEDGEMENTS 68 REFERENCES 69 APPENDICES I-Results from Fauna Surveys 1912-t982 72 II-Results from Other ResearchStudies '74 Within The SurveyArea 1970-1982.
    [Show full text]
  • GDV Field Assessment.Pdf
    Miralga Groundwater Dependent Vegetation Assessment Atlas Iron Pty Ltd December 2019 Page 2 of 24 Introduction and Background Atlas Iron Pty Ltd (Atlas Iron) are currently exploring the feasibility of the Miralga Project and require the use and reactivation of several existing groundwater bores, ALB0006, ALB0009, ALB0066, ALB0067, ALB0010, ALB0008, ALB0038, ALB0039 and ALB0041, to continue proposed on-ground works at Miralga (Figure 1). Prior to abstracting groundwater, Atlas Iron have requested an assessment of Groundwater Dependent Vegetation within a stretch of Shaw River, Six Mile Creek, Sulphur Springs Creek and an unnamed creek, totalling approximately 30 kilometres (km) of riparian vegetation. The purpose of the assessment is to determine the true extent of GDVs, provide fine-scale mapping of GDV units and search for phreatophytic flora species that may be adversely impacted by groundwater abstraction. The key species for this assessment is Melaleuca argentea which is known to access groundwater at or close to the surface. Objective and Scope of Work The overarching objective of the Project was to refine the GDV mapping to fine-scale map the functional vegetation units in the identified areas (Figure 1). This objective was met via the following: • A desktop assessment to further understand vegetation unit VT05 and the key phreatophytic species previously documented as occurring within the vegetation unit. • A site visit to map the functional units along the Study Area. We investigated VT05 within the drawdown contour of 0.5 m and a further 1 km north and south along Shaw River and Sulphur Springs Creek. The only exceptions to this were: - The area that contains bore ALB0008.
    [Show full text]
  • Palatability of Plants to Camels (DBIRD NT)
    Technote No. 116 June 2003 Agdex No: 468/62 ISSN No: 0158-2755 The Palatability of Central Australian Plant Species to Camels Dr B. Dorges, Dr J. Heucke, Central Australian Camel Industry Association and R. Dance, Pastoral Division, Alice Springs BACKGROUND About 600,000 camels (Camelus dromedarius) are believed to inhabit the arid centre of Australia, mainly in South Australia, Western Australia and the Northern Territory. Most of these camels are feral. A small camel industry has developed, which harvests selected animals for domestic and export markets, primarily for meat. Camels can eat more than 80% of the common plant species found in Central Australia. Some plant species are actively sought by camels and may need to be protected. METHOD Observations of grazing preferences by camels were made periodically for up to 12 years on five cattle stations in Central Australia. Where camels were accustomed to the presence of humans, it was possible to observe their grazing preferences from a few metres. Radio transmitters were fitted on some camels for easy detection and observation at any time. These evaluations were used to establish a diet preference or palatability index for observed food plants. Table 1. Palatability index for camels Index Interpretation 1 only eaten when nothing else is available 2 rarely eaten 3 common food plant 4 main food plant at times 5 preferred food plant 6 highly preferred food plant 7 could be killed by camel browsing More information can be obtained from the web site of the Central Australian Camel Industry Association http://www.camelsaust.com.au 2 RESULTS Table 2.
    [Show full text]
  • Plant Cover and Composition in Relation to Density of Callitris Glaucophylla (White Cypress Pine) Along a Rainfall Gradient in Eastern Australia
    CSIRO PUBLISHING www.publish.csiro.au/journals/ajb Australian Journal of Botany, 2005, 53, 545–554 Plant cover and composition in relation to density of Callitris glaucophylla (white cypress pine) along a rainfall gradient in eastern Australia W. A. ThompsonA and D. J. EldridgeB,C ASchool of Biological, Earth and Environmental Sciences, University of NSW, Sydney, NSW 2052, Australia. BDepartment of Infrastructure, Planning and Natural Resources, School of Biological, Earth and Environmental Sciences, University of NSW, Sydney, NSW 2052, Australia. CCorresponding author. Email: [email protected] Abstract. Despite the widespread distribution of Callitris glaucophylla J.Thompson & L.Johnson (white cypress pine) over large areas of eastern Australia, little is known about its impact on the diversity and cover of understorey plants. We examined C. glaucophylla woodlands to see whether stand density and land management influenced the cover and composition of the understorey vegetation. The cover and diversity of understorey plant communities were measured at 83 sites along a gradient in average annual rainfall (215–532 mm) in eastern Australia. The diversity and cover of understorey plants and the cover of trees increased, and the composition of the understorey community changed with increases in average annual rainfall. There were no clear relationships, however, between tree cover or density, and the cover or diversity of understorey plants. Sites that had not been logged contained significantly greater proportions of native and perennial vascular plants, and sites with extant eucalypts had a significantly higher proportion of shrubs than those sites without eucalypts. We attributed these differences to past forestry disturbance regimes which are correlated with the presence of mature eucalypts.
    [Show full text]
  • Biological Resources Study for the Burrtec Waste and Recycling Services Yucca Valley Facility
    BIOLOGICAL RESOURCES STUDY FOR THE BURRTEC WASTE AND RECYCLING SERVICES YUCCA VALLEY FACILITY YUCCA VALLEY, SAN BERNARDINO COUNTY, CALIFORNIA Prepared By: Hernandez Environmental Services 29376 North Lake Drive Lake Elsinore, California 92530 (909) 772-9009 Prepared for: Burrtec Waste and Recycling Services Waste & Recycling Services 9890 Cherry Avenue Fontana, CA 92235 July 2015 Burrtec Waste and Recycling Services Yucca Valley Facility Biological Resources Study TABLE OF CONTENTS TABLE OF CONTENTS............................................................................................................................i EXECUTIVE SUMMARY........................................................................................................................1 1.0 INTRODUCTION........................................................................................................................2 1.1 Project Location......................................................................................................................2 1.2 Project Description..................................................................................................................2 1.3 Purpose of Biological Resources Study......................................................................................2 2.0 METHODOLOGY..........................................................................................................................3 2.1 Biological Resources Study Scope of Work............................................................................3
    [Show full text]
  • State-Wide Seed Conservation Strategy for Threatened Species, Threatened Communities and Biodiversity Hotspots
    State-wide seed conservation strategy for threatened species, threatened communities and biodiversity hotspots Project 033146a Final Report South Coast Natural Resource Management Inc. and Australian Government Natural Heritage Trust July 2008 Prepared by Anne Cochrane Threatened Flora Seed Centre Department of Environment and Conservation Western Australian Herbarium Kensington Western Australia 6983 Summary In 2005 the South Coast Natural Resource Management Inc. secured regional competitive component funding from the Australian Government’s Natural Heritage Trust for a three-year project for the Western Australian Department of Environment and Conservation (DEC) to coordinate seed conservation activities for listed threatened species and ecological communities and for Commonwealth identified national biodiversity hotspots in Western Australia (Project 033146). This project implemented an integrated and consistent approach to collecting seeds of threatened and other flora across all regions in Western Australia. The project expanded existing seed conservation activities thereby contributing to Western Australian plant conservation and recovery programs. The primary goal of the project was to increase the level of protection of native flora by obtaining seeds for long term conservation of 300 species. The project was successful and 571 collections were made. The project achieved its goals by using existing skills, data, centralised seed banking facilities and international partnerships that the DEC’s Threatened Flora Seed Centre already had in place. In addition to storage of seeds at the Threatened Flora Seed Centre, 199 duplicate samples were dispatched under a global seed conservation partnership to the Millennium Seed Bank in the UK for further safe-keeping. Herbarium voucher specimens for each collection have been lodged with the State herbarium in Perth, Western Australia.
    [Show full text]