Sediment Distribution and Cenozoic Sedimentation Patterns on the Agulhas Plateau

Total Page:16

File Type:pdf, Size:1020Kb

Sediment Distribution and Cenozoic Sedimentation Patterns on the Agulhas Plateau Sediment distribution and Cenozoic sedimentation patterns on the Agulhas Plateau BRIAN E. TUCHOLKE Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964 GEORGE B. CARPENTER ABSTRACT Hayes, 1971; Francheteau and Le Pichon, 1972; Ladd, 1974) show that prior to about 110 m.y. B.P. the Falkland Plateau must have Unconsolidated sediments on the Agulhas Plateau range in age occupied the present position of the Agulhas Plateau. Because the from Maestrichian to Quaternary and consist of calcareous ooze. A Falkland Plateau appears to be underlain by continental crust (Ew- composite sedimentary record from piston cores suggests three ing and others, 1971; Barker, Dalziel, and others, 1974), it there- hiatuses in sedimentation which can be correlated with angular un- fore would appear that the Agulhas Plateau cannot be older than conformities inferred from seismic profiles. These hiatuses encom- about 110 m.y. (Barrett, 1977). However, we cannot rule out the pass late Miocene—Pliocene, middle Oligocene, and late possibility that the Agulhas Plateau predates 110 m.y. B.P. and that Paleocene-middle Eocene time and correlate with similar strati- it moved to its present position during or after the westward dis- graphic gaps widely distributed in Deep Sea Drilling Project placement of the Falkland Plateau. boreholes. The deeper basins surrounding the plateau contain ter- This report summarizes available geological and geophysical evi- rigenous and calcareous or siliceous hemipelagic sediments; sedi- dence pertaining to the depositional history of the sedimentary sec- ment composition is controlled by depth and locality of deposition. tion on the Agulhas Plateau. Relatively little attention has been de- Strong influence of bottom currents on sediment distribution dur- voted to the plateau in the literature, but the position of the plateau ing Cenozoic time is demonstrated by a well-developed erosional in the Cretaceous breakup of Gondwanaland (Larson and Ladd, zone near 4,500-m depth around the plateau as well as by local 1973) suggests that its sedimentary column contains an important erosion and sediment drifts on the plateau itself. The plateau can be record of late Mesozoic and Cenozoic oceanographic events. The divided into a northern and a southern province on the basis of dif- effects of abyssal currents should be clearly recorded in these sedi- ferences in the nature of acoustic basement. Basement in the south- ments because of the high southern latitude of the plateau and its ern province is smooth with some faulting and contains weak proximity to the source of Antarctic Bottom Water. We report here internal reflectors unconformable with the basement surface; the the results of examination of 12,500 km of seismic profiler data reflectors may represent layered basalt flows or consolidated and 33 piston cores as a preliminary step in investigating sedimen- Mesozoic sediments deposited shortly after the formation of the tation dynamics on the Agulhas Plateau. Profiler records were ob- plateau. Acoustic basement in the northern section is intensely tained using a 20-in.3 airgun sound source, and they were recorded faulted and shows no evidence of internal stratification. at a variety of band passes between 10 and 200 Hz. INTRODUCTION SEDIMENTARY RECORD IN PISTON CORES The Agulhas Plateau is a large, aseismic structural high in the Thirty-three piston cores ranging in age from Quaternary to southwesternmost Indian Ocean, lying just southeast of the Cape of Cenomanian have been recovered from the study area; 23 of them Good Hope. Its dimensions are about 400 by 700 km, with the long are from the Agulhas Plateau (Figs. 2, 3). Three general lithofacies axis extending roughly north-south, and its minimum depth is are recognized, all of which are dependent on depth and locus of slightly less than 2,500 m or about 2.5 km above the surrounding deposition. ocean floor (Fig. 1). Heezen and Tharp (1964) described the general Foraminiferal and nannoplankton oozes are found on the morphology of the plateau and made a distinction between the Agulhas Plateau in water depths less than about 4,000 m. A clear rough topography of the northern third of the plateau and the sub- distinction exists between the composition of the calcareous com- dued topography of the southern part. Barrett (1977) has shown ponent of Pliocene-Quaternary sediments and of pre-Pliocene sed- that this difference is caused primarily by variations in basement iments. Whereas foraminiferal oozes dominate the younger sedi- morphology under variable sediment cover; the dividing line be- ments, nannoplankton oozes or nannoplankton-foraminiferal tween the provinces is near lat 38.5CS. oozes are prevalent in sediments of Miocene to Maestrichtian age. The origin, structure, and age of the Agulhas Plateau are as yet This compositional change may reflect either changes in the com- poorly defined. Graham and Hales (1965) used a free-air gravity position of the surface-water biocoenose or preferential dissolution model to infer a Moho depth of about 21 km beneath the plateau, of foraminifera in the older samples. In general, foraminifera in the leaving open the question of whether it indicated thinned continen- pre-Pliocene sediments are moderately to poorly preserved, and tal or thickened oceanic crust. Scrutton (1973), on the basis of nannoplankton exhibit moderate preservation. Because foraminif- morphology, suggested that the plateau might be a relict spreading era tend to be less solution-resistant than nannoplankton, foram- center. More recently, Barrett (1977) reported the results of seismic iniferal dissolution may have resulted in relative enrichment of refraction and magnetic studies that suggest that at least the rugged nannofossils. northern one-third of the plateau may be of oceanic origin. Sedi- Even if this mechanism is valid, the dissolution cannot be attrib- ment as old as Cenomanian has been reported from the western uted to deposition below the carbonate compensation depth flank of the plateau (Saito and others, 1974). Reconstructions of (CCD); sediments in all but two cores were deposited several South America and Africa in Cretaceous time (Le Pichon and hundred metres to more than 1,000 m above the probable contem- Geological Society of America Bulletin, v. 88, p. 1337-1346, 7 figs., September 1977, Doc. no. 70912. 1337 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/88/9/1337/3418608/i0016-7606-88-9-1337.pdf by guest on 29 September 2021 1338 TUCHOLKE AND CARPENTER porary CCD, as deduced from JOIDES borehole data for both the Transkei Basin contain sharp-based, graded turbidites that have Atlantic and Indian Oceans (van Andel, 1975). Nannoplankton in been derived from southeast Africa. Turbidites are rare in cores two cores containing sediments deposited near or slightly below the from the western Agulhas Basin, where the Agulhas Fracture Zone contemporary CCD are poorly preserved (V24-213, Maestrichtian) and Agulhas Ridge block southward transport of terrigenous de- and well preserved (V24-215, Paleocene). The best explanation for tritus (Fig. 3). the dissolution may be that the calcareous sediments were exten- A third sediment type was cored in the southern Agulhas Basin. sively reworked by slightly to moderately corrosive bottom cur- This is a hemipelagic diatom-radiolarian clay found at depths rents. Very good evidence for such sediment reworking and redis- below 5 km. All these cores are Pliocene to Quaternary in age, and tribution is seen in both the cores and in the seismic profiler rec- they reflect the surface-water production of siliceous organisms ords, which show erosional unconformities and internal reflectors near the northern limit of the Antarctic polar front zone (Lisitsin, conformable with neither the sea floor nor with deeper acoustic 1972, p. 156). horizons. Many cores, notably V22-124, V22-125, and V22-133, Manganese nodules and crusts several centimetres to tens of cen- contain abundant reworked nannoplankton and foraminifera that timetres in diameter or thickness are also a common component in bottom currents have apparently eroded from older outcrops and cores recovered from the Agulhas Plateau. They usually occur at redeposited at the coring sites. levels in the cores where unconformities exist, notably at the The second most common sediment is detrital clastic (terrige- boundary where Pliocene-Pleistocene sediments unconformably nous) and hemipelagic material. This kind of sediment is found on overlie older deposits. Manganese stains and micronodules are the Agulhas Plateau below about 4,000 m, in the basins west and common at other levels in most cores. east of the plateau, and in the Transkei Basin. Between about 4-and Two cores from the west-central plateau contain significant 5-km water depth, calcareous organisms are a common component quantities of clastic sand. Core V22-123 contains medium sand (< 40%) of these mostly clayey sediments, but barren clays, silty that is mostly iron-stained and represents a suite of mafic-igneous clays, and sand are predominant below 5 km. Cores from the minerals (V. Kolla, 1976, personal commun.); core V22-133 con- Figure 1. Bathymetry of Agulhas Plateau, modified from Simpson (1974). Lamont track control is shown by light lines. Heavy lines show position of profiles in Figure 6. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/88/9/1337/3418608/i0016-7606-88-9-1337.pdf by guest on 29 September 2021 SEDIMENTATION PATTERNS ON THE AGULHAS PLATEAU 1339 tains as much as 20% of similar minerals in the Pleistocene crest of the plateau. Bottom-water potential temperatures range foraminiferal ooze (Fig. 2, 3). Both of these cores were taken near from about 0.2 °C in the western Agulhas Basin (<0.0 °C in the localized, rugged basement peaks that protrude through the sedi- southern Agulhas Basin) to greater than 1.8 °C over the Agulhas ment cover of the plateau (Fig. 5); the sands are probably derived Plateau (Wyrtki, 1971; Kolla and others, 1976).
Recommended publications
  • Connecting the Deep Earth and the Atmosphere
    In Mantle Convection and Surface Expression (Cottaar, S. et al., eds.) AGU Monograph 2020 (in press) Connecting the Deep Earth and the Atmosphere Trond H. Torsvik1,2, Henrik H. Svensen1, Bernhard Steinberger3,1, Dana L. Royer4, Dougal A. Jerram1,5,6, Morgan T. Jones1 & Mathew Domeier1 1Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0315 Oslo, Norway; 2School of Geosciences, University of Witwatersrand, Johannesburg 2050, South Africa; 3Helmholtz Centre Potsdam, GFZ, Telegrafenberg, 14473 Potsdam, Germany; 4Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459, USA; 5DougalEARTH Ltd.1, Solihull, UK; 6Visiting Fellow, Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia. Abstract Most hotspots, kimberlites, and large igneous provinces (LIPs) are sourced by plumes that rise from the margins of two large low shear-wave velocity provinces in the lowermost mantle. These thermochemical provinces have likely been quasi-stable for hundreds of millions, perhaps billions of years, and plume heads rise through the mantle in about 30 Myr or less. LIPs provide a direct link between the deep Earth and the atmosphere but environmental consequences depend on both their volumes and the composition of the crustal rocks they are emplaced through. LIP activity can alter the plate tectonic setting by creating and modifying plate boundaries and hence changing the paleogeography and its long-term forcing on climate. Extensive blankets of LIP-lava on the Earth’s surface can also enhance silicate weathering and potentially lead to CO2 drawdown (cooling), but we find no clear relationship between LIPs and post-emplacement variation in atmospheric CO2 proxies on very long (>10 Myrs) time- scales.
    [Show full text]
  • Gondwana Breakup Via Double-Saloon-Door Rifting and Seafloor Spreading in a Backarc Basin During Subduction Rollback
    Available online at www.sciencedirect.com Tectonophysics 445 (2007) 245–272 www.elsevier.com/locate/tecto Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback A.K. Martin Repsol YPF Exploración, Al Fattan Plaza, PO Box 35700, Dubai, United Arab Emirates Received 2 February 2007; received in revised form 4 July 2007; accepted 21 August 2007 Available online 28 August 2007 Abstract A model has been developed where two arc-parallel rifts propagate in opposite directions from an initial central location during backarc seafloor spreading and subduction rollback. The resultant geometry causes pairs of terranes to simultaneously rotate clockwise and counterclockwise like the motion of double-saloon-doors about their hinges. As movement proceeds and the two terranes rotate, a gap begins to extend between them, where a third rift initiates and propagates in the opposite direction to subduction rollback. Observations from the Oligocene to Recent Western Mediterranean, the Miocene to Recent Carpathians, the Miocene to Recent Aegean and the Oligocene to Recent Caribbean point to a two-stage process. Initially, pairs of terranes comprising a pre-existing retro-arc fold thrust belt and magmatic arc rotate about poles and accrete to adjacent continents. Terrane docking reduces the width of the subduction zone, leading to a second phase during which subduction to strike-slip transitions initiate. The clockwise rotated terrane is caught up in a dextral strike-slip zone, whereas the counterclockwise rotated terrane is entrained in a sinistral strike-slip fault system. The likely driving force is a pair of rotational torques caused by slab sinking and rollback of a curved subduction hingeline.
    [Show full text]
  • JOIDES Resolution Expedition 361 (Southern African Climates) Site
    IODP Expedition 361: Southern African Climates Site U1475 Summary Background and Objectives Site U1475 is located on the southwestern flank of Agulhas Plateau (41°25.61′S, 25°15.64′E), ~450 nmi south of Port Elizabeth, South Africa, in a water depth of 2669 mbsl. The Agulhas Plateau, which was formed during the early stages of the opening of the South Atlantic about 90 Ma (Parsiegla et al., 2008), is a major bathymetric high that is variably coated with sediments (Uenzelmann Neben, 2001). The 230,000 km2 plateau, which ascends up to ~2500 m above the adjacent seafloor, is bounded on the north by the 4700 m deep Agulhas Passage and is flanked by the Agulhas Basin in the west and the Transkei Basin in the northeast. The northern part of the plateau is characterized by rugged topography, while the central and southern part of the plateau exhibits a relatively smooth topography (Allen and Tucholke, 1981) and has greater sediment thickness (Uenzelmann Neben, 2001). A strong water mass transport flows across the Agulhas Plateau region (Macdonald, 1993), which involves the water column from the surface down to Upper Circumpolar Deep Water. The hydrography of the upper ocean is dominated by the Agulhas Return Current, which comprises the component of the Agulhas Current that is not leaked to the South Atlantic Ocean but rather flows eastwards from the retroflection (Lutjeharms and Ansorge, 2001). Antarctic Intermediate Water, below the Agulhas Return Current, also follows the same flow path near South Africa as the Agulhas Current showing a similar retroflection (Lutjeharms, 1996).
    [Show full text]
  • The Shatsky Rise Oceanic Plateau Structure from Two-Dimensional Multichannel Seismic Refl Ection Profi Les and Implications for Oceanic Plateau Formation
    Downloaded from specialpapers.gsapubs.org on June 2, 2015 The Geological Society of America Special Paper 511 2015 The Shatsky Rise oceanic plateau structure from two-dimensional multichannel seismic refl ection profi les and implications for oceanic plateau formation Jinchang Zhang* William W. Sager† Department of Oceanography, Texas A&M University, College Station, Texas 77843, USA Jun Korenaga Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520, USA ABSTRACT The Shatsky Rise is one of the largest oceanic plateaus, a class of volcanic fea- tures whose formation is poorly understood. It is also a plateau that was formed near spreading ridges, but the connection between the two features is unclear. The geologic structure of the Shatsky Rise can help us understand its formation. Deeply penetrating two-dimensional (2-D) multichannel seismic (MCS) refl ection profi les were acquired over the southern half of the Shatsky Rise, and these data allow us to image its upper crustal structure with unprecedented detail. Synthetic seismo- grams constructed from core and log data from scientifi c drilling sites crossed by the MCS lines establish the seismic response to the geology. High-amplitude basement refl ections result from the transition between sediment and underlying igneous rock. Intrabasement refl ections are caused by alternations of lava fl ow packages with dif- fering properties and by thick interfl ow sediment layers. MCS profi les show that two of the volcanic massifs within the Shatsky Rise are immense central volcanoes. The Tamu Massif, the largest (~450 km × 650 km) and oldest (ca. 145 Ma) volcano, is a single central volcano with a rounded shape and shallow fl ank slopes (<0.5°–1.5°), characterized by lava fl ows emanating from the volcano center and extending hun- dreds of kilometers down smooth, shallow fl anks to the surrounding seafl oor.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Marine Geology 266 (2009) 65–79 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sedimentary deposits on the southern South African continental margin: Slumping versus non-deposition or erosion by oceanic currents? Gabriele Uenzelmann-Neben a,⁎, Katrin Huhn b a Alfred-Wegener-Institut für Polar- und Meeresforschung, Am Alten Hafen 26, 27572 Bremerhaven, Germany b MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Str., 28359 Bremen, Germany article info abstract Article history: Seismic profiles extending from the southern South African shelf into the deep sea reveal a strong erosional Received 5 January 2009 activity, which affects large parts of the continental margin. Quaternary to Oligocene units and, in places, the Received in revised form 15 July 2009 complete sedimentary column appear to have been removed. Mass movements were previously considered Accepted 17 July 2009 as the origin of this erosion. However, structures indicating slumping can be identified in only a few places.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 26
    INDEX Africa Antarctica, separation, 918 Bottom water, 937 Agulhas Plateau, 949 Boundaries, criteria used to locate, 678 Albian foraminifera assemblages, 750 Boundary, biostratigraphic, 677 Albian-Cenomanian foraminifera, 747 foraminifera, Amphipyndax enesseffi Zone, 774 Miocene/Pliocene, 678 Amsterdam-St. Paul volcanic complex, 924 Oligocene/Miocene, 678 Angiosperms, 816 Pleistocene/Holocene, 680 Angular unconformity, 283, 288 Pliocene/Miocene, 687 Antarctic Bottom Water, 918 Pliocene/Quaternary, 679 Antarctica, separation of Africa, 918 Quaternary/Pliocene, 677, 687 Argon, nonradiogenic, 514 Brachiopod, 167 Argon analyses, 513 Broken Ridge, 8, 9, 233, 243, 281, 288, 359, 370, 418, Artostrobiom urna Zone, 772, 774, 775 925, 950 Aseismic ridges, 571, 910 Broken Ridge-Naturaliste Plateau, 7 Australian continental margin, 419 Bryozoans, 166, 167 Australian plate, 233 Calcareous nannoplankton, Site 251, 84 Authigenic garnet, 80, 85, 593, 594, 915 Calcispheres, 335, 747 Basalt, 80, 161, 162, 238, 301, 329, 331, 336, 466 Campanian-lower Eocene unconformity, 619 classification of tholeiites, 480 Carbon emmission spectrography, 541 criteria for recognizing altered, 472 Carbon-carbonate analysis, 16 crystallization differentiation, 481 Carbonate compensation depth, 140, 306, 336, 419, 950 electrical resistivity of, 505 Carlsberg Ridge, Central Indian Ridge, spreading on, grain-size range, 533 913 hematite in, 533 Celadonite,471 normative compositions, 477 Cenozoic species, nannoplankton, 619 ocean ridge, 484 Central Indian Basin, 418 olivine,
    [Show full text]
  • Geochemistry, Geophysics, Geosystems
    Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE The Strike-Slip West Wishbone Ridge and the Eastern Margin of 10.1002/2017GC007372 the Hikurangi Plateau Key Points: R. S. Barrett1,2 , B. Davy3 , T. Stern1 , and K. Gohl4 The West Wishbone Ridge is recognized as having been a dextral 1Victoria University of Wellington, Institute of Geophysics, Wellington, New Zealand, 2Now at Christian-Albrechts- strike-slip fault during the Cretaceous University of Kiel, Institute of Geophysics, Kiel, Germany, 3GNS Science, Avalon, Lower Hutt, New Zealand, 4Department of The present-day eastern margin of the Hikurangi Plateau between Geosciences, Alfred Wegener Institute Helmholtz-Center for Polar and Marine Research, Bremerhaven, Germany 42-438S is located using seismic reflection data and gravity modeling We identify over-thickened oceanic Abstract The West Wishbone Ridge (WWR), east of New Zealand, has previously been interpreted as a crust north of, and proximal to the Cretaceous plate boundary, although both the nature and timing of motion along this feature have been Hikurangi Plateau disputed. Here, using recently acquired seismic reflection data from the region of the intersection of the WWR with the Chatham Rise, we show that the WWR was primarily a dextral strike-slip fault during the Late Correspondence to: R. Barrett, Cretaceous. The WWR first propagated along the eastern margin of the Hikurangi Plateau after the collision [email protected] of the Hikurangi Plateau with the Chatham Rise, in response to the slowing of spreading at the Osbourn Trough while spreading continued unabated east of the East Wishbone Ridge, from ca. 105 Ma. Reorienta- Citation: tion of spreading at the Osbourn Trough at this time resulted in short-lived, oblique subduction beneath Barrett, R.
    [Show full text]
  • Washington, DC 20546
    46 Final. Report IMPROVING THE GEOLGICAL 1"'ERPRE"IATION OF IGGNETIC AND GRAVITY SATELTiITE ANOI'IALIES (4/1/85 - 11/31/86) Grant No. NAW-736 (Basic) submitted to Eational Aeronautics & Space Administration Code EE1 NASA Headquarters .Washington, DC 20546 January, 1987 (NASA-CR- 180 149) IMPEDVING ?kE GEOLOGICAL Nd7- 154 18 .Ih!IEEEBE'IATION OF EAGbETIC ABC GhAVXTY SAZELLIIE ANGEALIES Final 3e~crt,1 Apr. 1585 - 31 Nov, 19k6 (Furdue Uriv-) 124 p Unclds CSCL 086 G3/46 437b3 William J. Hinze and Lawrence W. Braile Ralph R.B. von Frese Department of Earth & De*. of Geology & Atmospheric Sciences Mine ralogy Purdue University Ohio State University West Lafayette, IN 47907 Columbus, OH 43210 IFIPIMVIIG THE GEOLGICAL INTERPRFTATION OF MIy;NETIC AND GRAVITY SATELLITE A"&IES Abstract Quantitative analysis of the geologic component of observed satellite magnetic and gravity fields requires accurate isolation of the geologic component of the observations, theoretically sound and viable inversion techniques, and integration of collateral, constraining geologic and geophysical data. A number of significant contributions have been made in this study which make quantitative analysis more accurate. These include procedures for 1) screening and processing orbital data for lithospheric signals based on signal repeatability and wavelength analysis; 2) producing accurate gridded anormly values at constant elevations from the orbital data by three-dimensional least squares collocation; 3) increasing the stability of equivalent point source inversion and criteria for the selection of the optimum wing parameter; 4) enhancing inversion techniques through an iterative procedure based on the superposition theorem of potential fields; and 5) modeling efficiently regional-scale lithospheric sources of satellite magnetic anomalies.
    [Show full text]
  • Aalenian, 661, 687 Abu Swayel, 208 Abyssal Fan, 562 Acoustic
    INDEX Aalenian, 661, 687 Algal-Oolitic limestones, 171 Abu Swayel, 208 Alkali basalt, 71, 77, 79, 220, 229, 605 Abyssal fan, 562 Alkali-Olivine basalt, 79, 232, 241, 613, Acoustic basement, 73, 75, 81, 406, 408 623, 625 Acritarchs, 159 Alkaline trachyte, 209 Adamellites, 590 Alpine diastrophism, 241-242, 244-245 Adelaide Geosyncline, 547-548 Alula-Fartak Trench, 87 Adelaidean Belt, 742 Aluvial fans, 154 Aden, 271, 358 Amarante Passage, 26 Aden Volcanic Series, 220, 267, 271, 278 Amba Aradam Formation, 218 Adigrat Sandstone, 273-274 Ambokahave Shales, 677 Aeclian deposits, 161 America-Antarctica Ridge, 97 Aeolan sand, 548 Amery Ice Shelf, 702, 705-707, 730 Aeromagnetic surveys, 554, 726 Amiran Flysch, 326 Afanasy Nikitin Seamount, 77 Amirante Island, 591 Afar Depression, 88 Amirante Ridge, 591 Afar Rift Zone, 87 Amirante Trench, 117 Afar Series, 279 Amirantes, 129 Afar Triangle, 288 Ammonia beccarrii. 382 Africa, 31 Ammonites, 166, 169, 188, 519, 659-660, African-Antarctic Basin, 54, 77, 86, 136 676,692 Agulhas Bank, 73 Ammonoids, 517-518 Agulhas Basin, 54, 74 Ampandrandava Group, 652 Agulhas Current, 6, 28 Ampasimena Series, 661 Agulhas Fracture Zone, 74, 164 Amphibians, 160,659 Agulhas Plateau, 6, 15, 52, 73-74 Amphibolites, 208, 333, 455, 653, 709, 721, Albany-Fraser Mobile Zone, 527 723-729, 735-736 Albany-Fraser Province, 740, 742 Amphistegina. 606 Albian, 82, 127-128, 165, 189,406,664, Amsterdam Fracture Zone, 631 677, 679, 690 Amsterdam Island, 631-632 Alcock Seamount, 422, 424, 427 Anahita Fracture Zone, 91 Algae, 606 Andaman Island,
    [Show full text]
  • Gondwana Breakup: Messages from the North Natal Valley M
    Gondwana breakup: messages from the North Natal Valley M. Moulin, D. Aslanian, M. Evain, A. Leprêtre, P. Schnürle, F. Verrier, J. Thompson, P. de Clarens, Sylvie Leroy, N. Dias, et al. To cite this version: M. Moulin, D. Aslanian, M. Evain, A. Leprêtre, P. Schnürle, et al.. Gondwana breakup: messages from the North Natal Valley. Terra Nova, Wiley-Blackwell, 2020, 32 (3), pp.205-214. 10.1111/TER.12448. hal-02429986 HAL Id: hal-02429986 https://hal.archives-ouvertes.fr/hal-02429986 Submitted on 20 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DR MARYLINE MOULIN (Orcid ID : 0000-0002-5685-2451) Article type : Paper Title of manuscript: Gondwana breakup: messages from the North Natal Valley M. Moulin1*, D. Aslanian1, M. Evain1, A. Leprêtre1,2, P. Schnurle1, F. Verrier1, J. Thompson1, P. De Clarens3, S. Leroy4, N. Dias5,6 and the PAMELA-MOZ35 Team1,2,3,4,5,6,7,8,9,10,11,12,13 1 Ifremer, REM/GM/LGS, Centre de Brest, 29280 Plouzané, France, [email protected] 2 LGO, Laboratoire Geosciences Ocean, IUEM, CNRS, 29280 Plouzané, France 3 Total, R&D, avenue Larribau, 64000 Pau, France 4 UPMC, Univ Paris 6, CNRS UMR 7193, ISTEP, 4 place Jussieu, 75005 Paris, France 5 ISEL - Instituto Superior de Engenharia de Lisboa, Lisboa, Portugal 6 IDL – Instituto Dom Luis, Lisboa, Faculdade das Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal 7 AWI, Am Alten Hafen 26, D-27568 Bremerhaven, Germany 8 BGR, Geozentrum Hannover, Stilleweg 2, 30655 Hannover, Germany 9 INAMI, Praça 25 de Junho, n°380, P.O.
    [Show full text]
  • Large Igneous Provinces and Silicic Large Igneous Provinces
    Large igneous provinces and silicic large 1888 2013 igneous provinces: Progress in our understanding CELEBRATING ADVANCES IN GEOSCIENCE over the last 25 years Invited Review Scott E. Bryan1,† and Luca Ferrari2,3,† 1School of Earth, Environmental and Biological Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, 4001, Australia 2Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Boulevard Juriquilla 3001, Querétaro, 76230, Mexico 3Instituto de Geología, Universidad Nacional Autonoma de Mexico, Circuito Investigacion Cientifi ca, Ciudad Universitaria, Mexico City, 04510, Mexico ABSTRACT margins, where, in the latter setting, large ig- ities, and are characterized by igneous pulse(s) neous province magmatism can be dominated of short duration (1–5 m.y.), during which a Large igneous provinces are exceptional by silicic products. (3) Mineral and energy re- large proportion (>75%) of the total igneous intraplate igneous events throughout Earth’s sources, with major platinum group elements volume was emplaced (Bryan and Ernst, 2008). history. Their signifi cance and potential (PGEs) and precious metal resources, are Continental fl ood basalt provinces, such as the global impact are related to the total volume hosted in these provinces, as well as magma- Deccan Traps, Siberian Traps, and Columbia of magma intruded and released during these tism impacting on the hydro carbon potential River fl ood basalt province, are some of the best geologically brief events (peak eruptions are of volcanic basins and rifted margins through recognized examples of continental large igne- often within 1–5 m.y. in duration) where mil- enhancing source-rock maturation, providing ous provinces (Fig. 1). While continental fl ood lions to tens of millions of cubic kilometers fl uid migration pathways, and initiating trap basalt provinces had been widely recognized of magma are produced.
    [Show full text]
  • Crustal Structure of the Southern Margin of the African Plate: Results
    Originally published as: Stankiewicz, J., Parsiegla, N., Ryberg, T., Gohl, K, Weckmann, U., Trumbull, R., Weber, M. (2008): Crustal Structure of the Southern Margin of the African Continent: Results from Geophysical Experiments. - Journal of Geophysical Research, 113, B10313 DOI: 10.1029/2008JB005612. 1 Crustal Structure of the Southern Margin of the African 2 Continent: Results from Geophysical Experiments. 3 4 J. Stankiewicz, N. Parsiegla, T. Ryberg, K. Gohl, U. Weckmann, R. Trumbull & M. Weber. 5 6 Abstract 7 A number of geophysical onshore and offshore experiments were carried out along a profile across the 8 southern margin of the African Plate in the framework of the Inkaba yeAfrica project. Refraction 9 seismic experiments show that Moho depth decreases rapidly from over 40 km inland to around 30 km 10 at the present coast, before gently thinning out towards the Agulhas-Falkland Fracture Zone, which 11 marks the transition zone between continental and oceanic crust. In the region of the abruptly 12 decreasing Moho depth, in the vicinity of the boundary between the Namaqua-Natal Mobile Belt and 13 the Cape Fold Belt, lower crustal P-wave velocities up to 7.4 km/s are observed. This is interpreted as 14 metabasic lithologies of Precambrian age in the Namaqua-Natal Mobile Belt, or mafic intrusions added 15 to the base of the crust by younger magmatism. The velocity model for the upper crust has excellent 16 resolution, and is consistent with the known geological record. A joint interpretation of the velocity 17 model with an electrical conductivity model, obtained from magnetotelluric studies, makes it possible 18 to correlate a high velocity anomaly north of the centre of the Beattie Magnetic Anomaly with a highly 19 resistive body.
    [Show full text]