Computer Science Technical Reports Computer Science 1996 The Quantitative Structure of Exponential Time Jack H. Lutz Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports Part of the Theory and Algorithms Commons Recommended Citation Lutz, Jack H., "The Quantitative Structure of Exponential Time" (1996). Computer Science Technical Reports. 115. http://lib.dr.iastate.edu/cs_techreports/115 This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact
[email protected]. The Quantitative Structure of Exponential Time Abstract Department of Computer Science Iowa State University Ames, Iowa 50010 Recent results on the internal, measure-theoretic structure of the exponential time complexity classes linear polynomial E = DTIME(2 ) and E = DTIME(2 ) 2 are surveyed. The measure structure of these classes is seen to interact in informative ways with bi-immunity, complexity cores, polynomial-time many-one reducibility, circuit-size complexity, Kolmogorov complexity, and the density of hard languages. Possible implications for the structure of NP are also discussed. Disciplines Theory and Algorithms This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cs_techreports/115 This is page 1 Printer: Opaque this The Quantitative Structure of Exp onential Time 1 Jack H. Lutz ABSTRACT Recent results on the internal, measure-theoretic structure of the exp onential time complexity classes E and EXP are surveyed. The mea- sure structure of these classes is seen to interact in informativeways with bi-immunity, complexity cores, p olynomial-time reductions, completeness, circuit-size complexity, Kolmogorov complexity, natural pro ofs, pseudoran- dom generators, the density of hard languages, randomized complexity, and lowness.