M10e “Resonance and Phase Shift in Mechanical Oscillations”

Total Page:16

File Type:pdf, Size:1020Kb

M10e “Resonance and Phase Shift in Mechanical Oscillations” Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M10e “Resonance and Phase Shift in Mechanical Oscillations” Tasks 1. Determine the frequency fd of the damped oscillation and the damping constant of a rotary pendulum for eight different values of the damping. Plot d as a function of and compare with theory. 2. Measure the resonance curve of a rotary pendulum as well as the phase shift between drive and deflection of the pendulum disk for one value of the damping constant. Plot the resonance curve, compare with theory and determine resonance frequency and damping constant. Literature Physikalisches Praktikum, 14. Auflage, Hrsg. W. Schenk, F. Kremer, Mechanik, 2.3 M. Alonso, E.J. Finn, Physics, Addison-Wesley, 10.13, 10.14 Accessories Pohl’s wheel with angular sensors, computer interface system, laptop Key Aspects for Preparation - Moment of inertia, moment of inertia of a disk - Angular momentum - Rotary pendulum, equation of motion - Eigenfrequency, damping constant, frequency of the damped oscillation, logarithmic decrement - Resonance curve, resonance frequency, phase shift Basics In this experiment damped and forced oscillations are studied using a rotary pendulum (Pohl’s wheel). The rotary pendulum has an eigenfrequency that is determined by the directional moment of the spring and the moment of inertia of its copper disk. The damping can be varied by controlling the magnitude of eddy current damping in the copper disk that oscillates through a region of variable magnetic field. If the damping is increased, the damped oscillations show a stronger amplitude decrease with time and a small shift of the frequency of the damped oscillation. In case of a periodically driven rotary pendulum, a large oscillation amplitude is observed, when the driving frequency is equal to the resonance frequency. This maximum amplitude is a function of the driving torque, the damping and the eigenfrequency. These basics are presented in more detail in the following. Rotary pendulum without external drive If the pendulum is deflected by an angle , it executes a damped oscillation around the rest position 0. This oscillation is called damped eigenoscillation of the system. The equation of motion of the system is obtained from a balance of the torques MMMTFD (1) with MJT inertia torque MDF restroring torque from the spring MD damping torque (moment of inertia J, directional moment of the spring D, damping coefficient ). Putting these expressions into Eq. (1) yields the equation of motion of the pendulum: JD 0 (2a) 2 or 20 0 (2b) 2 22 with /2J , 0 DJ/ and d0 . Equation (2b) is a homogeneous, linear differential equation of second order. In solving this differential equation three cases are distinguished: 22 1. 0 : creep (strong damping) (3) 22 2. 0 : aperiodic limiting case (critical damping) (4) 22 3. 0 : oscillation (weak damping). (5) The solution is given by tt (t ) e A1 sin( d t ) A 2 cos( d t ) Ce cos( d t ) (6) with amplitudes A1, A2 and C and phase : 22 AAAAAA1CCCsin , 2 cos , 1 2 , tan 1 / 2 . The eigen angular frequency 0 characterizes the undamped pendulum; d is the angular frequency of the damped oscillation. fdd/(2 ) is often called the frequency of free oscillations. The eigen angular frequency 0 does not depend on the oscillation amplitude. This is a feature of harmonic oscillators that obey linear equations of motion. The solution for the free, but damped oscillation contains an exponentially decreasing term characterized by the decay time 1 . The frequency of the damped oscillation is smaller than that of the undamped oscillation. The damping constant , resp. the logarithmic decrement can be experimentally determined from the temporal decrease of the angular deflection (t): ()t Td ln (period Tdd 2/). (7) ()tT d 2 Rotary pendulum with external drive If the pendulum is driven by an external torque M0 sin(t) varying periodically in time, one obtains a forced oscillation. After a settling time the angular frequency of the pendulum is identical to the angular frequency of the external drive. The equation of motion is given by J D M0 sin( t ) . (8) This is an inhomogeneous, linear differential equation of second order. The general solution to Eq. (8) is a linear combination of the general solution of the homogeneous differential equation (2b) and a particular solution of the inhomogeneous differential equation (8). A particular solution can be obtained with the ansatz p(t ) A ( )sin( t ) . (9) This yields the amplitude MMJ/ A() 00, (10) 2 2 222 2 2 2 2 2 2 J 00 4 where is the driving torque‘s angular frequency and 0 DJ/ is the eigen angular frequency of the free, undamped system. The phase shift is frequency dependent: 2 tan ( ) (11) 2 2 2 2 J00 The general solution of Eq. (8) is obtained by adding equations (6) and (9) t (t ) A ( )sin( t ) Ce cos( d t ) . (12) This explicit solution clearly shows that the oscillations of the driven and free system superimpose. After a settling time the term with angular frequency d becomes very small due to the exponentially decreasing damping factor. The pendulum then oscillates with the angular frequency of the drive, albeit with a phase shift relative to the driving torque. The limiting values of Eq. (10) are: MM00 AA(0)2 ; ( ) 0 . JD 0 The amplitude of the forced oscillation reaches its maximum at the resonance angular frequency. Minimizing the denominator of Eq. (10) yields 2 2 2 ( 0 ) 2 0 . Therefore, the resonance angular frequency is given by 22 R 00 2 / 2 . (13) R 0 0 / 2 The amplitude at the resonance angular frequency is 2 0 AA(R ) (0) 0 / 2 2d . (14) AA(R ) (0) 0 / 2 For weak damping (and only then) we get the approximate value: D . R0 J 3 Plotting the amplitude A() as a function of angular frequency yields the resonance curve (Fig. 1). The graph of the resonance curve is not symmetric with respect to the resonance angular frequency. The half-width is defined as the difference between the angular frequencies 1 and 2, at which the resonance amplitude has decreased to the value AAA(1 ) ( 2 ) R / 2 [resp. 2 2 2 AAA(1 ) ( 2 ) R /2 , corresponding to the power PPP(1 ) ( 2 ) max /2 ]. The half-width can 11 only be defined for values of the damping that are smaller than 1 0.38268 , 00 22 since otherwise the branch of the resonance curve on the low frequency side is always larger than A(R )/ 2 . In the general case one has 2 2 2 1,2 RR 2 . (15) In the weakly damped case 0 one obtains 1,2 R and a half-width 2 or 2 . (16) Equation (16) expresses the uncertainty between the frequency and the lifetime of a damped linear oscillator. Large values of damping lead to a small lifetime and cause broad resonance curves. Very narrow resonance curves correspond to weakly damped systems with large lifetime. A() / A( ) R Fig. 1 Resonance curve. 1.0 0.8 1/2 0.6 0.4 0.2 0.0 0.0 0.5 1.0 1.5 2.0 / R The damping expresses the dissipation of energy brought into the system by the external drive. The smaller the damping of the driven oscillator, the larger its oscillation amplitude at resonance. Another important value characterizing the oscillator is the quality factor Q with Q 00/ /2 . According to Eq. (11) the phase shift is negative, i.e. the angular deflection always lags behind the driving motion. Explicitly, the phase shift can be written as 2 ( ) arctan22 0 0 . (17) 2 ( ) arctan22 0 0 4 As a function of angular frequency the phase shift has an inflection point at the eigenfrequency 0 , not at the resonance frequency . At this inflection point the phase is () . R 0 2 0 Fig. 2 Phase shift. (rad) -1 -2 Phasenwinkel -3 0.0 0.5 1.0 1.5 2.0 / 0 Hints towards experimentation and analysis Task 1 Record the free oscillations for various currents of the eddy-current brake in the range between 400 mA and 1200 mA. Determine the angular frequency of the free oscillation d and the damping 2 2 constant . Estimate the error of these quantities. Plot d versus and compare with theory. Task 2 Measure the frequency dependence of resonance curve and phase shift for one value of the current through the eddy-current brake. The phase shift might be determined from the time shift between drive and pendulum oscillation t using t . Plot the data. Determine the resonance frequency R and damping constant by fitting the theory curves to the data. 5 Rotary pendulum Fig. 3 Rotary pendulum after Pohl 1 Resonator (copper disk) 2 Extender wheel of the drive 3 Angular sensor for the drive 4 Motor connection (0 – 24 VDC) 5 Eddy-current brake connections (0 - 2 A) 6 Angular sensor for the resonator 7 Analog-to-digital converter with integrated preamplifier Software for the interface system 6 .
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Frequency Response = K − Ml
    Frequency Response 1. Introduction We will examine the response of a second order linear constant coefficient system to a sinusoidal input. We will pay special attention to the way the output changes as the frequency of the input changes. This is what we mean by the frequency response of the system. In particular, we will look at the amplitude response and the phase response; that is, the amplitude and phase lag of the system’s output considered as functions of the input frequency. In O.4 the Exponential Input Theorem was used to find a particular solution in the case of exponential or sinusoidal input. Here we will work out in detail the formulas for a second order system. We will then interpret these formulas as the frequency response of a mechanical system. In particular, we will look at damped-spring-mass systems. We will study carefully two cases: first, when the mass is driven by pushing on the spring and second, when the mass is driven by pushing on the dashpot. Both these systems have the same form p(D)x = q(t), but their amplitude responses are very different. This is because, as we will see, it can make physical sense to designate something other than q(t) as the input. For example, in the system mx0 + bx0 + kx = by0 we will consider y to be the input. (Of course, y is related to the expression on the right- hand-side of the equation, but it is not exactly the same.) 2. Sinusoidally Driven Systems: Second Order Constant Coefficient DE’s We start with the second order linear constant coefficient (CC) DE, which as we’ve seen can be interpreted as modeling a damped forced harmonic oscillator.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • To Learn the Basic Properties of Traveling Waves. Slide 20-2 Chapter 20 Preview
    Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide 20-2 Chapter 20 Preview Slide 20-3 Chapter 20 Preview Slide 20-5 • result from periodic disturbance • same period (frequency) as source 1 f • Longitudinal or Transverse Waves • Characterized by – amplitude (how far do the “bits” move from their equilibrium positions? Amplitude of MEDIUM) – period or frequency (how long does it take for each “bit” to go through one cycle?) – wavelength (over what distance does the cycle repeat in a freeze frame?) – wave speed (how fast is the energy transferred?) vf v Wavelength and Frequency are Inversely related: f The shorter the wavelength, the higher the frequency. The longer the wavelength, the lower the frequency. 3Hz 5Hz Spherical Waves Wave speed: Depends on Properties of the Medium: Temperature, Density, Elasticity, Tension, Relative Motion vf Transverse Wave • A traveling wave or pulse that causes the elements of the disturbed medium to move perpendicular to the direction of propagation is called a transverse wave Longitudinal Wave A traveling wave or pulse that causes the elements of the disturbed medium to move parallel to the direction of propagation is called a longitudinal wave: Pulse Tuning Fork Guitar String Types of Waves Sound String Wave PULSE: • traveling disturbance • transfers energy and momentum • no bulk motion of the medium • comes in two flavors • LONGitudinal • TRANSverse Traveling Pulse • For a pulse traveling to the right – y (x, t) = f (x – vt) • For a pulse traveling to
    [Show full text]
  • Resonance Beyond Frequency-Matching
    Resonance Beyond Frequency-Matching Zhenyu Wang (王振宇)1, Mingzhe Li (李明哲)1,2, & Ruifang Wang (王瑞方)1,2* 1 Department of Physics, Xiamen University, Xiamen 361005, China. 2 Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, China. *Corresponding author. [email protected] Resonance, defined as the oscillation of a system when the temporal frequency of an external stimulus matches a natural frequency of the system, is important in both fundamental physics and applied disciplines. However, the spatial character of oscillation is not considered in the definition of resonance. In this work, we reveal the creation of spatial resonance when the stimulus matches the space pattern of a normal mode in an oscillating system. The complete resonance, which we call multidimensional resonance, is a combination of both the spatial and the conventionally defined (temporal) resonance and can be several orders of magnitude stronger than the temporal resonance alone. We further elucidate that the spin wave produced by multidimensional resonance drives considerably faster reversal of the vortex core in a magnetic nanodisk. Our findings provide insight into the nature of wave dynamics and open the door to novel applications. I. INTRODUCTION Resonance is a universal property of oscillation in both classical and quantum physics[1,2]. Resonance occurs at a wide range of scales, from subatomic particles[2,3] to astronomical objects[4]. A thorough understanding of resonance is therefore crucial for both fundamental research[4-8] and numerous related applications[9-12]. The simplest resonance system is composed of one oscillating element, for instance, a pendulum. Such a simple system features a single inherent resonance frequency.
    [Show full text]
  • Understanding What Really Happens at Resonance
    feature article Resonance Revealed: Understanding What Really Happens at Resonance Chris White Wood RESONANCE focus on some underlying principles and use these to construct The word has various meanings in acoustics, chemistry, vector diagrams to explain the resonance phenomenon. It thus electronics, mechanics, even astronomy. But for vibration aspires to provide a more intuitive understanding. professionals, it is the definition from the field of mechanics that is of interest, and it is usually stated thus: SYSTEM BEHAVIOR Before we move on to the why and how, let us review the what— “The condition where a system or body is subjected to an that is, what happens when a cyclic force, gradually increasing oscillating force close to its natural frequency.” from zero frequency, is applied to a vibrating system. Let us consider the shaft of some rotating machine. Rotor Yet this definition seems incomplete. It really only states the balancing is always performed to within a tolerance; there condition necessary for resonance to occur—telling us nothing will always be some degree of residual unbalance, which will of the condition itself. How does a system behave at resonance, give rise to a rotating centrifugal force. Although the residual and why? Why does the behavior change as it passes through unbalance is due to a nonsymmetrical distribution of mass resonance? Why does a system even have a natural frequency? around the center of rotation, we can think of it as an equivalent Of course, we can diagnose machinery vibration resonance “heavy spot” at some point on the rotor. problems without complete answers to these questions.
    [Show full text]
  • PHASOR DIAGRAMS II Fault Analysis Ron Alexander – Bonneville Power Administration
    PHASOR DIAGRAMS II Fault Analysis Ron Alexander – Bonneville Power Administration For any technician or engineer to understand the characteristics of a power system, the use of phasors and polarity are essential. They aid in the understanding and analysis of how the power system is connected and operates both during normal (balanced) conditions, as well as fault (unbalanced) conditions. Thus, as J. Lewis Blackburn of Westinghouse stated, “a sound theoretical and practical knowledge of phasors and polarity is a fundamental and valuable resource.” C C A A B B Balanced System Unbalanced System With the proper identification of circuits and assumed direction established in a circuit diagram (with the use of polarity), the corresponding phasor diagram can be drawn from either calculated or test data. Fortunately, most relays today along with digital fault recorders supply us with recorded quantities as seen during fault conditions. This in turn allows us to create a phasor diagram in which we can visualize how the power system was affected during a fault condition. FAULTS Faults are unavoidable in the operation of a power system. Faults are caused by: • Lightning • Insulator failure • Equipment failure • Trees • Accidents • Vandalism such as gunshots • Fires • Foreign material Faults are essentially short circuits on the power system and can occur between phases and ground in virtually any combination: • One phase to ground • Two phases to ground • Three phase to ground • Phase to phase As previously instructed by Cliff Harris of Idaho Power Company: Faults come uninvited and seldom leave voluntarily. Faults cause voltage to collapse and current to increase. Fault voltage and current magnitude depend on several factors, including source strength, location of fault, type of fault, system conditions, etc.
    [Show full text]
  • Sinusoidal Signals Sinusoidal Signals
    SINUSOIDAL SIGNALS SINUSOIDAL SIGNALS x(t) = cos(2¼ft + ') = cos(!t + ') (continuous time) x[n] = cos(2¼fn + ') = cos(!n + ') (discrete time) f : frequency (s¡1 (Hz)) ! : angular frequency (radians/s) ' : phase (radians) 2 Sinusoidal signals A cos(ω t) A sin(ω t) A 0 −A 0 T/2 T 3T/2 2T xc(t) = A cos(2¼ft) xs(t) = A sin(2¼ft) = A cos(2¼ft ¡ ¼=2) - amplitude A -amplitude A - period T = 1=f -period T = 1=f - phase: 0 -phase: ¡¼=2 3 WHY SINUSOIDAL SIGNALS? ² Physical reasons: - harmonic oscillators generate sinusoids, e.g., vibrating structures - waves consist of sinusoidals, e.g., acoustic waves or electromagnetic waves used in wireless transmission ² Psychophysical reason: - speech consists of superposition of sinusoids - human ear detects frequencies - human eye senses light of various frequencies ² Mathematical (and physical) reason: - Linear systems, both physical systems and man-made ¯lters, a®ect a signal frequency by frequency (hence low- pass, high-pass etc ¯lters) 4 EXAMPLE: TRANSMISSION OF A LOW-FREQUENCY SIGNAL USING HIGH-FREQUENCY ELECTROMAGNETIC (RADIO) SIGNAL - A POSSIBLE (CONVENTIONAL) METHOD: AMPLITUDE MODULATION (AM) Example: low-frequency signal v(t) = 5 + 2 cos(2¼f¢t); f¢ = 20 Hz High-frequency carrier wave vc(t) = cos(2¼fct); fc = 200 Hz Amplitude modulation (AM) of carrier (electromagnetic) wave: x(t) = v(t) cos(2¼fct) 5 8 6 4 2 v 0 −2 −4 −6 −8 8 6 4 2 x 0 −2 −4 −6 −8 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 t Top: v(t) (dashed) and vc(t) = cos(2¼fct).
    [Show full text]
  • Characteristics of Sine Wave Ac Power
    CHARACTERISTICS OF BY: VIJAY SHARMA SINE WAVE AC POWER: ENGINEER DEFINITIONS OF ELECTRICAL CONCEPTS, specifications & operations Excerpt from Inverter Charger Series Manual CHARACTERISTICS OF SINE WAVE AC POWER 1.0 DEFINITIONS OF ELECTRICAL CONCEPTS, SPECIFICATIONS & OPERATIONS Polar Coordinate System: It is a two-dimensional coordinate system for graphical representation in which each point on a plane is determined by the radial coordinate and the angular coordinate. The radial coordinate denotes the point’s distance from a central point known as the pole. The angular coordinate (usually denoted by Ø or O t) denotes the positive or anti-clockwise (counter-clockwise) angle required to reach the point from the polar axis. Vector: It is a varying mathematical quantity that has a magnitude and direction. The voltage and current in a sinusoidal AC voltage can be represented by the voltage and current vectors in a Polar Coordinate System of graphical representation. Phase, Ø: It is denoted by"Ø" and is equal to the angular magnitude in a Polar Coordinate System of graphical representation of vectorial quantities. It is used to denote the angular distance between the voltage and the current vectors in a sinusoidal voltage. Power Factor, (PF): It is denoted by “PF” and is equal to the Cosine function of the Phase "Ø" (denoted CosØ) between the voltage and current vectors in a sinusoidal voltage. It is also equal to the ratio of the Active Power (P) in Watts to the Apparent Power (S) in VA. The maximum value is 1. Normally it ranges from 0.6 to 0.8. Voltage (V), Volts: It is denoted by “V” and the unit is “Volts” – denoted as “V”.
    [Show full text]
  • Last Time: LRC Circuits with Phasors…
    Last time: LRC Circuits with phasors… I X where . R L εm XLL ≡ ω C L ⇒ φ IR 1 ∼ X C ≡ I XC ωC ε The phasor diagram gives us graphical solutions for φ and I: 2 2 2 2 ε=IRXXm ( +( LC − ) ) I XL I XC εm ⇓ φ 2 2 XX− I=ε m R + X()LC − X = IZ IR tanφ = LC R 2 2 ZRXX≡ +()LC − LRC series circuit; Summary of instantaneous Current and voltages VR = IR VL = IXL VC = IXC i t()= Icos (ω ) t I XL vR t()= IRcos (ω ) t ε 1 m v t()= IXcos (ω− t ) 90 = cos I ()ωt − 90 C C ωC v tL ()= IXcosL (ω+ t ) 90ω = cos I L( ω+ ) 90 t IR tε()= v t() = ω IZcos (+ φ ) t = εcos (t ω+ ) φ ad m I XC VVLC− ωLC−1 / ω 2 2 tanφ = = ZXXX=(()R + LC - ) VR R Lagging & Leading The phase φ between the current and the driving emf depends on the relative magnitudes of the inductive and capacitive reactances. XL≡ ω ε XXLC− L m tan φ = I = 1 Z R X ≡ C ω C XL Z XL XL φ Z R φ R R Z XC XC XC XL > XC XL < XC XL = XC φ > 0 φ < 0 φ = 0 current current current LAGS LEADS IN PHASE WITH applied voltage applied voltage applied voltage Lecture 19, Act 2 2A A series RC circuit is driven by emf ε. Which of the following could be an appropriate phasor ~ diagram? V ε L εm m VC VR VR VR V C εm VC (a) (b) (c) 2B For this circuit which of the following is true? (a) The drive voltage is in phase with the current.
    [Show full text]
  • EE301 – INTRO to AC and SINUSOIDS Learning Objectives
    EE301 – INTRO TO AC AND SINUSOIDS Learning Objectives a. Compare AC and DC voltage and current sources as defined by voltage polarity, current direction and magnitude over time b. Define the basic sinusoidal wave equations and waveforms, and determine amplitude, peak to peak values, phase, period, frequency, and angular velocity c. Determine the instantaneous value of a sinusoidal waveform d. Graph sinusoidal wave equations as a function of time and angular velocity using degrees and radians e. Define effective / root mean squared values f. Define phase shift and determine phase differences between same frequency waveforms Alternating Current (AC) With the exception of short-term capacitor and inductor transients, all voltages and currents we have seen up to this point have been “DC”—i.e., fixed in magnitude. Now we shift our focus to “AC” voltage and current sources. AC sources (usually represented by lowercase e(t) or i(t)) have a sinusoidal waveform. For an AC voltage, for example, the voltage polarity changes every cycle. On the other hand, for an AC current, the current changes direction each cycle with the source voltage. Voltage and Current Conventions When e has a positive value, its actual polarity is the same as the reference polarity. When i has a positive value, its actual direction is the same as the reference arrow. 1 9/14/2016 EE301 – INTRO TO AC AND SINUSOIDS Sinusoids Since our ac waveforms (voltages and currents) are sinusoidal, we need to have a ready familiarity with the equation for a sinusoid. The horizontal scale, referred to as the “time scale” can represent degrees or time.
    [Show full text]
  • Glossary Radiation Physics Phase
    Glossary Radiation Physics Phase space co-ordinates : (x,y,z,E,θ,φ), where (x,y,z) are the Cartesian coordinates of the point in configuration space where the field is evaluated, E is the particle (generically including photons) energy, and (θ,φ) are the spherical polar coordinates describing the particle direction of motion. Condensed form of phase space coordinates: (r,E) where r'xLx%yLy%zLz and E=EΩ. The vector Ω'sinθcosφLx%sinθsinφLy%cosθLz , and is a unit vector pointing in the direction of the particle velocity. Phase space volume element: d 3rd 3E'd 3rdEdΩ'dxdydzdEsinθdθdφ (cm 3&MeV&Sr) Total number of particles or photons at time t: N(t) Angular number density spectrum: d 6N n˜(r,E,t)' (cm &3&Mev &1&Sr &1) d 3rd 3E Number density spectrum: n(r,E,t)' n˜(r,E,t)dΩ m 4π Angular fluence rate spectrum: d 6N n˜ (r,E,t)'n˜(r,E,t)v' (cm &2&MeV &1&Sr &1&s &1) 3 dAzd Edt 3 where (d r'dAzvdt) Also known as angular flux density spectrum. Fluence rate spectrum: d 4N n(r,E,t)' n˜ (r,E,t)dΩ' (cm &2&MeV &1&s &1) m dAdEdt 4π Where dA is the cross sectional area of sphere centered at r Vector Fluence rate spectrum or current density: J(r,E,t)' n˜ (r,E,t)ΩdΩ (cm &2&MeV &1&s &1) m 4π d 4N J(r,E,t)@ν' Where dA is an elemental area with normal ν dAdEdt Angular fluence spectrum: t Φ˜ (r,E)' φ˜(r,E,tN)dtN (cm &2&MeV &1&Sr &1) m 0 Where t is the total exposure duration Fluence Spectrum: Φ(r,E)' Φ˜ (r,E)dΩ (cm &2&MeV &1) m 4π Energy flow vector: g(r,t)' φ˜(r,E,t)Ed 3E (MeV&cm &2&s &1) m Spectral radiance: The radiant flux per unit cross sectional area per unit solid angle per unit wave length 6 d R &2 &1 &1 Lλ(r,Ω,λ,t)' (W&m Sr nm ) dAzdΩdλ Spectral irradiance: The radiant flux per unit surface area per unit wavelength: E (r,λ,t)' L (r,Ω,λ,t)cosθdΩ (W&m &2nm &1) λ m λ Linear attenuation coefficient: The probability per unit particle path length for an interaction with the medium in which it is propagating.
    [Show full text]