Identifying Genetic Variation Contributing to Keratoconus

Total Page:16

File Type:pdf, Size:1020Kb

Identifying Genetic Variation Contributing to Keratoconus IDENTIFYING GENETIC VARIATION CONTRIBUTING TO KERATOCONUS by Sionne Edie Marguerite Lucas BMedSci, BMedRes (Hons) Menzies Institute for Medical Research | College of Health and Medicine Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Medical Studies) University of Tasmania, December, 2018 DECLARATION OF ORIGINALITY This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Sionne Lucas 18/12/2018 i AUTHORITY OF ACCESS STATEMENT The publishers of the papers comprising Chapter 3 hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non-published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Sionne Lucas 18/12/2018 ii STATEMENT OF ETHICAL CONDUCT The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government's Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University. Sionne Lucas 18/12/2018 iii STATEMENT OF CO-AUTHORSHIP Sionne E. M. Lucas has incorporated versions of two first-author papers, Lucas et al. (2017)1 and Lucas et al. (2018),2 into Chapter 3. The contribution of co-authors for each paper is presented below. Lucas SEM, Zhou T, Blackburn NB, et al. Rare, potentially pathogenic variants in ZNF469 are not enriched in keratoconus in a large Australian cohort of European descent. Invest Ophthalmol Vis Sci 2017;58(14):6248-56. The co-authors and each author’s contribution are outlined as follows: Lucas, S. E. M. was involved the study design, data generation and data curation, she conducted data analysis and laboratory experiments and wrote the manuscript and prepared the tables and figures; Zhou, T. was involved in method development; Blackburn, N. B. was involved in method development, conducted preliminary data analysis and was involved in manuscript revision; Mills, R. A. conducted clinical examinations and was involved in patient recruitment; Ellis, J. was involved in preliminary data analysis; Leo, P. was involved in preliminary data analysis; Souzeau, E. was involved in patient recruitment, data curation and manuscript revision; Ridge, B. was involved in patient recruitment and data curation; Charlesworth, J. C. was involved in study design and manuscript revision; Brown, M. A. was involved in recruitment and data curation; Lindsay, R. conducted clinical examinations and was involved in patient recruitment; Craig, J. E. conducted clinical examinations and was involved in patient recruitment; Burdon, K. P. was involved in study design, funding acquisition, methodology development and manuscript revision. Lucas SEM, Zhou T, Blackburn NB, et al. Rare, potentially pathogenic variants in 21 keratoconus candidate genes are not enriched in cases in a large Australian cohort of European descent. PLoS One 2018;13(6):e0199178. The co-authors and each author’s contribution are outlined as follows: Lucas, S. E. M. was involved in data generation, data curation, and study design, conducted data analysis and laboratory experiments for variant validation, and wrote the manuscript and prepared the tables and figures; Zhou, T. was involved in method development; Blackburn, N. B. was involved in method development, conducted preliminary data analysis and was involved in manuscript revision; Mills, R. A. conducted clinical examinations and was involved in patient recruitment; Ellis, J. was involved in preliminary data analysis; Leo, P. was involved in preliminary data analysis; Souzeau, E. iv was involved in patient recruitment, data curation and manuscript revision; Ridge, B. was involved in patient recruitment and data curation; Charlesworth, J. C. was involved in study design and manuscript revision; Lindsay, R. conducted clinical examinations and was involved in patient recruitment; Craig, J. E. conducted clinical examinations and was involved in patient recruitment; Burdon, K. P. was involved in study design, funding acquisition, methodology development and manuscript revision. Prof. Kathryn Burdon Prof. Alison Venn Supervisor Director Menzies Institute for Medical Research Menzies Institute for Medical Research University of Tasmania University of Tasmania 18/12/2018 08/05/2019 v ACKNOWLEDGEMENTS As anticipated, an almost four-year project generates a long list of ‘thank yous’. To the Australian Government for my Research Training Program Scholarship and the Pennicott Foundation for the financial support over the last 3 and a half years. To all of our collaborators, the clinicians and the participants, without which this study would not be possible. A particularly big thank you to both Emmanuelle Souzeau and Sandra Staffieri for being the in-betweens and answering my many questions about the patients’ and their clinical data. To Kathryn Burdon, my primary supervisor, for being the most incredible mentor, critic, advocate and friend. Thank you for inspiring me every single day. To Jac Charlesworth, my co-supervisor, for always pushing me to be better and do better. And for reminding me, at potentially the most critical moment, that the most amazing things are made from crushing pressure and the passage of time. To Pat and JoJo, for our many ‘coffees’, lunches and early morning chats - your support over the past four years has been immeasurable. You’ve made me laugh on even the hardest of days and helped celebrate some of the best. Thank you being my sounding boards, my teachers, my students and such good friends. Don’t forget about me now that I don’t get to sit with the cool kids. To Bennet for your bioinformatic support, especially your R expertise, and for keeping Sunnydale running smoothly. To the rest of our CompGen team and 502 office buddies – Ming, Duran, Elise, Kelsie, Alex, Van, Emma and Aparna – for your support over the years, both professionally and socially. To James Marthick, ‘the boss’, for all of your sequencing expertise and support. To Nick, for teaching me all the bioinformatics that you could in the first year of my project. I would have been lost without you and such a strong foundation. To Sian, for our sporadic and always lengthy phone calls filled with commiserations and encouragement. You’ve got this too. To Hayley, for being the best cheerleader and friend anyone could ask for. Always. To my parents, for your never-ending support, advice (while it was sometimes unsolicited, in retrospect it was usually pretty accurate), and encouragement. To Jenna, my wife (I still have to get used to that!), for everything. For putting up with the stress, the non-existent weekends, and most importantly, the hours of dishes you endured towards the end of my PhD. I’m so glad I’ve had you by my side every step of the way. vi ABSTRACT Keratoconus (OMIM 148300) is a complex disease characterised by progressive stromal thinning and conical protrusion of the cornea. These abnormalities usually develop in the second decade of life and can lead to severe visual impairment as a result of high myopia and irregular astigmatism. Due to the early onset of disease, keratoconus affects individuals during their most productive years and quality of life estimates demonstrate a significant decline over time that is disproportional to visual acuity. The global incidence of keratoconus is approximately 1 in 50,000 and the prevalence in Caucasians is reported between 55 and 265 per 100,000 individuals. While keratoconus is a complex disease, it has a strong genetic basis. Familial examples display both autosomal dominant and recessive inheritance patterns and first-degree relatives have at least a 15-fold increased risk of developing keratoconus, compared to the general population. Current treatment options for keratoconus are suboptimal, require invasive surgical procedures and have limited applicability and effectiveness in early-onset and advanced disease. Currently, keratoconus is the second leading indication for corneal transplants in Australia and there is a great need to better understand keratoconus aetiology and pathophysiology to aid early diagnosis and the development of novel treatments to improve patient outcomes. Therefore, the overarching aim of this project was to identify genetic variants involved in keratoconus susceptibility through the assessment of individuals and families in our keratoconus DNA repository. This aim was achieved through three distinct studies: a candidate gene screen; novel variant discovery in families with multiple cases of severe and early-onset keratoconus; and association analysis in a large case-control cohort. The gene-screen aimed to determine if rare, protein-coding variants predicted to be pathogenic were enriched in in keratoconus-candidate genes in our cohort of keratoconus cases of European descent compared to ethnically matched controls. By combining whole exome-sequencing and targeted gene sequencing, a total of 22 keratoconus candidate genes were assessed in 385 unrelated cases, making this the most comprehensive study of its kind to date. Two control cohorts were used for comparison, including up to 396 population controls (unassessed for eye disease) and 230 individuals without keratoconus. The candidate genes were selected from the literature and included genes near associated loci, genes harbouring putative disease-causing variants in family studies, and genes proposed to play a role in keratoconus based on a known function in the cornea or involvement in a postulated disease process. Specifically, this study examined the frequency of potentially pathogenic variants in MPDZ, RXRA, RAB3GAP1, FOXO1, BANP, ZNF469, HGF, COL5A1, IMMP2L, FNDC3B, NFIB, ILRN, SLC4A11, CAST, COL4A3, COL4A4, TF, SOD1, VSX1, RAD51, IL1A and IL1B.
Recommended publications
  • Cisplatin and Phenanthriplatin Modulate Long-Noncoding
    www.nature.com/scientificreports OPEN Cisplatin and phenanthriplatin modulate long‑noncoding RNA expression in A549 and IMR90 cells revealing regulation of microRNAs, Wnt/β‑catenin and TGF‑β signaling Jerry D. Monroe1,2, Satya A. Moolani2,3, Elvin N. Irihamye2,4, Katheryn E. Lett1, Michael D. Hebert1, Yann Gibert1* & Michael E. Smith2* The monofunctional platinum(II) complex, phenanthriplatin, acts by blocking transcription, but its regulatory efects on long‑noncoding RNAs (lncRNAs) have not been elucidated relative to traditional platinum‑based chemotherapeutics, e.g., cisplatin. Here, we treated A549 non‑small cell lung cancer and IMR90 lung fbroblast cells for 24 h with either cisplatin, phenanthriplatin or a solvent control, and then performed microarray analysis to identify regulated lncRNAs. RNA22 v2 microRNA software was subsequently used to identify microRNAs (miRNAs) that might be suppressed by the most regulated lncRNAs. We found that miR‑25‑5p, ‑30a‑3p, ‑138‑5p, ‑149‑3p, ‑185‑5p, ‑378j, ‑608, ‑650, ‑708‑5p, ‑1253, ‑1254, ‑4458, and ‑4516, were predicted to target the cisplatin upregulated lncRNAs, IMMP2L‑1, CBR3‑1 and ATAD2B‑5, and the phenanthriplatin downregulated lncRNAs, AGO2‑1, COX7A1‑2 and SLC26A3‑1. Then, we used qRT‑PCR to measure the expression of miR‑25‑5p, ‑378j, ‑4516 (A549) and miR‑149‑3p, ‑608, and ‑4458 (IMR90) to identify distinct signaling efects associated with cisplatin and phenanthriplatin. The signaling pathways associated with these miRNAs suggests that phenanthriplatin may modulate Wnt/β‑catenin and TGF‑β signaling through the MAPK/ ERK and PTEN/AKT pathways diferently than cisplatin. Further, as some of these miRNAs may be subject to dissimilar lncRNA targeting in A549 and IMR90 cells, the monofunctional complex may not cause toxicity in normal lung compared to cancer cells by acting through distinct lncRNA and miRNA networks.
    [Show full text]
  • Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
    European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father.
    [Show full text]
  • Copy Number Variation in Fetal Alcohol Spectrum Disorder
    Biochemistry and Cell Biology Copy number variation in fetal alcohol spectrum disorder Journal: Biochemistry and Cell Biology Manuscript ID bcb-2017-0241.R1 Manuscript Type: Article Date Submitted by the Author: 09-Nov-2017 Complete List of Authors: Zarrei, Mehdi; The Centre for Applied Genomics Hicks, Geoffrey G.; University of Manitoba College of Medicine, Regenerative Medicine Reynolds, James N.; Queen's University School of Medicine, Biomedical and Molecular SciencesDraft Thiruvahindrapuram, Bhooma; The Centre for Applied Genomics Engchuan, Worrawat; Hospital for Sick Children SickKids Learning Institute Pind, Molly; University of Manitoba College of Medicine, Regenerative Medicine Lamoureux, Sylvia; The Centre for Applied Genomics Wei, John; The Centre for Applied Genomics Wang, Zhouzhi; The Centre for Applied Genomics Marshall, Christian R.; The Centre for Applied Genomics Wintle, Richard; The Centre for Applied Genomics Chudley, Albert; University of Manitoba Scherer, Stephen W.; The Centre for Applied Genomics Is the invited manuscript for consideration in a Special Fetal Alcohol Spectrum Disorder Issue? : Keyword: Fetal alcohol spectrum disorder, FASD, copy number variations, CNV https://mc06.manuscriptcentral.com/bcb-pubs Page 1 of 354 Biochemistry and Cell Biology 1 Copy number variation in fetal alcohol spectrum disorder 2 Mehdi Zarrei,a Geoffrey G. Hicks,b James N. Reynolds,c,d Bhooma Thiruvahindrapuram,a 3 Worrawat Engchuan,a Molly Pind,b Sylvia Lamoureux,a John Wei,a Zhouzhi Wang,a Christian R. 4 Marshall,a Richard F. Wintle,a Albert E. Chudleye,f and Stephen W. Scherer,a,g 5 aThe Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital 6 for Sick Children, Toronto, Ontario, Canada 7 bRegenerative Medicine Program, University of Manitoba, Winnipeg, Canada 8 cCentre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Abstracts from the 50Th European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 26:820–1023 https://doi.org/10.1038/s41431-018-0248-6 ABSTRACT Abstracts from the 50th European Society of Human Genetics Conference: Electronic Posters Copenhagen, Denmark, May 27–30, 2017 Published online: 1 October 2018 © European Society of Human Genetics 2018 The ESHG 2017 marks the 50th Anniversary of the first ESHG Conference which took place in Copenhagen in 1967. Additional information about the event may be found on the conference website: https://2017.eshg.org/ Sponsorship: Publication of this supplement is sponsored by the European Society of Human Genetics. All authors were asked to address any potential bias in their abstract and to declare any competing financial interests. These disclosures are listed at the end of each abstract. Contributions of up to EUR 10 000 (ten thousand euros, or equivalent value in kind) per year per company are considered "modest". Contributions above EUR 10 000 per year are considered "significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal and fetal echocardiography. The molecular karyotyping Genetics revealed a gain in 8p11.22-p23.1 region with a size of 27.2 Mb containing 122 OMIM gene and a loss in 8p23.1- E-P01.02 p23.3 region with a size of 6.8 Mb containing 15 OMIM Prenatal diagnosis in a case of 8p inverted gene. The findings were correlated with 8p inverted dupli- duplication deletion syndrome cation deletion syndrome. Conclusion: Our study empha- sizes the importance of using additional molecular O¨. Kırbıyık, K. M. Erdog˘an, O¨.O¨zer Kaya, B. O¨zyılmaz, cytogenetic methods in clinical follow-up of complex Y.
    [Show full text]
  • REVIEW ARTICLE the Genetics of Autism
    REVIEW ARTICLE The Genetics of Autism Rebecca Muhle, BA*; Stephanie V. Trentacoste, BA*; and Isabelle Rapin, MD‡ ABSTRACT. Autism is a complex, behaviorally de- tribution of a few well characterized X-linked disorders, fined, static disorder of the immature brain that is of male-to-male transmission in a number of families rules great concern to the practicing pediatrician because of an out X-linkage as the prevailing mode of inheritance. The astonishing 556% reported increase in pediatric preva- recurrence rate in siblings of affected children is ϳ2% to lence between 1991 and 1997, to a prevalence higher than 8%, much higher than the prevalence rate in the general that of spina bifida, cancer, or Down syndrome. This population but much lower than in single-gene diseases. jump is probably attributable to heightened awareness Twin studies reported 60% concordance for classic au- and changing diagnostic criteria rather than to new en- tism in monozygotic (MZ) twins versus 0 in dizygotic vironmental influences. Autism is not a disease but a (DZ) twins, the higher MZ concordance attesting to ge- syndrome with multiple nongenetic and genetic causes. netic inheritance as the predominant causative agent. By autism (the autistic spectrum disorders [ASDs]), we Reevaluation for a broader autistic phenotype that in- mean the wide spectrum of developmental disorders cluded communication and social disorders increased characterized by impairments in 3 behavioral domains: 1) concordance remarkably from 60% to 92% in MZ twins social interaction; 2) language, communication, and and from 0% to 10% in DZ pairs. This suggests that imaginative play; and 3) range of interests and activities.
    [Show full text]
  • Looking for Missing Proteins in the Proteome Of
    Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, Christophe Bruley, Charlotte Macron, Anne Gonzalez de Peredo, Yohann Coute, Karima Chaoui, et al. To cite this version: Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, et al.. Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. Journal of Proteome Research, American Chemical Society, 2016, 15 (11), pp.3998-4019. 10.1021/acs.jproteome.6b00400. hal-02191502 HAL Id: hal-02191502 https://hal.archives-ouvertes.fr/hal-02191502 Submitted on 19 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Proteome Research 1 2 3 Looking for missing proteins in the proteome of human spermatozoa: an 4 update 5 6 Yves Vandenbrouck1,2,3,#,§, Lydie Lane4,5,#, Christine Carapito6, Paula Duek5, Karine Rondel7, 7 Christophe Bruley1,2,3, Charlotte Macron6, Anne Gonzalez de Peredo8, Yohann Couté1,2,3, 8 Karima Chaoui8, Emmanuelle Com7, Alain Gateau5, AnneMarie Hesse1,2,3, Marlene 9 Marcellin8, Loren Méar7, Emmanuelle MoutonBarbosa8, Thibault Robin9, Odile Burlet- 10 Schiltz8, Sarah Cianferani6, Myriam Ferro1,2,3, Thomas Fréour10,11, Cecilia Lindskog12,Jérôme 11 1,2,3 7,§ 12 Garin , Charles Pineau .
    [Show full text]
  • Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham a Thesis Submitted in Conformity
    Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Edward James Higginbotham 2020 i Abstract Characterizing Genomic Duplication in Autism Spectrum Disorder Edward James Higginbotham Master of Science Graduate Department of Molecular Genetics University of Toronto 2020 Duplication, the gain of additional copies of genomic material relative to its ancestral diploid state is yet to achieve full appreciation for its role in human traits and disease. Challenges include accurately genotyping, annotating, and characterizing the properties of duplications, and resolving duplication mechanisms. Whole genome sequencing, in principle, should enable accurate detection of duplications in a single experiment. This thesis makes use of the technology to catalogue disease relevant duplications in the genomes of 2,739 individuals with Autism Spectrum Disorder (ASD) who enrolled in the Autism Speaks MSSNG Project. Fine-mapping the breakpoint junctions of 259 ASD-relevant duplications identified 34 (13.1%) variants with complex genomic structures as well as tandem (193/259, 74.5%) and NAHR- mediated (6/259, 2.3%) duplications. As whole genome sequencing-based studies expand in scale and reach, a continued focus on generating high-quality, standardized duplication data will be prerequisite to addressing their associated biological mechanisms. ii Acknowledgements I thank Dr. Stephen Scherer for his leadership par excellence, his generosity, and for giving me a chance. I am grateful for his investment and the opportunities afforded me, from which I have learned and benefited. I would next thank Drs.
    [Show full text]
  • Mechanisms of Common Fragile Site Instability and Cancer
    MECHANISMS OF COMMON FRAGILE SITE INSTABILITY AND CANCER by Ryan L. Ragland A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Human Genetics) in The University of Michigan 2009 Doctoral Committee: Professor Thomas W. Glover, Chair Professor Sally A. Camper Associate Professor Mats E. Ljungman Assistant Professor David O. Ferguson Assistant Professor Joann Sekiguchi © Ryan L. Ragland 2009 For my family and friends. ii Acknowledgments First and foremost I would like to acknowledge my family and friends without whom I would not be the person or scientist that I am today. This is exceptionally true for my wife Mary, whose love and support made this entire process possible. I would like to acknowledge my committee and its chair and my mentor Dr. Thomas Glover for all their support and understanding throughout these years. Also I would like to acknowledge Dr. Martin Arlt who, whether he likes it or not, is personally responsible for my development as a scientist. I would like to acknowledge the University of Michigan comprehensive cancer center in general and Dr. Eric Fearon in specific for their unwavering financial and scientific support of my work. Finally, special thanks to all of the members of the Glover lab past and present who have made my time here memorable and enjoyable and whose expertise was indispensable. iii Table of Contents Dedication…………………………………………………………………...……ii Acknowledgments…………….………………………………………...……….iii List of Figures………………………………………………………………..…vii List of Tables………………………………………………………….…………ix
    [Show full text]
  • Visualizing Locus-Speciic Sister Chromatid Exchange Reveals Differential Patterns of Replication Stress-Induced Fragile Site Breakage
    Oncogene (2020) 39:1260–1272 https://doi.org/10.1038/s41388-019-1054-5 ARTICLE Visualizing locus-specific sister chromatid exchange reveals differential patterns of replication stress-induced fragile site breakage 1 1 1 1 1,2 Irina Waisertreiger ● Katherine Popovich ● Maya Block ● Krista R. Anderson ● Jacqueline H. Barlow Received: 16 November 2018 / Revised: 26 September 2019 / Accepted: 2 October 2019 / Published online: 21 October 2019 © The Author(s) 2019. This article is published with open access Abstract Chromosomal fragile sites are genomic loci sensitive to replication stress which accumulate high levels of DNA damage, and are frequently mutated in cancers. Fragile site damage is thought to arise from the aberrant repair of spontaneous replication stress, however successful fragile site repair cannot be calculated using existing techniques. Here, we report a new assay measuring recombination-mediated repair at endogenous genomic loci by combining a sister chromatid exchange (SCE) assay with fluorescent in situ hybridization (SCE-FISH). Using SCE-FISH, we find that endogenous and exogenous replication stress generated unrepaired breaks and SCEs at fragile sites. We also find that distinct sources of replication stress 1234567890();,: 1234567890();,: induce distinct patterns of breakage: ATR inhibition induces more breaks at early replicating fragile sites (ERFS), while ERFS and late-replicating common fragile sites (CFS) are equally fragile in response to aphidicolin. Furthermore, SCEs were suppressed at fragile sites near centromeres in response to replication stress, suggesting that genomic location influences DNA repair pathway choice. SCE-FISH also measured successful recombination in human primary lymphocytes, and identificed the proto-oncogene BCL2 as a replication stress-induced fragile site.
    [Show full text]
  • Genome-Wide Mapping in a House Mouse Hybrid Zone Reveals Hybrid Sterility Loci and Dobzhansky-Muller Interactions Leslie M Turner1,2, Bettina Harr1*
    RESEARCH ARTICLE elifesciences.org Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions Leslie M Turner1,2, Bettina Harr1* 1Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany; 2Laboratory of Genetics, University of Wisconsin, Madison, United States Abstract Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone. DOI: 10.7554/eLife.02504.001 Introduction *For correspondence: harr@ New species arise when reproductive barriers form, preventing gene flow between populations evolbio.mpg.de (Coyne and Orr, 2004). Recently, two approaches have substantially
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/28/2021 09:08:00AM Via Free Access
    245 E L Woodward et al. Genetic changes in anaplastic 24:5 209–220 Research thyroid cancer Genomic complexity and targeted genes in anaplastic thyroid cancer cell lines Eleanor L Woodward1, Andrea Biloglav1, Naveen Ravi1, Minjun Yang1, Lars Ekblad2, Johan Wennerberg3 and Kajsa Paulsson1 1Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden Correspondence 2Division of Oncology and Pathology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden should be addressed 3Division of Otorhinolaryngology/Head and Neck Surgery, Clinical Sciences, Lund University and Skåne to K Paulsson University Hospital, Lund, Sweden Email [email protected] Abstract Anaplastic thyroid cancer (ATC) is a highly malignant disease with a very short median Key Words survival time. Few studies have addressed the underlying somatic mutations, and the f thyroid genomic landscape of ATC thus remains largely unknown. In the present study, we f molecular genetics have ascertained copy number aberrations, gene fusions, gene expression patterns, f gene expression and mutations in early-passage cells from ten newly established ATC cell lines using single nucleotide polymorphism (SNP) array analysis, RNA sequencing and whole exome sequencing. The ATC cell line genomes were highly complex and displayed signs of replicative stress and genomic instability, including massive aneuploidy and frequent Endocrine-Related Cancer Endocrine-Related breakpoints in the centromeric regions and in fragile sites. Loss of heterozygosity involving whole chromosomes was common, but there were no signs of previous near- haploidisation events or chromothripsis. A total of 21 fusion genes were detected, including six predicted in-frame fusions; none were recurrent.
    [Show full text]