Characterisation of Vibrio Anguillarum for the Development of Vaccine In

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation of Vibrio Anguillarum for the Development of Vaccine In Characterisation of Vibrio anguillarum for the development of vaccine in cod (Gadus morhua). A THESIS SUBMITTED TO THE UNIVERSITY OF STIRLING FOR THE DEGREE OF DOCTOR OF PHILOSOPHY by REMI M. L. GRATACAP INSTITUTE OF AQUACULTURE, UNIVERSITY OF STIRLING, STIRLING, SCOTLAND DEC 2008 To Sarah and my parents, Bénédicte and Benoît, who encouraged me in my love of science. ii DECLARATION I declare that this thesis has been compiled by myself, and is the result of my own investigation. It has not been submitted for any other degree and all sources of information have been duly acknowledged. Remi M. L. Gratacap iii ACKNOWLEGEMENTS I would like to thank my supervisors Dr. Kim Thompson, Professor Alexandra Adams and Professor Ian Bricknell for their assistance and encouragement throughout the course of this study. I would like also to express my gratitude to Professor Patrick Smith and Dr. William Roy, for their insights and practical approach in this project. I would like to acknowledge Mrs Gillian Dreczkowski, Dr. Margaret Crumlish, Dr. Alison Morgan, Mrs Hilary McEwan, Mrs Karen Snedden, Professor Hugh Ferguson, Dr. Dave Morris, Dr. James Bron, Dr. Charlie McGurk, Dr. Janina Costa, Dr. Saravanane Poobalane, Mr Niall Auchinachie, Mr Robert Aitkin, the staff of the Institute of Aquaculture and of Machrihanish fish farm. I am also thankful to my friends and fellow PhD students for helping me with various aspects of this thesis, most of all Ms Sarah Barker and Dr. Farah Manji. I am very grateful to the sponsors of this project, Intervet-Schering-Plough and SeaFish for the contribution in making this thesis a reality; I would like to thank the Fishery Society of the British Isles (FSBI), the Scottish International Education Trust (SIET) and the Institute of Aquaculture (Stirling University) for travel grants to present some of this work at international conferences. I finally thank all the researchers who sent me isolates of Vibrio anguillarum and allowed this study to take place: Dr. Dawn Austin (UK), Dr. Jeremy Carson (AUS), Dr. Ysabel Santos (ES), Dr. Duncan Colquhoun (NO), Dr. Nicky Buller (AUS), Dr. Christian Michel (FR), Dr. Philippe Roch (FR), Dr. Amedeo Manfrin (IT), Dr. Harry Birkbeck (UK), Dr. Lene Bay (DK), Dr. Luc Grisez (BE) and Dr. Saturo Nakano (JP). iv ABBREVIATIONS μL: microlitre mg: milligram μg: microgram MHC: major histocompatibility μm: micrometre min: minutes A: ampere mL: millilitre AFLP: amplified fragment length polymorphism mm: millimetre BPI: bactericidal/permeability-increasing MMW: medium molecular weight (protein) MOMP: major outer membrane protein CD: cluster of differentiation MW: molecular weight cfu: colony forming units nm: nanometre CRP: C-reactive protein NMR: nucleic magnetic resonance CSF: colony stimulating factor OD: optical density Da: Dalton pAb: polyclonal antibody DGGE: denaturing gradient gel electrophoresis PAMP: pathogen associated molecular pattern DIVA: differentiating infected and vaccinated PBS: phosphate buffer saline animals PCR: polymerase chain reaction DNA: deoxyribonucleic acid PFGE: pulse field gel electrophoresis dph: days post hatch PRR: pattern recognition receptors ECP: extracellular products RAG: recombinant activator gene e.g.: example RAPD: random amplified polymorphic DNA ELISA: enzyme-linked immunosorbant assay RNA: ribonucleic acid et al.: et alias (and others) ROS: reactive oxygen species FCS: forward scatter channel rpm: rounds per minutes g: gram RPS: relative percentage survival X g: multiple of gravity RT: room temperature (18-22°C) h: hours SAP: serum amyloid-P HMW: high molecular weight SDS-PAGE: sodium dodecyl sulphate- HSW: high salt wash-buffer polyacrylamide gel electrophoresis i.e. id est (that is) sec: seconds IFN: interferon SH: serum haemolysis Ig: immunoglobulin sp.: species IL: interleukin TBS: tris buffer saline IP: intraperitoneal TGF: transforming growth factor ISH: in situ hybridisation TLR: toll-like receptor IU: international units TNF: tumour necrosis factor kb: kilo base TSA: tryptone soy agar L: litre TSB: tryptone soy broth LBP: lipopolysaccharide binding protein TTBS: tween tris buffer saline LD: lethal dose T: tonne LMW: low molecular weight V: volt LSW: low salt wash-buffer VAR: Vibrio anguillarum related (organisms) LPS: lipopolysaccharides v/v: volume/volume M: molar w/v: weight/volume mAb: monoclonal antibody v ABSTRACT Atlantic cod (Gadus morhua L.) is one of the most promising new fish species introduced to cold water aquaculture due to the large established market in Europe and the USA and the decline in wild stock. So far, the production of farmed cod has been relatively low, with the main hindrance due to diseases. Vibrio anguillarum has been recognised as the biggest disease problem of farmed cod and has slowed the development of a successful cod aquaculture industry. When the first incidences of V. anguillarum occurred in cod aquaculture, vaccines designed for vibriosis in Atlantic salmon (Salmo salar L.) were used in an attempt to combat the disease. However, these vaccines did not provide sufficient protection, possibly because they lacked serotype O2b, which is known to affect cod and to a lesser extent salmonids. Recently, vibriosis vaccines specifically designed to protect Atlantic cod have been formulated, but outbreaks of vibriosis in vaccinated fish are still being reported, suggesting that these formulations are inadequate. The aim of this project was to develop a whole cell inactivated vaccine formulation specifically tailored to protect Atlantic cod against Vibrio anguillarum. The serological classification of V. anguillarum was first investigated by producing a set of monoclonal antibodies (mAbs). Using lipopolysaccharides (LPS) extracted with butan-1-ol, 4 mAbs were selected and shown to react specifically with V. anguillarum serotypes O1, O2a and O2b. A collection of over 150 V. anguillarum isolates were screened using these, which revealed that most of the isolates had been previously correctly classified. A new sub-serotype of V. anguillarum O2 was identified from isolates recovered from outbreaks of vibriosis in Norway as well as Scotland. This new sub-serotype was referred to as O2d since the sub- serotype O2c has been recently identified in vibriosis cases from Atlantic cod. However, it was shown that the O2c sub-serotype might not belong to the O2 serotype, but in fact belongs to another serotype. To protect Atlantic cod against all the V. anguillarum serotypes (and sub- serotypes) which they are susceptible to, it is recommended that isolates from serotypes O1, O2a, O2b, O2c and O2d should all be included in a bacterin vaccine for cod. In order to determine which isolates from each of the serotypes to include in the vaccine, a variety of virulence factors of V. anguillarum were investigated in vitro. The interaction of some vi candidate isolates from O1, O2a and O2b serotypes (O2c and O2d were not identified at the time this part of the study took place) with cod phagocytic cells were studied using flow cytometry. Phagocytosis and respiratory burst of cod macrophages and neutrophils as well as cod serum killing of V. anguillarum were quantified. It was found that isolates within the same serotype displayed varying degrees of resistance to phagocytosis and the subsequent respiratory burst activity as well as that all the V. anguillarum strains tested were resistant to Atlantic cod serum killing. These in vitro assays were found to be very useful in assessing the virulence of V. anguillarum. The isolate within each serotype eliciting the highest percentage of positive phagocytic cells was selected in order to increase the antigen presentation pathway, thus theoretically enhancing the protection elicited by the vaccine. A multivalent formalin-inactivated non-adjuvanted vaccine was prepared which included all the serotypes previously described and was injected intraperitoneally into Atlantic cod. A bath challenge was performed on vaccinated and mock-vaccinated fish, 6 weeks post immunisation, using V. anguillarum isolates from the serotypes O2b, O2c and O2d that were not included in the vaccine. An excellent level of protection was obtained against O2b and O2d (relative percentage survival 100% and 96.4%, respectively), but the challenge with the sub-serotype O2c isolate did not produce any mortality in the control group and needs to be repeated. The vaccine formulation was very efficient at protecting Atlantic cod against vibriosis but further challenges need to be performed with other serotypes included in the vaccine (O1 and O2a), as well as with more isolates from the O2b, O2c and O2d sub-serotype. To conclude, Atlantic cod is a species which will certainly have a major influence in marine aquaculture, but many areas have to be improved. The development of an effective and broad range vaccine to protect cod against Vibrio anguillarum offers another advance which should help Atlantic cod aquaculture to reach its full potential. vii TABLE OF CONTENTS DECLARATION.....................................................................................................iii ACKNOWLEGEMENTS........................................................................................iv ABBREVIATIONS ..................................................................................................v ABSTRACT ...........................................................................................................vi TABLE OF CONTENTS ......................................................................................viii
Recommended publications
  • Exploring the Transcriptome of Luxi- and &Dgr;Ains Mutants and the Impact of N-3-Oxo-Hexanoyl-L
    - Exploring the transcriptome of luxI and DainS mutants and the impact of N-3-oxo-hexanoyl-L- and N-3-hydroxy- decanoyl-L-homoserine lactones on biofilm formation in Aliivibrio salmonicida Miriam Khider1, Hilde Hansen1, Erik Hjerde1,2, Jostein A. Johansen1 and Nils Peder Willassen1,2 1 Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, UiT—The Arctic University of Norway, Tromsø, Norway 2 Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT—The Arctic University of Norway, Tromsø, Norway ABSTRACT Background: Bacterial communication through quorum sensing (QS) systems has been reported to be important in coordinating several traits such as biofilm formation. In Aliivibrio salmonicida two QS systems the LuxI/R and AinS/R, have been shown to be responsible for the production of eight acyl-homoserine lactones (AHLs) in a cell density dependent manner. We have previously demonstrated that inactivation of LitR, the master regulator of the QS system resulted in biofilm - formation, similar to the biofilm formed by the AHL deficient mutant DainSluxI . In this study, we aimed to investigate the global gene expression patterns of luxI and ainS autoinducer synthases mutants using transcriptomic profiling. In addition, we examined the influence of the different AHLs on biofilm formation. - Results: The transcriptome profiling of DainS and luxI mutants allowed us to identify genes and gene clusters regulated by QS in A. salmonicida. Relative to the - wild type, the DainS and luxI mutants revealed 29 and 500 differentially expressed 21 December 2018 Submitted genes (DEGs), respectively. The functional analysis demonstrated that the most Accepted 18 March 2019 Published 30 April 2019 pronounced DEGs were involved in bacterial motility and chemotaxis, Corresponding author exopolysaccharide production, and surface structures related to adhesion.
    [Show full text]
  • Bacterial Dormancy: a Subpopulation of Viable but Non-Culturable Cells Demonstrates Better Fitness for Revival
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.216283; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bacterial dormancy: a subpopulation of viable but non-culturable cells demonstrates better fitness for revival. Sariqa Wagley1*, Helen Morcrette1, Andrea Kovacs-Simon1, Zheng R. Yang1, Ann Power2, Richard K. Tennant2, John Love2, Neil Murray3, Richard W. Titball1 and Clive S. Butler1* 1 Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK 2 BioEconomy Centre, The Henry Wellcome Building for BioCatalysis, Biosciences, Stocker Road, Exeter, Devon, EX4 4QD, UK 3 Lyons Seafoods, Fairfield House, Fairfield Road, Warminster, Wiltshire, BA12 9DA. *Corresponding authors: [email protected]; [email protected] Key words: Viable but non culturable cells, Vibrio parahaemolyticus, FACS, IFC, Proteomics Running title: characterisation of subpopulations of VBNC cells bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.216283; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The viable but non culturable (VBNC) state is a condition in which bacterial cells are viable and metabolically active, but resistant to cultivation using a routine growth medium.
    [Show full text]
  • Pathogenicity Studies on a Vibrio Anguillarum- Related (VAR) Strain Causing an Epizootic in Argopecten Purpuratus Larvae Cultured in Chile
    DISEASES OF AQUATIC ORGANISMS Vol. 22: 135-141,1995 Published June 15 Dis aqua1 Org l Pathogenicity studies on a Vibrio anguillarum- related (VAR)strain causing an epizootic in Argopecten purpuratus larvae cultured in Chile 'Departamento de Acuicultura. Facultad de Recursos del Mar, Universidad de Antofagasta, PO Box 170, Antofagasta, Chile 'Departamento de Microbiologia y Parasitologia, Facultad de Biologia, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain ABSTRACT: A Vibrio anguillarum-related (VAR) strain, isolated in pure culture from an epizootic in a commercial hatchery producing Argopecten purpuratus, was characterized, and its potential patho- genicity to veliger larvae of A. purpuratus determined. Experimental challenges indicated that the bac- terium affects larval survival at concentrations of 104 to 108 cells ml-l The effect of water quality and temperature on pathogenicity was also evaluated. Larval survival in seawater filtered through 5 pm pore-size membranes was 45.6%, whereas using seawater passed through 1 and 0.2pm filters, larval survival increased to 66.4 and 80.4% respectively. Temperature also affected pathogenicity as larval survival at 15OC for 24 h was 69.3% but decreased to 30 and 26.9 % at 20 and 25°C respectively. Toxic activity was found in cell-free supernatant of bacterial culture. Larval survival was reduced to 68.9 and 36.4% after 20 and 40% (v/v) of supernatant, respectively, was added to the rearing water. These results suggest that exotoxins produced by the VAR strain play an in~portantrole in its pathogenicity for scallop larvae. KEY WORDS: Argopecten purpuratus - Larvae . Vibrio anguillarum-related (VAR) .
    [Show full text]
  • Complete Genome Sequence of Vibrio Anguillarum Strain NB10, a Virulent Isolate from the Gulf of Bothnia
    http://www.diva-portal.org This is the published version of a paper published in Standards in Genomic Sciences. Citation for the original published paper (version of record): Holm, K O., Nilsson, K., Hjerde, E., Willassen, N-P., Milton, D L. (2015) Complete genome sequence of Vibrio anguillarum strain NB10, a virulent isolate from the Gulf of Bothnia. Standards in Genomic Sciences, 10: 60 http://dx.doi.org/10.1186/s40793-015-0060-7 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-116115 Holm et al. Standards in Genomic Sciences (2015) 10:60 DOI 10.1186/s40793-015-0060-7 EXTENDED GENOME REPORT Open Access Complete genome sequence of Vibrio anguillarum strain NB10, a virulent isolate from the Gulf of Bothnia Kåre Olav Holm1, Kristina Nilsson2, Erik Hjerde1, Nils-Peder Willassen1 and Debra L. Milton2* Abstract Vibrio anguillarum causes a fatal hemorrhagic septicemia in marine fish that leads to great economical losses in aquaculture world-wide. Vibrio anguillarum strain NB10 serotype O1 is a Gram-negative, motile, curved rod-shaped bacterium, isolated from a diseased fish on the Swedish coast of the Gulf of Bothnia, and is slightly halophilic. Strain NB10 is a virulent isolate that readily colonizes fish skin and intestinal tissues. Here, the features of this bacterium are described and the annotation and analysis of its complete genome sequence is presented. The genome is 4,373,835 bp in size, consists of two circular chromosomes and one plasmid, and contains 3,783 protein-coding genes and 129 RNA genes.
    [Show full text]
  • Development of a PCR-Based Method for the Detection of Listonella Anguillarum in Fish Tissues and Blood Samples
    DISEASES OF AQUATIC ORGANISMS Vol. 55: 109–115, 2003 Published July 8 Dis Aquat Org Development of a PCR-based method for the detection of Listonella anguillarum in fish tissues and blood samples Santiago F. Gonzalez*, Carlos R. Osorio, Ysabel Santos Department of Microbiology and Parasitology, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain ABSTRACT: A PCR assay for detection and identification of the fish pathogen Listonella anguillarum was developed. Primers amplifying a 519 bp internal fragment of the L. anguillarum rpoN gene, which codes for the factor σ54, were utilized. The detection limit of the PCR using L. anguillarum pure cultures was approximately 1 to 10 bacterial cells per reaction. For tissue or blood samples of infected turbot Scophthalmus maximus, the detection limit was 10 to 100 L. anguillarum cells per reaction, which corresponds to 2 × 103 to 2 × 104 cells g–1 fish tissue. Our results suggest that this PCR protocol is a sensitive and specific molecular method for the detection of the fish pathogen L. anguillarum. KEY WORDS: PCR · rpoN gene · Listonella anguillarum · Detection Resale or republication not permitted without written consent of the publisher INTRODUCTION developed for the detection of bacteria in fish tissues. However, the use of these methods has been limited by Vibriosis is one of the most important and the oldest their poor detection levels and the existence of cross- recognized fish disease in marine aquaculture world- reactions with the close relative Vibrio ordalii species. wide. The causative agent, Listonella anguillarum, was Thus, there is a need for fast, sensitive and specific initially isolated by Canestrini (1893).
    [Show full text]
  • 16S Ribosomal DNA Sequencing Confirms the Synonymy of Vibrio Harveyi and V
    DISEASES OF AQUATIC ORGANISMS Vol. 52: 39–46, 2002 Published November 7 Dis Aquat Org 16S ribosomal DNA sequencing confirms the synonymy of Vibrio harveyi and V. carchariae Eric J. Gauger, Marta Gómez-Chiarri* Department of Fisheries, Animal and Veterinary Science, 20A Woodward Hall, University of Rhode Island, Kingston, Rhode Island 02881, USA ABSTRACT: Seventeen bacterial strains previously identified as Vibrio harveyi (Baumann et al. 1981) or V. carchariae (Grimes et al. 1984) and the type strains of V. harveyi, V. carchariae and V. campbellii were analyzed by 16S ribosomal DNA (rDNA) sequencing. Four clusters were identified in a phylo- genetic analysis performed by comparing a 746 base pair fragment of the 16S rDNA and previously published sequences of other closely related Vibrio species. The type strains of V. harveyi and V. car- chariae and about half of the strains identified as V. harveyi or V. carchariae formed a single, well- supported cluster designed as ‘bona fide’ V. harveyi/carchariae. A second more heterogeneous clus- ter included most other strains and the V. campbellii type strain. Two remaining strains are shown to be more closely related to V. rumoiensis and V. mediterranei. 16S rDNA sequencing has confirmed the homogeneity and synonymy of V. harveyi and V. carchariae. Analysis of API20E biochemical pro- files revealed that they are insufficient by themselves to differentiate V. harveyi and V. campbellii strains. 16S rDNA sequencing, however, can be used in conjunction with biochemical techniques to provide a reliable method of distinguishing V. harveyi from other closely related species. KEY WORDS: Vibrio harveyi · Vibrio carchariae · Vibrio campbellii · Vibrio trachuri · Ribosomal DNA · Biochemical characteristics · Diagnostic · API20E Resale or republication not permitted without written consent of the publisher INTRODUCTION environmental sources (Ruby & Morin 1979, Orndorff & Colwell 1980, Feldman & Buck 1984, Grimes et al.
    [Show full text]
  • Immobilization of Phaeobacter 27-4 in Biofilters As a Strategy for the Control of Vibrionaceae Infections in Marine Fish Larval Rearing
    INSTITUTO DE ACUICULTURA CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS INSTITUTO DE INVESTIGACIÓNS MARIÑAS Immobilization of Phaeobacter 27-4 in biofilters as a strategy for the control of Vibrionaceae infections in marine fish larval rearing Ph.D. Thesis presented by: María Jesús Prol García To achieve the philosophiae doctor degree in: Marine Biology and Aquaculture April, 2010 Don José Pintado Valverde, Científico Titular no Instituto de Investigacións Mariñas (CSIC), Don Miquel Planas Oliver, Científico Titular no mesmo instituto do CSIC e Dona Ysabel Santos Rodríguez, Profesora Titular na Facultade de Bioloxía - Instituto de Acuicultura da Universidade de Santiago de Compostela INFORMAN: Que a presente Tese de Doutoramento titulada: “Immobilization of Phaeobacter 27-4 in biofilters as a strategy for the control of Vibrionaceae infections in marine fish larval rearing” presentada por dona María Jesús Prol García para optar ó título de Doutora en Bioloxía Mariña e Acuicultura realizouse baixo a dirección de José Pintado Valverde e Miquel Planas Oliver no Instituto de Investigacións Mariñas (CSIC), e considerándoa concluída autorizan a súa presentación para que poida ser xulgada polo tribunal correspondente. E para que así conste expídese a presente, en Vigo a 25 de xaneiro de 2010. María Jesús Prol García (Doutoranda) José Pintado Valverde Miquel Planas Oliver Ysabel Santos Rodríguez (Director) (Codirector) (Titora) v The work presented in this Ph.D. Thesis was funded by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria – Ministerio de Ciencia e Innovación (Project: Modificación de la microbiota bacteriana asociada a la utilización de bacterias probióticas en el cultivo de larvas de rodaballo. Reference: ACU03-003) and the Consejo Superior de Investigaciones Científicas (Project: Modo de acción y optimización del uso de Roseobacter 27-4 como probiótico en el cultivo de larvas de rodaballo.
    [Show full text]
  • D009p073.Pdf
    DISEASES OF AQUATIC ORGANISMS Vol. 9: 73-82, 1990 Published August 16 Dis, aquat. Org. REVIEW A review of the taxonomy and seroepizootiology of Vibrio anguillarum, with special reference to aquaculture in the northwest of Spain Alicia E. Toranzo, Juan L. Barja Departamento de Microbiologia y Parasitologla, Facultad de Biologia, Universidad de Santiago, E-15706 Santiago de Compostela, Spain ABSTRACT. A review of the literature shows that although the number of serotypes of Vibrio anguillarum reported from different countries varies, most of the vibriosis outbreaks throughout the world are caused by only 2 serotypes: 01 and 02 (European serotype designation). The remaining serotypes, associated mainly with environmental samples such as water, sediment, phyto- and zoo- plankton, are generally non-pathogenic to fish. This raises the question as to whether the 2 major pathogenic serotypes of V. anguillarum (isolated only from diseased or carrier fish) should be consi- dered opportunistic or obligate fish pathogens. In addition, information useful in epizootiological and vaccination studies is presented about the antigenic heterogeneity detected within serotype 02. In this review, emphasis is placed on the presence in the marine environment of vibrios (presumptively assigned to the V. splendidus and V. pelagius) species that are taxonomically and serologically related with V. anguillarum and some of which have been associated with disease in fish cultured on the Atlantic coast of Spain and Norway. The precise phylogenetic position of these V. anguillarum-like organisms are well as their actual threat to marine aquaculture remains to be clarified. INTRODUCTION vibrios are phylogenetically closely related and can be designated as V.
    [Show full text]
  • Vibrio Diseases of Marine Fish Populations
    HELGOL~NDER MEERESUNTERSUCHUNGEN Helgolander Meeresunters. 37, 265-287 (1984) Vibrio diseases of marine fish populations R. R. Colwell & D. J. Grimes Department of Microbiology, University of Maryland; College Park, MD 20742 USA ABSTRACT: Several Vibrio spp. cause disease in marine fish populations, both wild and cultured. The most common disease, vibriosis, is caused by V. anguillarum. However, increase in the intensity of mariculture, combined with continuing improvements in bacterial systematics, expands the list of Vibrio spp. that cause fish disease. The bacterial pathogens, species of fish affected, virulence mechanisms, and disease treatment and prevention are included as topics of emphasis in this review, INTRODUCTION It is most appropriate that the introductory paper at this Symposium on Diseases of Marine Organisms should be about vibrios. The disease syndrome termed vibriosis was one of the first diseases of marine fish to be described (Sindermann, 1970; Home, 1982). Called "red sore", "red pest", "red spot" and "red disease" because of characteristic hemorrhagic skin lesions, this disease was recognized and described as early as 1718 in Italy, with numerous epizootics being documented throughout the 19th century (Crosa et al., 1977; Sindermann, 1970). Today, while "red sore" is, without doubt, the best understood of the marine bacterial fish diseases, new diseases have been added to the list of those caused by Vibrio spp. The more recently published work describing Vibrio disease, primarily that appear- ing in the literature since 1977, will be the focus of this paper. Bacterial pathogens, the species of fish affected, virulence mechanisms, and disease treatment and prevention are included as topics of emphasis.
    [Show full text]
  • An Aphrodisiac Produced by Vibrio Fischeri Stimulates Mating in the Closest Living Relatives of Animals
    bioRxiv preprint doi: https://doi.org/10.1101/139022; this version posted May 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An aphrodisiac produced by Vibrio fischeri stimulates mating in the closest living relatives of animals Arielle Woznicaa,1, Joseph P Gerdtb,1, Ryan E. Huletta, Jon Clardyb,2, and Nicole Kinga,2 a Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States b Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston MA 02115, United States 1 These authors contributed equally to this work. 2 Co-corresponding authors, [email protected] and [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/139022; this version posted May 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract We serendipitously discovered that the marine bacterium Vibrio fischeri induces sexual reproduction in one of the closest living relatives of animals, the choanoflagellate Salpingoeca rosetta. Although bacteria influence everything from nutrition and metabolism to cell biology and development in eukaryotes, bacterial regulation of eukaryotic mating was unexpected. Here we show that a single V.
    [Show full text]
  • Spatiotemporal Regulation of Vibrio Exotoxins by Hlyu and Other Transcriptional Regulators
    toxins Review Spatiotemporal Regulation of Vibrio Exotoxins by HlyU and Other Transcriptional Regulators Byoung Sik Kim Department of Food Science and Engineering, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Korea; [email protected] Received: 8 August 2020; Accepted: 19 August 2020; Published: 22 August 2020 Abstract: After invading a host, bacterial pathogens secrete diverse protein toxins to disrupt host defense systems. To ensure successful infection, however, pathogens must precisely regulate the expression of those exotoxins because uncontrolled toxin production squanders energy. Furthermore, inappropriate toxin secretion can trigger host immune responses that are detrimental to the invading pathogens. Therefore, bacterial pathogens use diverse transcriptional regulators to accurately regulate multiple exotoxin genes based on spatiotemporal conditions. This review covers three major exotoxins in pathogenic Vibrio species and their transcriptional regulation systems. When Vibrio encounters a host, genes encoding cytolysin/hemolysin, multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin, and secreted phospholipases are coordinately regulated by the transcriptional regulator HlyU. At the same time, however, they are distinctly controlled by a variety of other transcriptional regulators. How this coordinated but distinct regulation of exotoxins makes Vibrio species successful pathogens? In addition, anti-virulence strategies that target the coordinating master regulator HlyU and related future research directions are discussed. Keywords: exotoxin; transcriptional regulation; hemolysin; cytolysin; MARTX toxin; secreted phospholipase; HlyU; Vibrio species Key Contribution: During infection, major exotoxin genes in pathogenic Vibrio species are coordinately but distinctly regulated by HlyU and other transcriptional regulators for spatiotemporal expression. 1. Introduction The genus Vibrio is composed of various bacterial species that are metabolically versatile.
    [Show full text]
  • Vibrio Anguillarum As a Fish Pathogen: Virulence Factors, Diagnosis And
    Journal of Fish Diseases 2011, 34, 643–661 doi:10.1111/j.1365-2761.2011.01279.x Review Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention I Frans1,2,3,4, C W Michiels3, P Bossier4, K A Willems1,2, B Lievens1,2 and H Rediers1,2 1 Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Consortium for Industrial Microbiology and Biotechnology (CIMB), Department of Microbial and Molecular Systems (M2S), K.U. Leuven Association, Lessius Mechelen, Sint-Katelijne-Waver, Belgium 2 Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium 3 Department of Microbial and Molecular Systems (M2S), Centre for Food and Microbial Technology, K.U. Leuven, Leuven, Belgium 4 Laboratory of Aquaculture & Artemia Reference Centre, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium Bacterium anguillarum (Canestrini 1893). A few Abstract years later, Bergman proposed the name Vibrio Vibrio anguillarum, also known as Listonella anguillarum for the aetiological agent of the Ôred anguillarum, is the causative agent of vibriosis, a pest of eelsÕ in the Baltic Sea (Bergman 1909). deadly haemorrhagic septicaemic disease affecting Because of the high similarity of the disease signs various marine and fresh/brackish water fish, biv- and characteristics of the causal bacterium described alves and crustaceans. In both aquaculture and lar- in both reports, it was suggested that it concerned viculture, this disease is responsible for severe the same causative agent. economic losses worldwide. Because of its high Currently, V. anguillarum is widely found in morbidity and mortality rates, substantial research various cultured and wild fish as well as in bivalves has been carried out to elucidate the virulence and crustaceans in salt or brackish water causing a fatal mechanisms of this pathogen and to develop rapid haemorrhagic septicaemic disease, called vibriosis detection techniques and effective disease-preven- (Aguirre-Guzma´n, Ruı´z & Ascencio 2004; Paillard, tion strategies.
    [Show full text]