Functional Analysis of Virulence in Vibrio Coralliilyticus Re22 and Probiotic Mechanisms of Phaeobacter Inhibens S4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phage Therapy Treatment of the Coral Pathogen Vibrio Coralliilyticus
ORIGINAL RESEARCH Phage therapy treatment of the coral pathogen Vibrio coralliilyticus Yossi Cohen1,2, F. Joseph Pollock2,3, Eugene Rosenberg1 & David G. Bourne2 1Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv, 69978, Israel 2Australian Institute of Marine Science (AIMS), PMB3, Townsville MC, Townsville, Australia 3ARC Centre of Excellence for Coral Reef Studies, School of Marine and Tropical Biology, James Cook University, Townsville, Australia Keywords Abstract Coral disease, coral juveniles, phage therapy, Vibrio coralliilyticus, white syndrome Vibrio coralliilyticus is an important coral pathogen demonstrated to cause disease outbreaks worldwide. This study investigated the feasibility of applying Correspondence bacteriophage therapy to treat the coral pathogen V. coralliilyticus. A specific David G. Bourne, Australian Institute of bacteriophage for V. coralliilyticus strain P1 (LMG23696), referred to here as Marine Science, PMB 3, Townsville MC, bacteriophage YC, was isolated from the seawater above corals at Nelly Bay, Townsville 4810, Queensland, Australia. Magnetic Island, central Great Barrier Reef (GBR), the same location where the Tel: +61747534139; Fax: +61747725852; E-mail: [email protected] bacterium was first isolated. Bacteriophage YC was shown to be a lytic phage belonging to the Myoviridae family, with a rapid replication rate, high burst Funding Information size, and high affinity to its host. By infecting its host bacterium, bacteriophage Funding for this project was obtained YC was able to prevent bacterial-induced photosystem inhibition in pure through the Australia-Israel Science Exchange cultures of Symbiodinium, the photosymbiont partner of coral and a target for Foundation Postgraduate Award and the virulence factors produced by the bacterial pathogen. Phage therapy experi- Australian Institute of Marine Science. -
Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions. -
Exploring the Transcriptome of Luxi- and &Dgr;Ains Mutants and the Impact of N-3-Oxo-Hexanoyl-L
- Exploring the transcriptome of luxI and DainS mutants and the impact of N-3-oxo-hexanoyl-L- and N-3-hydroxy- decanoyl-L-homoserine lactones on biofilm formation in Aliivibrio salmonicida Miriam Khider1, Hilde Hansen1, Erik Hjerde1,2, Jostein A. Johansen1 and Nils Peder Willassen1,2 1 Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, UiT—The Arctic University of Norway, Tromsø, Norway 2 Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT—The Arctic University of Norway, Tromsø, Norway ABSTRACT Background: Bacterial communication through quorum sensing (QS) systems has been reported to be important in coordinating several traits such as biofilm formation. In Aliivibrio salmonicida two QS systems the LuxI/R and AinS/R, have been shown to be responsible for the production of eight acyl-homoserine lactones (AHLs) in a cell density dependent manner. We have previously demonstrated that inactivation of LitR, the master regulator of the QS system resulted in biofilm - formation, similar to the biofilm formed by the AHL deficient mutant DainSluxI . In this study, we aimed to investigate the global gene expression patterns of luxI and ainS autoinducer synthases mutants using transcriptomic profiling. In addition, we examined the influence of the different AHLs on biofilm formation. - Results: The transcriptome profiling of DainS and luxI mutants allowed us to identify genes and gene clusters regulated by QS in A. salmonicida. Relative to the - wild type, the DainS and luxI mutants revealed 29 and 500 differentially expressed 21 December 2018 Submitted genes (DEGs), respectively. The functional analysis demonstrated that the most Accepted 18 March 2019 Published 30 April 2019 pronounced DEGs were involved in bacterial motility and chemotaxis, Corresponding author exopolysaccharide production, and surface structures related to adhesion. -
Bacterial Dormancy: a Subpopulation of Viable but Non-Culturable Cells Demonstrates Better Fitness for Revival
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.216283; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bacterial dormancy: a subpopulation of viable but non-culturable cells demonstrates better fitness for revival. Sariqa Wagley1*, Helen Morcrette1, Andrea Kovacs-Simon1, Zheng R. Yang1, Ann Power2, Richard K. Tennant2, John Love2, Neil Murray3, Richard W. Titball1 and Clive S. Butler1* 1 Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK 2 BioEconomy Centre, The Henry Wellcome Building for BioCatalysis, Biosciences, Stocker Road, Exeter, Devon, EX4 4QD, UK 3 Lyons Seafoods, Fairfield House, Fairfield Road, Warminster, Wiltshire, BA12 9DA. *Corresponding authors: [email protected]; [email protected] Key words: Viable but non culturable cells, Vibrio parahaemolyticus, FACS, IFC, Proteomics Running title: characterisation of subpopulations of VBNC cells bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.216283; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The viable but non culturable (VBNC) state is a condition in which bacterial cells are viable and metabolically active, but resistant to cultivation using a routine growth medium. -
Genome-Scale Data Suggest Reclassifications in the Leisingera
ORIGINAL RESEARCH ARTICLE published: 11 August 2014 doi: 10.3389/fmicb.2014.00416 Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov. Sven Breider 1†, Carmen Scheuner 2†, Peter Schumann 2, Anne Fiebig 2, Jörn Petersen 2, Silke Pradella 2, Hans-Peter Klenk 2, Thorsten Brinkhoff 1 and Markus Göker 2* 1 Department of Biology of Geological Processes - Aquatic Microbial Ecology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany 2 Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany Edited by: Earlier phylogenetic analyses of the marine Rhodobacteraceae (class Alphaproteobacteria) Martin G. Klotz, University of North genera Leisingera and Phaeobacter indicated that neither genus might be monophyletic. Carolina at Charlotte, USA We here used phylogenetic reconstruction from genome-scale data, MALDI-TOF Reviewed by: mass-spectrometry analysis and a re-assessment of the phenotypic data from the Martin G. Klotz, University of North Carolina at Charlotte, USA literature to settle this matter, aiming at a reclassification of the two genera. Neither Aharon Oren, The Hebrew Phaeobacter nor Leisingera formed a clade in any of the phylogenetic analyses conducted. University of Jerusalem, Israel Rather, smaller monophyletic assemblages emerged, which were phenotypically more *Correspondence: homogeneous, too. We thus propose the reclassification of Leisingera nanhaiensis as the Markus Göker, Department of type species of a new genus as Sedimentitalea nanhaiensis gen. nov., comb. nov., the Microorganisms, Leibniz Institute DSMZ - German Collection of reclassification of Phaeobacter arcticus and Phaeobacter leonis as Pseudophaeobacter Microorganisms and Cell Cultures, arcticus gen. -
Pathogenicity Studies on a Vibrio Anguillarum- Related (VAR) Strain Causing an Epizootic in Argopecten Purpuratus Larvae Cultured in Chile
DISEASES OF AQUATIC ORGANISMS Vol. 22: 135-141,1995 Published June 15 Dis aqua1 Org l Pathogenicity studies on a Vibrio anguillarum- related (VAR)strain causing an epizootic in Argopecten purpuratus larvae cultured in Chile 'Departamento de Acuicultura. Facultad de Recursos del Mar, Universidad de Antofagasta, PO Box 170, Antofagasta, Chile 'Departamento de Microbiologia y Parasitologia, Facultad de Biologia, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain ABSTRACT: A Vibrio anguillarum-related (VAR) strain, isolated in pure culture from an epizootic in a commercial hatchery producing Argopecten purpuratus, was characterized, and its potential patho- genicity to veliger larvae of A. purpuratus determined. Experimental challenges indicated that the bac- terium affects larval survival at concentrations of 104 to 108 cells ml-l The effect of water quality and temperature on pathogenicity was also evaluated. Larval survival in seawater filtered through 5 pm pore-size membranes was 45.6%, whereas using seawater passed through 1 and 0.2pm filters, larval survival increased to 66.4 and 80.4% respectively. Temperature also affected pathogenicity as larval survival at 15OC for 24 h was 69.3% but decreased to 30 and 26.9 % at 20 and 25°C respectively. Toxic activity was found in cell-free supernatant of bacterial culture. Larval survival was reduced to 68.9 and 36.4% after 20 and 40% (v/v) of supernatant, respectively, was added to the rearing water. These results suggest that exotoxins produced by the VAR strain play an in~portantrole in its pathogenicity for scallop larvae. KEY WORDS: Argopecten purpuratus - Larvae . Vibrio anguillarum-related (VAR) . -
Isolation and Characterization of Two Bacteriophages and Their
microorganisms Article Isolation and Characterization of Two Bacteriophages and Their Preventive Effects against Pathogenic Vibrio coralliilyticus Causing Mortality of Pacific Oyster (Crassostrea gigas) Larvae Hyoun Joong Kim, Sib Sankar Giri , Sang Guen Kim, Sang Wha Kim, Jun Kwon, Sung Bin Lee and Se Chang Park * Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; [email protected] (H.J.K.); [email protected] (S.S.G.); [email protected] (S.G.K.); [email protected] (S.W.K.); [email protected] (J.K.); [email protected] (S.B.L.) * Correspondence: [email protected]; Tel.: +82-2-880-1282 Received: 20 May 2020; Accepted: 17 June 2020; Published: 19 June 2020 Abstract: Vibrio coralliilyticus is one of the major pathogens causing mass mortality in marine bivalve larvae aquaculture. To prevent and control Vibrio spp. infections in marine bivalve hatcheries, various antibiotics are overused, resulting in environmental pollution and the creation of multi-drug-resistant strains. Therefore, research on the development of antibiotic substitutes is required. In this study, we isolated two bacteriophages (phages) that specifically infected pathogenic V. coralliilyticus from an oyster hatchery and designated them as pVco-5 and pVco-7. Both phages were classified as Podoviridae and were stable over a wide range of temperatures (4–37 ◦C) and at pH 7.0–9.0. Thus, both phages were suitable for application under the environmental conditions of an oyster hatchery. The two phages showed confirmed significant bactericidal efficacy against pathogenic V. coralliilyticus in an in vitro test. -
Complete Genome Sequence of Vibrio Anguillarum Strain NB10, a Virulent Isolate from the Gulf of Bothnia
http://www.diva-portal.org This is the published version of a paper published in Standards in Genomic Sciences. Citation for the original published paper (version of record): Holm, K O., Nilsson, K., Hjerde, E., Willassen, N-P., Milton, D L. (2015) Complete genome sequence of Vibrio anguillarum strain NB10, a virulent isolate from the Gulf of Bothnia. Standards in Genomic Sciences, 10: 60 http://dx.doi.org/10.1186/s40793-015-0060-7 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-116115 Holm et al. Standards in Genomic Sciences (2015) 10:60 DOI 10.1186/s40793-015-0060-7 EXTENDED GENOME REPORT Open Access Complete genome sequence of Vibrio anguillarum strain NB10, a virulent isolate from the Gulf of Bothnia Kåre Olav Holm1, Kristina Nilsson2, Erik Hjerde1, Nils-Peder Willassen1 and Debra L. Milton2* Abstract Vibrio anguillarum causes a fatal hemorrhagic septicemia in marine fish that leads to great economical losses in aquaculture world-wide. Vibrio anguillarum strain NB10 serotype O1 is a Gram-negative, motile, curved rod-shaped bacterium, isolated from a diseased fish on the Swedish coast of the Gulf of Bothnia, and is slightly halophilic. Strain NB10 is a virulent isolate that readily colonizes fish skin and intestinal tissues. Here, the features of this bacterium are described and the annotation and analysis of its complete genome sequence is presented. The genome is 4,373,835 bp in size, consists of two circular chromosomes and one plasmid, and contains 3,783 protein-coding genes and 129 RNA genes. -
16S Ribosomal DNA Sequencing Confirms the Synonymy of Vibrio Harveyi and V
DISEASES OF AQUATIC ORGANISMS Vol. 52: 39–46, 2002 Published November 7 Dis Aquat Org 16S ribosomal DNA sequencing confirms the synonymy of Vibrio harveyi and V. carchariae Eric J. Gauger, Marta Gómez-Chiarri* Department of Fisheries, Animal and Veterinary Science, 20A Woodward Hall, University of Rhode Island, Kingston, Rhode Island 02881, USA ABSTRACT: Seventeen bacterial strains previously identified as Vibrio harveyi (Baumann et al. 1981) or V. carchariae (Grimes et al. 1984) and the type strains of V. harveyi, V. carchariae and V. campbellii were analyzed by 16S ribosomal DNA (rDNA) sequencing. Four clusters were identified in a phylo- genetic analysis performed by comparing a 746 base pair fragment of the 16S rDNA and previously published sequences of other closely related Vibrio species. The type strains of V. harveyi and V. car- chariae and about half of the strains identified as V. harveyi or V. carchariae formed a single, well- supported cluster designed as ‘bona fide’ V. harveyi/carchariae. A second more heterogeneous clus- ter included most other strains and the V. campbellii type strain. Two remaining strains are shown to be more closely related to V. rumoiensis and V. mediterranei. 16S rDNA sequencing has confirmed the homogeneity and synonymy of V. harveyi and V. carchariae. Analysis of API20E biochemical pro- files revealed that they are insufficient by themselves to differentiate V. harveyi and V. campbellii strains. 16S rDNA sequencing, however, can be used in conjunction with biochemical techniques to provide a reliable method of distinguishing V. harveyi from other closely related species. KEY WORDS: Vibrio harveyi · Vibrio carchariae · Vibrio campbellii · Vibrio trachuri · Ribosomal DNA · Biochemical characteristics · Diagnostic · API20E Resale or republication not permitted without written consent of the publisher INTRODUCTION environmental sources (Ruby & Morin 1979, Orndorff & Colwell 1980, Feldman & Buck 1984, Grimes et al. -
Vibrio Tubiashii S P . Nov., a Pathogen of Bivalve Mollusks
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1984, p. 1-4 Vol. 34, No. 1 OO20-7713/84/01ooO1-04$02.00/0 Copyright 0 1984, International Union of Microbiological Societies Vibrio tubiashii sp. nov., a Pathogen of Bivalve Mollusks H. S. HADA,l P. A. WEST,'? J. V. LEE,* J. STEMMLER,' AND R. R. COLWELL1* Department of Microbiology, University of Maryland, College Park, Maryland 20742' and Public Health Laboratory Service Center for Applied Microbiology and Research, Porton Down, Salisbury SP4 OJ6, England2 The genotypic and phenotypic properties of six strains that were isolated during two unrelated incidents of a bacterial disease of bivalve mollusk larvae were compared with phenotypically similar Vibrio species. The strains of this bivalve mollusk larval pathogen are distinct from other Vibrio spp. phenotypically and as determined by deoxyribonucleic acid-deoxyribonucleic acid hybridization and are described here as Vibrio tubiashii sp. nov. The base composition of the overall deoxyribonucleic acid is 43 to 45 mol% guanine plus cytosine. All strains of V. tubiashii degrade xanthine and tyrosine extracellularly. Strain ATCC 19109 is designated the type strain of V. tubiashii. Tubiash et al. (7) described strains of Vibrio spp. that were per ml and 50 pg of pronase (Calbiochem-BehringCorp., La pathogenic for the larvae of bivalve mollusks. These orga- Jolla, Calif.) per ml for 30 min at room temperature, and nisms were tentatively identified as Vibrio anguillarum and lysed by adding 6 mg of sodium dodecyl sulfate per ml. A 0.2 were deposited in the American Type Culture Collection as volume of TES-saturated, distilled phenol was added, and strains ATCC 19105, ATCC 19106, and ATCC 19109T (T = the mixture was shaken for 30 min; this was followed by type strain). -
Permanent Draft Genome Sequence of Vibrio Tubiashii Strain NCIMB 1337 (ATCC19106)', Standards in Genomic Sciences, Vol
Edinburgh Research Explorer Permanent draft genome sequence of Vibrio tubiashii strain NCIMB 1337 (ATCC19106) Citation for published version: Temperton, B, Thomas, S, Tait, K, Parry, H, Emery, M, Allen, M, Quinn, J, Macgrath, J & Gilbert, J 2011, 'Permanent draft genome sequence of Vibrio tubiashii strain NCIMB 1337 (ATCC19106)', Standards in genomic sciences, vol. 4, no. 2, pp. 183-90. https://doi.org/10.4056/sigs.1654066 Digital Object Identifier (DOI): 10.4056/sigs.1654066 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Standards in genomic sciences Publisher Rights Statement: Free via PMC. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 30. Sep. 2021 Standards in Genomic Sciences (2011) 4:183-190 DOI:10.4056/sigs.1654066 Permanent draft genome sequence of Vibrio tubiashii strain NCIMB 1337 (ATCC19106) Ben Temperton1,2 -
Isolation of an Antimicrobial Compound Produced by Bacteria Associated with Reef-Building Corals
Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals Jean-Baptiste Raina1,2,3,4,5, Dianne Tapiolas2, Cherie A. Motti2, Sylvain Foret3,6, Torsten Seemann7, Jan Tebben8,9, Bette L. Willis3,4 and David G. Bourne2,4 1 Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia 2 Australian Institute of Marine Science, Townsville, QLD, Australia 3 Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia 4 Marine Biology and Aquaculture, College of Science and Engineering, James Cook University of North Queensland, Townsville, QLD, Australia 5 AIMS@JCU, James Cook University, Townsville, QLD, Australia 6 Research School of Biology, Australian National University, Canberra, ACT, Australia 7 Victorian Life Sciences Computation Initiative, University of Melbourne, Melbourne, Victoria, Australia 8 Section Chemical Ecology, Alfred Wegener Institute, Bremerhaven, Germany 9 University of New South Wales, Sydney, NSW, Australia ABSTRACT Bacterial communities associated with healthy corals produce antimicrobial compounds that inhibit the colonization and growth of invasive microbes and potential pathogens. To date, however, bacteria-derived antimicrobial molecules have not been identified in reef-building corals. Here, we report the isolation of an antimicrobial compound produced by Pseudovibrio sp. P12, a common and abundant coral-associated bacterium. This strain was capable of metabolizing dimethylsulfoniopropionate (DMSP), a sulfur molecule produced in high concentrations by reef-building corals and playing a role in structuring their bacterial communities. Bioassay-guided fractionation coupled with nuclear Submitted 15 May 2016 magnetic resonance (NMR) and mass spectrometry (MS), identified the Accepted 19 July 2016 antimicrobial as tropodithietic acid (TDA), a sulfur-containing compound likely Published 18 August 2016 derived from DMSP catabolism.