Cell-To-Cell Communication and Virulence in Vibrio Anguillarum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phage Therapy Treatment of the Coral Pathogen Vibrio Coralliilyticus
ORIGINAL RESEARCH Phage therapy treatment of the coral pathogen Vibrio coralliilyticus Yossi Cohen1,2, F. Joseph Pollock2,3, Eugene Rosenberg1 & David G. Bourne2 1Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv, 69978, Israel 2Australian Institute of Marine Science (AIMS), PMB3, Townsville MC, Townsville, Australia 3ARC Centre of Excellence for Coral Reef Studies, School of Marine and Tropical Biology, James Cook University, Townsville, Australia Keywords Abstract Coral disease, coral juveniles, phage therapy, Vibrio coralliilyticus, white syndrome Vibrio coralliilyticus is an important coral pathogen demonstrated to cause disease outbreaks worldwide. This study investigated the feasibility of applying Correspondence bacteriophage therapy to treat the coral pathogen V. coralliilyticus. A specific David G. Bourne, Australian Institute of bacteriophage for V. coralliilyticus strain P1 (LMG23696), referred to here as Marine Science, PMB 3, Townsville MC, bacteriophage YC, was isolated from the seawater above corals at Nelly Bay, Townsville 4810, Queensland, Australia. Magnetic Island, central Great Barrier Reef (GBR), the same location where the Tel: +61747534139; Fax: +61747725852; E-mail: [email protected] bacterium was first isolated. Bacteriophage YC was shown to be a lytic phage belonging to the Myoviridae family, with a rapid replication rate, high burst Funding Information size, and high affinity to its host. By infecting its host bacterium, bacteriophage Funding for this project was obtained YC was able to prevent bacterial-induced photosystem inhibition in pure through the Australia-Israel Science Exchange cultures of Symbiodinium, the photosymbiont partner of coral and a target for Foundation Postgraduate Award and the virulence factors produced by the bacterial pathogen. Phage therapy experi- Australian Institute of Marine Science. -
Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions. -
Exploring the Transcriptome of Luxi- and &Dgr;Ains Mutants and the Impact of N-3-Oxo-Hexanoyl-L
- Exploring the transcriptome of luxI and DainS mutants and the impact of N-3-oxo-hexanoyl-L- and N-3-hydroxy- decanoyl-L-homoserine lactones on biofilm formation in Aliivibrio salmonicida Miriam Khider1, Hilde Hansen1, Erik Hjerde1,2, Jostein A. Johansen1 and Nils Peder Willassen1,2 1 Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, UiT—The Arctic University of Norway, Tromsø, Norway 2 Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT—The Arctic University of Norway, Tromsø, Norway ABSTRACT Background: Bacterial communication through quorum sensing (QS) systems has been reported to be important in coordinating several traits such as biofilm formation. In Aliivibrio salmonicida two QS systems the LuxI/R and AinS/R, have been shown to be responsible for the production of eight acyl-homoserine lactones (AHLs) in a cell density dependent manner. We have previously demonstrated that inactivation of LitR, the master regulator of the QS system resulted in biofilm - formation, similar to the biofilm formed by the AHL deficient mutant DainSluxI . In this study, we aimed to investigate the global gene expression patterns of luxI and ainS autoinducer synthases mutants using transcriptomic profiling. In addition, we examined the influence of the different AHLs on biofilm formation. - Results: The transcriptome profiling of DainS and luxI mutants allowed us to identify genes and gene clusters regulated by QS in A. salmonicida. Relative to the - wild type, the DainS and luxI mutants revealed 29 and 500 differentially expressed 21 December 2018 Submitted genes (DEGs), respectively. The functional analysis demonstrated that the most Accepted 18 March 2019 Published 30 April 2019 pronounced DEGs were involved in bacterial motility and chemotaxis, Corresponding author exopolysaccharide production, and surface structures related to adhesion. -
Bacterial Dormancy: a Subpopulation of Viable but Non-Culturable Cells Demonstrates Better Fitness for Revival
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.216283; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bacterial dormancy: a subpopulation of viable but non-culturable cells demonstrates better fitness for revival. Sariqa Wagley1*, Helen Morcrette1, Andrea Kovacs-Simon1, Zheng R. Yang1, Ann Power2, Richard K. Tennant2, John Love2, Neil Murray3, Richard W. Titball1 and Clive S. Butler1* 1 Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 4QD, UK 2 BioEconomy Centre, The Henry Wellcome Building for BioCatalysis, Biosciences, Stocker Road, Exeter, Devon, EX4 4QD, UK 3 Lyons Seafoods, Fairfield House, Fairfield Road, Warminster, Wiltshire, BA12 9DA. *Corresponding authors: [email protected]; [email protected] Key words: Viable but non culturable cells, Vibrio parahaemolyticus, FACS, IFC, Proteomics Running title: characterisation of subpopulations of VBNC cells bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.216283; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The viable but non culturable (VBNC) state is a condition in which bacterial cells are viable and metabolically active, but resistant to cultivation using a routine growth medium. -
Unlocking the Genomic Taxonomy of the Prochlorococcus Collective
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.980698; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Unlocking the genomic taxonomy of the Prochlorococcus collective Diogo Tschoeke1#, Livia Vidal1#, Mariana Campeão1, Vinícius W. Salazar1, Jean Swings1,2, Fabiano Thompson1*, Cristiane Thompson1* 1Laboratory of Microbiology. SAGE-COPPE and Institute of Biology. Federal University of Rio de Janeiro. Rio de Janeiro. Brazil. Av. Carlos Chagas Fo 373, CEP 21941-902, RJ, Brazil. 2Laboratory of Microbiology, Ghent University, Gent, Belgium. *Corresponding authors: E-mail: [email protected] , [email protected] Phone no.: +5521981041035, +552139386567 #These authors contributed equally. ABSTRACT 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.980698; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Prochlorococcus is the most abundant photosynthetic prokaryote on our planet. The extensive ecological literature on the Prochlorococcus collective (PC) is based on the assumption that it comprises one single genus comprising the species Prochlorococcus marinus, containing itself a collective of ecotypes. Ecologists adopt the distributed genome hypothesis of an open pan-genome to explain the observed genomic diversity and evolution patterns of the ecotypes within PC. -
Genetic Diversity of Culturable Vibrio in an Australian Blue Mussel Mytilus Galloprovincialis Hatchery
Vol. 116: 37–46, 2015 DISEASES OF AQUATIC ORGANISMS Published September 17 doi: 10.3354/dao02905 Dis Aquat Org Genetic diversity of culturable Vibrio in an Australian blue mussel Mytilus galloprovincialis hatchery Tzu Nin Kwan*, Christopher J. S. Bolch National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Locked Bag 1370, Newnham, Tasmania 7250, Australia ABSTRACT: Bacillary necrosis associated with Vibrio species is the common cause of larval and spat mortality during commercial production of Australian blue mussel Mytilus galloprovincialis. A total of 87 randomly selected Vibrio isolates from various stages of rearing in a commercial mus- sel hatchery were characterised using partial sequences of the ATP synthase alpha subunit gene (atpA). The sequenced isolates represented 40 unique atpA genotypes, overwhelmingly domi- nated (98%) by V. splendidus group genotypes, with 1 V. harveyi group genotype also detected. The V. splendidus group sequences formed 5 moderately supported clusters allied with V. splen- didus/V. lentus, V. atlanticus, V. tasmaniensis, V. cyclitrophicus and V. toranzoniae. All water sources showed considerable atpA gene diversity among Vibrio isolates, with 30 to 60% of unique isolates recovered from each source. Over half (53%) of Vibrio atpA genotypes were detected only once, and only 7 genotypes were recovered from multiple sources. Comparisons of phylogenetic diversity using UniFrac analysis showed that the culturable Vibrio community from intake, header, broodstock and larval tanks were phylogenetically similar, while spat tank communities were different. Culturable Vibrio associated with spat tank seawater differed in being dominated by V. toranzoniae-affiliated genotypes. The high diversity of V. splendidus group genotypes detected in this study reinforces the dynamic nature of microbial communities associated with hatchery culture and complicates our efforts to elucidate the role of V. -
Pathogenicity Studies on a Vibrio Anguillarum- Related (VAR) Strain Causing an Epizootic in Argopecten Purpuratus Larvae Cultured in Chile
DISEASES OF AQUATIC ORGANISMS Vol. 22: 135-141,1995 Published June 15 Dis aqua1 Org l Pathogenicity studies on a Vibrio anguillarum- related (VAR)strain causing an epizootic in Argopecten purpuratus larvae cultured in Chile 'Departamento de Acuicultura. Facultad de Recursos del Mar, Universidad de Antofagasta, PO Box 170, Antofagasta, Chile 'Departamento de Microbiologia y Parasitologia, Facultad de Biologia, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain ABSTRACT: A Vibrio anguillarum-related (VAR) strain, isolated in pure culture from an epizootic in a commercial hatchery producing Argopecten purpuratus, was characterized, and its potential patho- genicity to veliger larvae of A. purpuratus determined. Experimental challenges indicated that the bac- terium affects larval survival at concentrations of 104 to 108 cells ml-l The effect of water quality and temperature on pathogenicity was also evaluated. Larval survival in seawater filtered through 5 pm pore-size membranes was 45.6%, whereas using seawater passed through 1 and 0.2pm filters, larval survival increased to 66.4 and 80.4% respectively. Temperature also affected pathogenicity as larval survival at 15OC for 24 h was 69.3% but decreased to 30 and 26.9 % at 20 and 25°C respectively. Toxic activity was found in cell-free supernatant of bacterial culture. Larval survival was reduced to 68.9 and 36.4% after 20 and 40% (v/v) of supernatant, respectively, was added to the rearing water. These results suggest that exotoxins produced by the VAR strain play an in~portantrole in its pathogenicity for scallop larvae. KEY WORDS: Argopecten purpuratus - Larvae . Vibrio anguillarum-related (VAR) . -
Isolation and Characterization of Two Bacteriophages and Their
microorganisms Article Isolation and Characterization of Two Bacteriophages and Their Preventive Effects against Pathogenic Vibrio coralliilyticus Causing Mortality of Pacific Oyster (Crassostrea gigas) Larvae Hyoun Joong Kim, Sib Sankar Giri , Sang Guen Kim, Sang Wha Kim, Jun Kwon, Sung Bin Lee and Se Chang Park * Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; [email protected] (H.J.K.); [email protected] (S.S.G.); [email protected] (S.G.K.); [email protected] (S.W.K.); [email protected] (J.K.); [email protected] (S.B.L.) * Correspondence: [email protected]; Tel.: +82-2-880-1282 Received: 20 May 2020; Accepted: 17 June 2020; Published: 19 June 2020 Abstract: Vibrio coralliilyticus is one of the major pathogens causing mass mortality in marine bivalve larvae aquaculture. To prevent and control Vibrio spp. infections in marine bivalve hatcheries, various antibiotics are overused, resulting in environmental pollution and the creation of multi-drug-resistant strains. Therefore, research on the development of antibiotic substitutes is required. In this study, we isolated two bacteriophages (phages) that specifically infected pathogenic V. coralliilyticus from an oyster hatchery and designated them as pVco-5 and pVco-7. Both phages were classified as Podoviridae and were stable over a wide range of temperatures (4–37 ◦C) and at pH 7.0–9.0. Thus, both phages were suitable for application under the environmental conditions of an oyster hatchery. The two phages showed confirmed significant bactericidal efficacy against pathogenic V. coralliilyticus in an in vitro test. -
Complete Genome Sequence of Vibrio Anguillarum Strain NB10, a Virulent Isolate from the Gulf of Bothnia
http://www.diva-portal.org This is the published version of a paper published in Standards in Genomic Sciences. Citation for the original published paper (version of record): Holm, K O., Nilsson, K., Hjerde, E., Willassen, N-P., Milton, D L. (2015) Complete genome sequence of Vibrio anguillarum strain NB10, a virulent isolate from the Gulf of Bothnia. Standards in Genomic Sciences, 10: 60 http://dx.doi.org/10.1186/s40793-015-0060-7 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-116115 Holm et al. Standards in Genomic Sciences (2015) 10:60 DOI 10.1186/s40793-015-0060-7 EXTENDED GENOME REPORT Open Access Complete genome sequence of Vibrio anguillarum strain NB10, a virulent isolate from the Gulf of Bothnia Kåre Olav Holm1, Kristina Nilsson2, Erik Hjerde1, Nils-Peder Willassen1 and Debra L. Milton2* Abstract Vibrio anguillarum causes a fatal hemorrhagic septicemia in marine fish that leads to great economical losses in aquaculture world-wide. Vibrio anguillarum strain NB10 serotype O1 is a Gram-negative, motile, curved rod-shaped bacterium, isolated from a diseased fish on the Swedish coast of the Gulf of Bothnia, and is slightly halophilic. Strain NB10 is a virulent isolate that readily colonizes fish skin and intestinal tissues. Here, the features of this bacterium are described and the annotation and analysis of its complete genome sequence is presented. The genome is 4,373,835 bp in size, consists of two circular chromosomes and one plasmid, and contains 3,783 protein-coding genes and 129 RNA genes. -
Development of a PCR-Based Method for the Detection of Listonella Anguillarum in Fish Tissues and Blood Samples
DISEASES OF AQUATIC ORGANISMS Vol. 55: 109–115, 2003 Published July 8 Dis Aquat Org Development of a PCR-based method for the detection of Listonella anguillarum in fish tissues and blood samples Santiago F. Gonzalez*, Carlos R. Osorio, Ysabel Santos Department of Microbiology and Parasitology, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain ABSTRACT: A PCR assay for detection and identification of the fish pathogen Listonella anguillarum was developed. Primers amplifying a 519 bp internal fragment of the L. anguillarum rpoN gene, which codes for the factor σ54, were utilized. The detection limit of the PCR using L. anguillarum pure cultures was approximately 1 to 10 bacterial cells per reaction. For tissue or blood samples of infected turbot Scophthalmus maximus, the detection limit was 10 to 100 L. anguillarum cells per reaction, which corresponds to 2 × 103 to 2 × 104 cells g–1 fish tissue. Our results suggest that this PCR protocol is a sensitive and specific molecular method for the detection of the fish pathogen L. anguillarum. KEY WORDS: PCR · rpoN gene · Listonella anguillarum · Detection Resale or republication not permitted without written consent of the publisher INTRODUCTION developed for the detection of bacteria in fish tissues. However, the use of these methods has been limited by Vibriosis is one of the most important and the oldest their poor detection levels and the existence of cross- recognized fish disease in marine aquaculture world- reactions with the close relative Vibrio ordalii species. wide. The causative agent, Listonella anguillarum, was Thus, there is a need for fast, sensitive and specific initially isolated by Canestrini (1893). -
Vibrio Coralliilyticus Strain OCN008 Is an Etiological Agent of Acute Montipora White Syndrome
Vibrio coralliilyticus Strain OCN008 Is an Etiological Agent of Acute Montipora White Syndrome Blake Ushijima,a,b Patrick Videau,a Andrew H. Burger,b,c Amanda Shore-Maggio,a,b Christina M. Runyon,a,b Mareike Sudek,b,d Greta S. Aeby,b Sean M. Callahana,b,c Department of Microbiology, University of Hawai‘i, Honolulu, Hawai‘i, USAa; Hawai‘i Institute of Marine Biology, Kane‘ohe, Hawai‘i, USAb; Department of Molecular Biosciences and Bioengineering, University of Hawai‘i, Honolulu, Hawai‘i, USAc; Victoria University, Wellington, New Zealandd Identification of a pathogen is a critical first step in the epidemiology and subsequent management of a disease. A limited num- ber of pathogens have been identified for diseases contributing to the global decline of coral populations. Here we describe Vibrio coralliilyticus strain OCN008, which induces acute Montipora white syndrome (aMWS), a tissue loss disease responsible for substantial mortality of the coral Montipora capitata in Kane‘ohe Bay, Hawai‘i. OCN008 was grown in pure culture, recreated signs of disease in experimentally infected corals, and could be recovered after infection. In addition, strains similar to OCN008 were isolated from diseased coral from the field but not from healthy M. capitata. OCN008 repeatedly induced the loss of healthy M. capitata tissue from fragments under laboratory conditions with a minimum infectious dose of between 107 and 108 CFU/ml of water. In contrast, Porites compressa was not infected by OCN008, indicating the host specificity of the pathogen. A decrease in water temperature from 27 to 23°C affected the time to disease onset, but the risk of infection was not significantly reduced. -
Immobilization of Phaeobacter 27-4 in Biofilters As a Strategy for the Control of Vibrionaceae Infections in Marine Fish Larval Rearing
INSTITUTO DE ACUICULTURA CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS INSTITUTO DE INVESTIGACIÓNS MARIÑAS Immobilization of Phaeobacter 27-4 in biofilters as a strategy for the control of Vibrionaceae infections in marine fish larval rearing Ph.D. Thesis presented by: María Jesús Prol García To achieve the philosophiae doctor degree in: Marine Biology and Aquaculture April, 2010 Don José Pintado Valverde, Científico Titular no Instituto de Investigacións Mariñas (CSIC), Don Miquel Planas Oliver, Científico Titular no mesmo instituto do CSIC e Dona Ysabel Santos Rodríguez, Profesora Titular na Facultade de Bioloxía - Instituto de Acuicultura da Universidade de Santiago de Compostela INFORMAN: Que a presente Tese de Doutoramento titulada: “Immobilization of Phaeobacter 27-4 in biofilters as a strategy for the control of Vibrionaceae infections in marine fish larval rearing” presentada por dona María Jesús Prol García para optar ó título de Doutora en Bioloxía Mariña e Acuicultura realizouse baixo a dirección de José Pintado Valverde e Miquel Planas Oliver no Instituto de Investigacións Mariñas (CSIC), e considerándoa concluída autorizan a súa presentación para que poida ser xulgada polo tribunal correspondente. E para que así conste expídese a presente, en Vigo a 25 de xaneiro de 2010. María Jesús Prol García (Doutoranda) José Pintado Valverde Miquel Planas Oliver Ysabel Santos Rodríguez (Director) (Codirector) (Titora) v The work presented in this Ph.D. Thesis was funded by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria – Ministerio de Ciencia e Innovación (Project: Modificación de la microbiota bacteriana asociada a la utilización de bacterias probióticas en el cultivo de larvas de rodaballo. Reference: ACU03-003) and the Consejo Superior de Investigaciones Científicas (Project: Modo de acción y optimización del uso de Roseobacter 27-4 como probiótico en el cultivo de larvas de rodaballo.