ODV User's Guide

Total Page:16

File Type:pdf, Size:1020Kb

ODV User's Guide Ocean Data View User’s Guide Version 4.7.7 July 12, 2016 Version 4.7.7 ii ODV User’s Guide Acknowledgements: Many users have provided comments, suggestions and bug reports and thereby helped to make ODV a stable and useful product. Jean-Marie Beckers from the University of Liege has assisted in integrating the gridding software DIVA into ODV. Stephan Heckendorff and Michael Menzel have contributed significantly to the ODV code. This includes porting the import routines to ODV4, implementing the SDN file aggregation tool, creating the xview functionality as well as adding support for ESRI shapefiles. Financial support from the European Union Seventh Frame- work Programme (FP7/2007-2013) under grant agreement n° 283607, SeaDataNet2, 211384, EPOCA, and 264879, CarboChange is gratefully acknowledged. iii ODV User’s Guide License Agreement By downloading or using this Software, you agree to be bound by the following legal agreement between you and the Alfred-Wegener-Institute for Polar and Marine Research (AWI). If you do not agree to the terms of this Agreement, do not download or use the Software. 1. SCIENTIFIC USE AND TEACHING Ocean Data View can be used free of charge for non-commercial, non-military research and teaching purposes. If you use the software for your scientific work, please cite Ocean Data View in your publications as follows: Schlitzer, R., Ocean Data View, http://odv.awi.de, 2016. 2. COMMERCIAL AND MILITARY USE For the use of Ocean Data View or any of its components for commercial or military applications and products, a special, written software license is needed. Please contact the address below for further information. 3. REDISTRIBUTION Redistribution of the Ocean Data View software on CD-ROM, DVD, or other electronic media or the Internet is not permitted without the prior written consent of the AWI. Please contact the address below for further information. 4. WARRANTY DISCLAIMER THE ODV SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. IN NO EVENT WILL AWI, ITS CONTRIBUTORS OR ANY ODV COPYRIGHT HOLDER BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT, INDIRECT, GENERAL, SPECIAL, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL DAMAGES HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES, A FAILURE OF THE SOFTWARE TO OPERATE WITH ANY OTHER SOFTWARE OR BUSINESS INTERRUPTION). © 1990 -2016 Reiner Schlitzer, Alfred Wegener Institute, Columbusstrasse, 27568 Bremerhaven, Germany. E-mail: [email protected] i Version 4.7.7 Contents 1 GENERAL OVERVIEW .......................................................................................................... 1 1.1 EASE OF USE ......................................................................................................................................... 1 1.2 DENSE DATA FORMAT ........................................................................................................................ 2 1.3 EXTENSIBILITY ..................................................................................................................................... 2 1.4 DERIVED VARIABLES ........................................................................................................................... 2 1.5 PLOT TYPES .......................................................................................................................................... 3 1.6 WINDOW SCOPES................................................................................................................................. 4 1.7 GRAPHICS OUTPUT .............................................................................................................................. 8 1.8 DATA STATISTICS ................................................................................................................................ 9 1.9 ESTIMATION AND AVERAGING ............................................................................................................ 9 1.10 NETCDF SUPPORT ....................................................................................................................... 10 2 FIRST STEPS ....................................................................................................................... 11 2.1 INSTALLING OCEAN DATA VIEW ..................................................................................................... 11 2.2 RUNNING OCEAN DATA VIEW ......................................................................................................... 11 2.3 GETTING HELP .................................................................................................................................. 13 2.4 APPLICATION WINDOW ................................................................................................................... 13 2.5 MENU BAR ......................................................................................................................................... 15 2.6 METADATA AND DATA LIST WINDOWS ......................................................................................... 15 2.7 GRAPHICS CANVAS ............................................................................................................................ 16 2.8 POPUP MENUS .................................................................................................................................. 16 2.9 STATUS BAR ...................................................................................................................................... 18 2.10 CURRENT STATION AND SAMPLE ................................................................................................ 19 2.11 MAP AND DATA WINDOW DRAWING ......................................................................................... 20 2.12 SETTINGS ....................................................................................................................................... 20 3 ODV COLLECTIONS ........................................................................................................... 23 3.1 DATA MODEL .................................................................................................................................... 24 3.2 EXAMPLE COLLECTION TYPES ......................................................................................................... 27 3.3 CREATING COLLECTIONS .................................................................................................................. 30 3.4 COLLECTION FILES ........................................................................................................................... 35 3.5 PLATFORM INDEPENDENCE ............................................................................................................. 38 4 IMPORTING DATA ............................................................................................................ 39 4.1 ODV SPREADSHEET FILES ............................................................................................................... 41 4.2 SDN SPREADSHEET AND NETCDF FILES....................................................................................... 42 4.3 WORLD OCEAN DATABASE DATA ................................................................................................... 45 4.4 ARGO FLOAT DATA ......................................................................................................................... 46 4.5 GTSPP – GLOBAL TEMPERATURE-SALINITY PROFILE PROGRAM.............................................. 47 4.6 WOCE HYDROGRAPHIC DATA ........................................................................................................ 49 4.7 MEDATLAS FORMAT DATA .............................................................................................................. 50 4.8 SEA-BIRD CNV FILES ...................................................................................................................... 52 4.9 ASSOCIATE META-VARIABLES DIALOG........................................................................................... 54 4.10 IMPORT OPTIONS DIALOG............................................................................................................ 55 ii ODV User’s Guide 4.11 GENERATING FILE LISTS .............................................................................................................. 59 5 EXPORTING DATA ............................................................................................................. 61 5.1 SPREADSHEET FILES ........................................................................................................................ 61 5.2 SDN AGGREGATED ODV COLLECTION .......................................................................................... 62 5.3 NETCDF FILES ................................................................................................................................. 62 5.4 WHP EXCHANGE FORMAT EXPORT ..............................................................................................
Recommended publications
  • SISP-4 a Metadata Convention for Processed Acoustic Data from Active Acoustic Systems
    SERIES OF ICES SURVEY PROTOCOLS SISP 4-TG-ACMETA NOVEMBER 2016 A metadata convention for processed acoustic data from active acoustic systems Version 1.10 ICES WGFAST Topic Group, TG-AcMeta International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2016. A metadata convention for processed acoustic data from active acoustic systems. Series of ICES Survey Protocols SISP 4-TG-AcMeta. 48 pp. https://doi.org/10.17895/ices.pub.7434 The material in this report may be reused for non-commercial purposes using the rec- ommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this re- port, you must contact the original copyright holder for permission. For citation of da- tasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other repro- duction requests please contact the General Secretary. This document is the product of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the view of the Council. https://doi.org/10.17895/ices.pub.7434 ISBN 978-87-7482-191-5 ISSN 2304-6252 © 2016 International Council for the Exploration of the Sea Background and Terms of reference The ICES Working Group on Fisheries Acoustics, Science and Technology (WGFAST) meeting in 2010, San Diego USA recommended the formation of a Topic Group that will bring together a group of expert acousticians to develop standardized metadata protocols for active acoustic systems.
    [Show full text]
  • Calendrical Calculations: Third Edition
    Notes and Errata for Calendrical Calculations: Third Edition Nachum Dershowitz and Edward M. Reingold Cambridge University Press, 2008 4:00am, July 24, 2013 Do I contradict myself ? Very well then I contradict myself. (I am large, I contain multitudes.) —Walt Whitman: Song of Myself All those complaints that they mutter about. are on account of many places I have corrected. The Creator knows that in most cases I was misled by following. others whom I will spare the embarrassment of mention. But even were I at fault, I do not claim that I reached my ultimate perfection from the outset, nor that I never erred. Just the opposite, I always retract anything the contrary of which becomes clear to me, whether in my writings or my nature. —Maimonides: Letter to his student Joseph ben Yehuda (circa 1190), Iggerot HaRambam, I. Shilat, Maaliyot, Maaleh Adumim, 1987, volume 1, page 295 [in Judeo-Arabic] Cuiusvis hominis est errare; nullius nisi insipientis in errore perseverare. [Any man can make a mistake; only a fool keeps making the same one.] —Attributed to Marcus Tullius Cicero If you find errors not given below or can suggest improvements to the book, please send us the details (email to [email protected] or hard copy to Edward M. Reingold, Department of Computer Science, Illinois Institute of Technology, 10 West 31st Street, Suite 236, Chicago, IL 60616-3729 U.S.A.). If you have occasion to refer to errors below in corresponding with the authors, please refer to the item by page and line numbers in the book, not by item number.
    [Show full text]
  • Entering Information in the Electronic Time Clock
    Entering Information in the Electronic Time Clock Entering Information in the Electronic Time Clock (ETC) for Assistance Provided to Other Routes WHEN PROVIDING OFFICE ASSISTANCE Press "MOVE" Press "OFFICE" Type in the number of the route that your are assisting. This will be a six digit number that begins with 0 followed by the last two numbers of the zip code for that route and then one or two zeros and the number of the route. Example for route 2 in the 20886 zip code would be 086002 Route 15 in the 20878 zip code would be 078015 Then swipe your badge WHEN YOU HAVE FINISHED PROVIDING OFFICE ASSISTANCE Press "MOVE" Press "OFFICE" Type in the number of the route you are assigned to that day (as above) Swipe your badge WHEN PROVIDING STREET ASSISTANCE AND ENTERING THE INFORMATION WHEN YOU RETURN FROM THE STREET Press "MOVE" Press "STREET" Type in the number of the route that you assisted (as above) Type in the time that you started to provide assistance in decimal hours (3:30 would be 1550). See the conversion chart. Swipe your badge Press "MOVE" Press "STREET" Type in YOUR route number (as above) Type in the time you finished providing assistance to the other route, Swipe your badge Page 1 TIME CONVERSION TABLE Postal timekeepers use a combination of military time (for the hours) and decimal time (for the minutes). Hours in the morning need no conversion, but use a zero before hours below 10; to show evening hours, add 12. (Examples: 6:00 am = 0600; 1:00 pm = 1300.) Using this chart, convert minutes to fractions of one hundred.
    [Show full text]
  • Alasdair Gray and the Postmodern
    ALASDAIR GRAY AND THE POSTMODERN Neil James Rhind PhD in English Literature The University Of Edinburgh 2008 2 DECLARATION I hereby declare that this thesis has been composed by me; that it is entirely my own work, and that it has not been submitted for any other degree or professional qualification except as specified on the title page. Signed: Neil James Rhind 3 CONTENTS Title……………………………………….…………………………………………..1 Declaration……………………………….…………………………………………...2 Contents………………………………………………………………………………3 Abstract………………………………….………………………………..…………..4 Note on Abbreviations…………………………………………………………….….6 1. Alasdair Gray : Sick of Being A Postmodernist……………………………..…….7 2. The Generic Blending of Lanark and the Birth of Postmodern Glasgow…….…..60 3. RHETORIC RULES, OK? : 1982, Janine and selected shorter novels………….122 4. Reforming The Victorians: Poor Things and Postmodern History………………170 5. After Postmodernism? : A History Maker………………………………………….239 6. Conclusion: Reading Postmodernism in Gray…………………………………....303 Endnotes……………………………………………………………………………..320 Works Cited………………………………………………………………………….324 4 ABSTRACT The prominence of the term ‘Postmodernism’ in critical responses to the work of Alasdair Gray has often appeared at odds with Gray’s own writing, both in his commitment to seemingly non-postmodernist concerns and his own repeatedly stated rejection of the label. In order to better understand Gray’s relationship to postmodernism, this thesis begins by outlining Gray’s reservations in this regard. Principally, this is taken as the result of his concerns
    [Show full text]
  • Following Your Invitation 14Th January 2010 to Seadatanet To
    SeaDataNet Common Data Index (CDI) metadata model for Marine and Oceanographic Datasets November 2014 Document type: Standard Current status: Proposal Submitted by: Dick M.A. Schaap Technical Coordinator SeaDataNet MARIS The Netherlands Enrico Boldrini CNR-IIA Italy Stefano Nativi CNR-IIA Italy Michele Fichaut Coordinator SeaDataNet IFREMER France Title: SeaDataNet Common Data Index (CDI) metadata model for Marine and Oceanographic Datasets Scope: Proposal to acknowledge SeaDataNet Common Data Index (CDI) metadata profile of ISO 19115 as a standard metadata model for the documentation of Marine and Oceanographic Datasets. In particular, the proposal aims to promote CDI as a regional (i.e. European) standard. SeaDataNet CDI has been drafted and published as a metadata community profile of ISO 19115 by SeaDataNet, the leading infrastructure in Europe for marine & ocean data management. Its wide implementation, both by data centres within SeaDataNet and by external organizations makes it also a de-facto standard in the Europe region. The acknowledgement of SeaDataNet CDI as a standard data model by IODE/JCOMM will further favour interoperability and data management in the Marine and Oceanographic community. Envisaged publication type: The proposal target audience includes all the European bodies, programs, and projects that manage and exchange marine and oceanographic data. Besides, the proposed document informs all the international community dealing with marine and oceanographic data about the SeaDataNet CDI metadata model. Purpose and Justification: Provide details based wherever practicable. 1. Describe the specific aims and reason for this Proposal, with particular emphasis on the aspects of standardization covered, the problems it is expected to solve or the difficulties it is intended to overcome.
    [Show full text]
  • (Loadest): a Fortran Program for Estimating Constituent Loads in Streams and Rivers
    LOAD ESTIMATOR (LOADEST): A FORTRAN PROGRAM FOR ESTIMATING CONSTITUENT LOADS IN STREAMS AND RIVERS Techniques and Methods Book 4, Chapter A5 U.S. Department of the Interior U.S. Geological Survey Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers By Robert L. Runkel, Charles G. Crawford, and Timothy A. Cohn Techniques and Methods Book 4, Chapter A5 U.S. Department of the Interior! U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2004 For more information about the USGS and its products:! Telephone: 1-888-ASK-USGS! World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply ! endorsement by the U.S. Government. Although this report is in the public domain, it contains copyrighted materials that are noted in the text. ! Permission to reproduce those items must be secured from the individual copyright owners. iii Contents Abstract . .. 1 1 Introduction . 2 1.1 Background . 2 1.2 Related Reading . 2 1.3 Report Organization . 2 1.4 Acknowledgments . .. 2 2 Theory . 3 2.1 Background – Linear Regression Approach to Load Estimation . 3 2.2 Load Estimation Methods used within LOADEST . 4 2.2.1 Maximum Likelihood Estimation (MLE) . 5 2.2.2 Adjusted Maximum Likelihood Estimation (AMLE) . 5 2.2.3 Least Absolute Deviation (LAD) . 6 2.2.4 Summary of MLE, AMLE, and LAD for Load Estimation .
    [Show full text]
  • SAS® Dates with Decimal Time John Henry King, Ouachita Clinical Data Services, Inc., Caddo Gap, AR
    Paper RF03-2015 SAS® Dates with Decimal Time John Henry King, Ouachita Clinical Data Services, Inc., Caddo Gap, AR ABSTRACT Did you know that a SAS-Date can have a decimal part that SAS treats as you might expect a fraction of a day also known as time? Often when data are imported from EXCEL an excel date-time will be imported as SAS-Date with a decimal part. This Rapid Fire tip discusses how to identify these values and gives examples of how to work with them including how to convert them to SAS-Date-time. INTRODUCTION A SAS-Date is defined as an integer number representing the number of days since 01JAN1960. For 01JAN1960 the internal SAS Date value is zero. The numeric value stored as Real Binary Floating Point can include a decimal portion and this decimal portion can represent time. For example the SAS-Date 0.5 can be considered to represent ½ day since 01JAN1960 or 01JAN1960:12:00:00. It is important to remember that for the most part SAS ignores the decimal portion and a SAS Date with a decimal value is NOT a SAS-Date-time value. USUALLY IGNORED As shown by this example SAS usually ignores the decimal part. Notice that for SAMEDAY alignment INTNX keeps the decimal part while alignment END and BEGIN drop it. data _null_; x = .5; put x= x=date9.; do align='B','E','S'; i = intnx('week',x,0,align); put i= i=date9. i=weekdate. align=; end; run; x=0.5 x=01JAN1960 i=-5 i=27DEC1959 i=Sunday, December 27, 1959 align=B i=1 i=02JAN1960 i=Saturday, January 2, 1960 align=E i=0.5 i=01JAN1960 i=Friday, January 1, 1960 align=S CONVERSION TO DATE-TIME Converting a SAS-Date with decimal time part to SAS-Date-Time can be done using DHMS function specifying 0 for the hour, minute, and second arguments.
    [Show full text]
  • Action Progress Report #1
    Project Information Project full title EuroSea: Improving and Integrating European Ocean Observing and Forecasting Systems for Sustainable use of the Oceans Project acronym EuroSea Grant agreement number 862626 Project start date and duration 1 November 2019, 50 months Project website https://www.eurosea.eu Deliverable information Deliverable number D9.1 Deliverable title Action Progress Report #1 Description EuroSea summary progress report for the external advisory boards Dec 2020 Work Package number 9 Work Package title Project Coordination, Management and strategic ocean observing alliance Lead beneficiary GEOMAR Lead authors Nicole Köstner, Toste Tanhua Contributors All work package leaders and task leaders Due date 31.12.2020 Submission date 22.12.2020 Comments This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 862626. https://doi.org/10.3289/eurosea_d9.1 Action Progress Report #1 Reporting period: 1 Nov 2019 – 31 Dec 2020 https://doi.org/10.3289/eurosea_d9.1 Table of contents 1. Introduction to EuroSea ............................................................................................................................ 1 2. Summary of progress ................................................................................................................................. 2 3. Work package progress reports ................................................................................................................ 7 3.1. WP1 - Governance and
    [Show full text]
  • Project of Strategic Interest NEXTDATA Deliverable D1.3.5
    Project of Strategic Interest NEXTDATA Deliverable D1.3.5 Report on RR quality indexes and data transmission to archive and General Web Portal WP Coordinator: Nadia Pinardi INGV, Bologna Authors S. Simoncelli, C. Fratianni, N. Pinardi INGV, Bologna 1 Contents Abstract .............................................................................................................................................................................. 3 Introduction ..................................................................................................................................................................... 4 Validation Results .......................................................................................................................................................... 4 Sea Surface Temperature ...................................................................................................................................... 4 Temperature vertical structure .......................................................................................................................... 8 Salinity vertical structure .................................................................................................................................... 10 Sea surface height ................................................................................................................................................... 13 Gibraltar transport ................................................................................................................................................
    [Show full text]
  • Updated Guidelines for Seadatanet ODV Production
    EMODnet Thematic Lot n° 4 - Chemistry EMODnet Phase III Updated guidelines for SeaDataNet ODV production M. Lipizer, M. Vinci, A. Giorgetti, L. Buga, M. Fichault, J. Gatti, S. Iona, M. Larsen, R. Schlitzer, D. Schaap, M. Wenzer, E. Molina Date: 12/04/2018 EMODnet Thematic Lot n° 4 - Chemistry Updated guidelines for SDN ODV production Index EMODnet Phase III............................................................................................................................1 Updated guidelines for SeaDataNet ODV producton......................................................................1 Updated guidelines for SeaDataNet ODV producton..........................................................................1 Introducton......................................................................................................................................1 SeaDataNet ODV import format.......................................................................................................1 How to check your SeaDataNet ODV fle format?............................................................................6 Vocabulary........................................................................................................................................7 How to choose the correct P01?......................................................................................................8 Flagging of Data Below Detecton Limits and Data Below Limit of Quantfcatoni.......................13 Guidelines for SeaDataNet ODV producton for sediment
    [Show full text]
  • Stephen Mihm Associate Professor of History University of Georgia 7 November 2014
    THE STANDARDS OF THE STATE: WEIGHTS, MEASURES, AND NATION MAKING IN THE EARLY AMERICAN REPUBLIC Stephen Mihm Associate Professor of History University of Georgia 7 November 2014 “State Formations: Histories and Cultures of Statehood” Center for Historical Research at the Ohio State University Do Not Cite or Quote without Permission In January 1830, a committee appointed by the Delaware House of Representatives filed a report to the larger General Assembly. The committee, created in response to a petition praying that the Delaware state government do something to establish “uniform weights and measures,” deemed it “inexpedient to make any legislative enactment upon this subject.” Their argument for inaction, laid out in great detail, reveals something about the fault lines of federalism at this time. “Congress alone can remedy the evils under which we labor, for want of a uniform standard,” they observed: Article I, Section 8 of the United States Constitution explicitly gave Congress the power to “fix the standard of weights and measures.” But Congress, while possessor of this prerogative, had declined to act, despite entreaties to do so. The committee ruefully reported that while “a great variety of useful and curious learning has been developed” as Congress grappled with the problem, “no law has yet been enacted by that body, to fix that standard.” The individual states, the committee reported, had acted, despite the questionable constitutionality of doing so. Each established their own weights and measures, driven by whatever their “particular circumstances seemed to require.” As a consequence, observed the committee, “scarcely any two States agree in their standards of weights and measures.” A small state like Delaware, overshadowed by the large commercial cities of Baltimore and Philadelphia, followed at least two – and likely many more – sets of standards, all of them at variance with each other.
    [Show full text]
  • OCEAN ACCOUNTS Global Ocean Data Inventory Version 1.0 13 Dec 2019 Lyutong CAI Statistics Division, ESCAP Email: [email protected] Or [email protected]
    OCEAN ACCOUNTS Global Ocean Data Inventory Version 1.0 13 Dec 2019 Lyutong CAI Statistics Division, ESCAP Email: [email protected] or [email protected] ESCAP Statistics Division: [email protected] Acknowledgments The author is thankful for the pre-research done by Michael Bordt (Global Ocean Accounts Partnership co-chair) and Yilun Luo (ESCAP), the contribution from Feixue Li (Nanjing University) and suggestions from Teerapong Praphotjanaporn (ESCAP). Introduction No. ID Name Component Data format Status Acquisition method Data resolution Data Available Further information Website Document CMECS is designed for use within all waters ranging from the Includes the physical, biological, Not limited to specific gear https://iocm.noaa.gov/c Coastal and Marine head of tide to the limits of the exclusive economic zone, and and chemical data that are types or to observations A comprehensive national framework for organizing information about coasts and oceans and mecs/documents/CME 001 SU-001 Ecological Classification Single Spatial units N/A Ongoing from the spray zone to the deep ocean. It is compatible with https://iocm.noaa.gov/cmecs/ collectively used to define coastal made at specific spatial or their living systems. CS_One_Page_Descrip Standard(CMECS) many existing upland and wetland classification standards and and marine ecosystems temporal resolutions tion-20160518.pdf can be used with most if not all data collection technologies. https://www.researchga te.net/publication/32889 The Combined Biotope Classification Scheme (CBiCS) 1619_Combined_Bioto Combined Biotope It is a hierarchical classification of marine biotopes, including aquatic setting, biogeographic combines the core elements of the CMECS habitat pe_Classification_Sche 002 SU-002 Classification Single Spatial units Onlline viewer Ongoing N/A N/A setting, water column component, substrate component, geoform component, biotic http://www.cbics.org/about/ classification scheme and the JNCC/EUNIS biotope me_CBiCS_A_New_M Scheme(SBiCS) component, morphospecies component.
    [Show full text]