Glaucophane Glaucophane

Total Page:16

File Type:pdf, Size:1020Kb

Glaucophane Glaucophane Amphibole Glaucophane UNC sample ? Rock type blueschist Locality unknown Note the purple to blue-gray pleochroism in the glaucophane in this slide. Glaucophane UNC sample ? Rock type blueschist Locality unknown Note the anomalous blue-gray interference colors in the glaucophane in this slide. Amphibole Hornblende UNC sample W-86 Rock type hornblende-cpx schist Locality unknown Note the characteristic ~120 degree cleavage angles in some sections and the brown to green. pleochroism. Hornblende UNC sample W-86 Rock type hornblende- cpx schist Locality unknown Note in some sections the ~120 degree cleavage angles which are diagnostic of amphiboles. Amphibole Tremolite UNC sample W-88 Rock type talc-tremolite schist Locality unknown Talc forms the fine-grained matrix between the prismatic crystals of tremolite in this rock. Note the ~120 degree cleavages in some of the tremolite sections. Andalusite UNC sample NM-1 Rock type andalusite-biotite schist Locality New Mexico This is an andalusite porphyroblast with poikiloblastic texture. Also note how the foliation (oriented roughly N-S in this view) is wrapped around the left and right corners of this grain, suggesting synkinematic growth of the andalusite porphyroblast. Mica Biotite UNC sample GSR X0720 Rock type garnet-mica schist Locality unknown Note the red-brown pleochroism and the characteristic black pleochroic haloes (caused by radiation damage). Biotite UNC sample GSR X0720 Rock type garnet-mica schist Locality unknown Note the anomalous red interference color. Mica Muscovite UNC sample GSR 1540 Rock type unknown Locality unknown Muscovite UNC sample GSR 1540 Rock type unknown Locality unknown This grain is shown at maximum birefringnence. Take a look at this grain at extinction to see muscovite's wonderful "bird's eye" mottling. Sericite (a fine-grained variety of muscovite) UNC sample BB-13 Rock type Alaskite Locality Montana The feldspars in this alaskite from the Boulder Batholith have been largely replaced by fine-grained muscovite (sericite). In this rock, sericite is a product of hydrothermal alteration. Calcite UNC sample GSR X5321 Rock type unknown Locality unknown Note the rhombohedral cleavage. Calcite UNC sample GSR X5321 Rock type unknown Locality unknown Note the rhombohedral cleavage and very high order interference colors. Chlorite UNC sample MIC-5c Rock type chlorite schist Locality Michigan Chlorite defines the foliation in this rock, which also shows some crenulation cleavage. Chloritoid UNC sample EU-310 Rock type chloritoid schist Locality ? This plane-light view highlights the sector zoning in these chloritoid porphyroblasts. Chloritoid UNC sample EU-310 Rock type chloritoid schist Locality ? These stubby crystals are chloritoid porphyroblasts. You can just barely see the anomalous green interference color at the edge of some of the grains. Despite the name, chloritoid really doesn't look anything like chlorite. Ellenbergerite UNC sample TS-40 (K. Stewart) Rock type qtz-ky-gt- musc schist Locality Dora Maira massif, Parigi, Italy The dark reddish-purple grain in the center of this photomicrograph is ellenbergerite, an extremely rare, high-pressure Mg-Al-Ti-silicate, which here forms an inclusion in nearly pure endmember pyrope garnet from the famous Dora Maira massif of Italy. Epidote UNC sample EU-81 Rock type Biotite granite gneiss Locality Moine, Scotland Note the fairly high relief of epidote, the highly fractured mineral in this photomicrograph. Epidote UNC sample EU-81 Rock type Biotite granite gneiss Locality Moine, Scotland Note the high-order interference colors of epidote. This slide is actually cut a little thin, and doesn't show the third-order colors that epidote may display in some sections. Microcline (K-feldspar) UNC sample GSR X1540 Rock type unknown Locality unknown Cross-hatched (or "tartan") twinning in microcline. Contrast this with polysynthetic twinning in plagioclase feldspar. Feldspar Plagioclase UNC sample WR-51 Rock type unknown Locality unknown This slide showcases one of plagioclase's very common features: its polysynthetic twinning. Contrast this with twinning in microcline (K- feldspar). Garnet UNC sample GSR X0720 Rock type garnet-mica schist Locality unknown Note the zonal distribution of quartz inclusions in this garnet porphyroblast. Garnet UNC sample GSR X0720 Rock type garnet-mica schist Locality unknown Note the zonal distribution of quartz inclusions in this garnet porphyroblast. Kyanite UNC sample NC-349 Rock type kyanite-garnet- mica schist Locality near Durham, NC Note the prismatic habit of kyanite. Kyanite UNC sample NC-349 Rock type kyanite-garnet- mica schist Locality near Durham, NC Note the first-order interference colors and prismatic habit of kyanite. Leucite UNC sample 1790 (card) Rock type leucite basalt Locality unknown Leucite UNC sample 1790 (card) Rock type leucite basalt Locality unknown Note the nearly isotropic nature of these leucite grains. Nepheline UNC sample H-99 Rock type nepheline basalt Locality unknown Many of the phenocrysts in this basalt are nepheline. Olivine UNC sample W-44 Rock type dunite Locality unknown Almost all of the grains in this rock are olivine. Note the high order interference colors and the minor secondary calcite. Augite (Clinopyroxene) UNC sample in "norite" card Rock type clinopyroxenite Locality West Point, GA Note the pigeonite twin lamellae in this grain. Pigeonite is a Ca-poor clinopyroxene. Augite (Clinopyroxene) UNC sample "norite" card Rock type clinopyroxenite Locality West Point, GA Note the pigeonite twin lamellae in this grain. Pigeonite is a Ca-poor clinopyroxene. Besides clinopyroxene's 2nd order colors, another way to distinguish clinopyroxene from orthopyroxene is by clinopyroxene's inclined extinction. Hypersthene (Orthopyroxene) UNC sample PP-12 Rock type bronzitite (orthopyroxenite) Locality Stillwater complex, MT Hypersthene can be identified from its characteristic rose-colored pleochroism which is exhibited by the grain in the center. Watch what happens to the color of this grain upon rotation of the stage. Hypersthene (Orthopyroxene) UNC sample PP-12 Rock type bronzitite (orthopyroxenite) Locality Stillwater complex, MT Orthopyroxenes are noted for having low, first-order interference colors. Also note the cleavages that intersect at about 90 degrees. Another identifying characteristic of orthopyroxene is its parallel extinction. Piemontite UNC sample ? Rock type unknown Locality unknown Piemontite has beautiful rose to yellow pleochroism. Piemontite UNC sample ? Rock type unknown Locality unknown Piemontite has beautiful, high-order interference colors. Quartz UNC sample GSR X1540 Rock type unknown Locality unknown Quartz UNC sample GSR X1540 Rock type unknown Locality unknown This slide shows quartz in a range of crystal orientations, all having low- first order interference colors. Coesite UNC sample TS-41 (K. Stewart) Rock type qtz-ky-gt-musc schist Locality Dora Maira massif, Parigi, Italy Coesite (center of inclusion) and recrystallized quartz (borders of inclusion) form a tiny inclusion in nearly pure endmember pyrope garnet from the famous Dora Maira massif of Italy. The presence of coesite (a high-pressure polymorph of quartz) indicates that this rock saw extremly high pressures during metamorphism (probably more than 28 kbar). Quartz after coesite UNC sample TS-42 (K. Stewart) Rock type qtz-ky-gt-musc schist Locality Dora Maira Massif, Parigi, Italy The region of coarser-grained quartz in the upper center portion of this photomicrograph was probably originally occopied by coesite, the high- pressure polymorph of quartz. Metamorphic rocks from the Dora Maira Massif show other evidence of being exhumed from EXTREMELY deep levels in thickened crust. Staurolite UNC sample EU-17 Rock type staurolite- kyanite - garnet-mica schist Locality ? The "swiss cheese" look (i.e., poikiloblastic texture) of these staurolite porphyroblasts is typical for this mineral. Also note the strong banana yellow pleochroism. Staurolite UNC sample EU-17 Rock type staurolite- kyanite - garnet-mica schist Locality ? The "swiss cheese" look (i.e., poikiloblastic texture) of these staurolite porphyroblasts is typical for this mineral. Stilpnomelane UNC sample L-11 Rock type garnet-stilp- muscovite schist Locality ? Stilpnomelane looks alot like biotite (same habit and color) but lacks the "bird's eye" extinction that biotite displays. Actually, the stilpnomelane in this slide has a more acicular habit than most biotite. Stilpnomelane UNC sample L-11 Rock type garnet-stilp- muscovite schist Locality ? Stilpnomelane looks alot like biotite (same habit and color) but lacks the "bird's eye" extinction that biotite displays. Actually, the stilpnomelane in this slide has a more acicular habit than most biotite. Talc UNC sample W-88 Rock type talc-tremolite schist Locality unknown Talc forms the fine-grained matrix between the prismatic crystals of tremolite in this rock. Note the fine-grain size and the extremely high interference colors of the talc. Titanite (Sphene) UNC sample EU-290 Rock type syenite Locality ? Titanite typically forms wedge-shaped crystals like this one. Also notice the extremely high relief. Titanite (Sphene) UNC sample EU-290 Rock type syenite Locality ? Titanite typically forms wedge-shaped crystals like this one. Also notice the extremely high interference colors. Tourmaline UNC sample ? Rock type unknown Locality unknown This slide shows zoned trigonal cross-sections and elongate sections. Note green to brown pleochroism. Tourmaline may also display bluish pleochroism. Tourmaline UNC sample ? Rock type unknown Locality unknown This slide shows extinct trigonal cross-sections and elongate sections displaying maximum birefringence. The matrix is quartz. Vesuvianite (Idocrase) UNC sample CA-75 Rock type ? Locality ? A fairly uninteresting photo here. Vesuvianite (Idocrase) UNC sample CA-75 Rock type ? Locality ? Vesuvianite displays the deepest indigo blue anomalous interference colors you've ever seen! .
Recommended publications
  • Glaucophane Na2[(Mg; Fe )3Al2]Si8o22(OH)2 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Monoclinic
    2+ Glaucophane Na2[(Mg; Fe )3Al2]Si8O22(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: As prismatic crystals; columnar, ¯brous, or granular aggregates; massive. Twinning: Simple or multiple twinning 100 . k f g Physical Properties: Cleavage: Perfect on 110 , intersecting at 56± and 124±; partings on 010 , 001 . Fracture: Conchoidalfto ugneven. Tenacity:»Brittle. H»ardness = 6 D(meas.) = f3.08{g3.f22 gD(calc.) = 3.132 Optical Properties: Translucent. Color: Gray, lavender-blue, commonly zoned; lavender-blue to colorless in thin section. Streak: Blue-gray. Luster: Vitreous to pearly. Optical Class: Biaxial ({). Pleochroism: Vivid; X = yellow to colorless; Y = violet to lavender; Z = blue. Orientation: Y = b; Z c = 7± to 6±, X a 8±. Dispersion: r < v; weak. ^ ¡ ¡ ^ ' ® = 1.594{1.630 ¯ = 1.612{1.648 ° = 1.619{1.652 2V(meas.) = 0±{50± Cell Data: Space Group: C2=m: a = 9.595 b = 17.798 c = 5.307 ¯ = 103:66± Z = 2 X-ray Powder Pattern: Sebastopol quadrangle, California, USA. (ICDD 20{453). 8.26 (100), 3.06 (65), 2.693 (60), 4.45 (25), 3.38 (25), 2.937 (25), 2.523 (25) Chemistry: (1) (2) (1) (2) (1) (2) SiO2 58.04 56.28 FeO 6.12 10.34 K2O 0.02 0.11 TiO2 0.66 0.17 MnO 0.07 0.25 F 0.02 Al2O3 10.31 12.16 MgO 11.71 8.41 Cl 0.01 + Fe2O3 2.89 1.72 CaO 1.37 0.62 H2O 1.98 Cr2O3 0.11 Na2O 6.97 7.04 H2O¡ 0.00 Total 100.17 97.21 (1) Tiburon Peninsula, California, USA; corresponds to (Na1:96Ca0:04)§=2:00(Mg2:39Al1:82 2+ 3+ Fe0:61Fe0:18)§=5:00Si8O22(OH)2: (2) Kodiak Islands, Alaska, USA; by electron microprobe, 2+ 3+ 2+ 3+ Fe :Fe calculated; corresponds to (Na1:90Ca0:09K0:02)§=2:01(Al1:82Mg1:74Fe1:20Fe0:18 Mn0:03Ti0:02Cr0:01)§=5:00(Si7:83Al0:17)§=8:00O22(OH)2: Polymorphism & Series: Forms a series with ferroglaucophane.
    [Show full text]
  • Some Uncommon Sapphire “Imitations”: Blue Co-Zirconia, Kyanite & Blue Dumortierite Dr Michael S
    Some Uncommon Sapphire “Imitations”: Blue Co-zirconia, Kyanite & Blue Dumortierite Dr Michael S. Krzemnicki Swiss Gemmological Institute SSEF [email protected] 筆者滙報數個瑞士珠寶研究院(SSEF)近期收到 in the ring showed a negative RI reading 要求鑑證的藍色寶石,經檢測後確定其中包括 (above 1.79), an isotropic optical character 一些非常罕見的藍寶石模擬石:含錮氧化鋯、 (polariscope) and thus no pleochroism at all. 藍晶石及藍線石等。 Under the microscope, we saw no inclusions, however a slightly greenish reaction under Sapphires are among the most abundant gems the LWSW and there was a weaker similar we receive at the Swiss Gemmological Institute reaction under SWUV lamps. Based on these (SSEF) for testing. From time to time, however, properties and a chemical analysis by X-ray we are quite surprised by the imitations which fluorescence (EDXRF), the blue stone was we find among the goods sent in and this can readily identified as cubic zirconia (ZrO2). then be disappointing news for the clients. In Having seen this artificial product in a wide the following short note, the author presents a range of colours, the author had not previously few uncommon imitations identified recently at seen one of such a saturated and attractive the SSEF. Identification of these imitations is blue. Based on literature (Nassau 1981) the straightforward and should be no problem for analysed traces of cobalt in that stone have any experienced gemmologist. been identified as the colouring element in this specimen. The absorption spectrum of the stone The first case is that of an attractive blue (Fig. 2) – although superposed by several rare faceted stone of approximately 1.4 ct, set in a ring with diamonds (Fig.
    [Show full text]
  • HK Fancy Sapphire
    Hong Kong, March 2011 Fancy Coloured Sapphires: The Beauty beyond "Blue" of Sapphire and "Red" of Ruby Dr. Michael S. Krzemnicki Swiss Gemmological Institute SSEF Switzerland All photos © M.S. Krzemnicki, SSEF except where indicated. The range of colours... © Swiss Gemmological Institute SSEF 1 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 2 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 3 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 4 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 5 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 6 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 7 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... © Swiss Gemmological Institute SSEF 8 The range of colours... © Swiss Gemmological Institute SSEF The range of colours... Fancy sapphires: The colour range beyond red of rubies and blue of sapphires © Swiss Gemmological Institute SSEF 9 The range of colours... Photo: © SilkenEast Ltd, Bangkok © Swiss Gemmological Institute SSEF The range of colours... Collection: SilkenEast Ltd, Bangkok © Swiss Gemmological Institute SSEF 10 Jewellery with fancy sapphires Photos © Luc Phan, SSEF © Swiss Gemmological Institute SSEF © Swiss Gemmological PhotoInstitute © Luc SSEF Phan, SSEF 11 Corundum Chemical composition: aluminium oxide, Al2O3 Chemical pure aluminium oxide is colourless © Wikipedia In nature always with trace elements (chemical impurities), usually: - Mg, Ti, V, Cr, Fe, Ga - and occasionally rare HFS-elements such as Nb, Sn, Ta, Th Not all trace elements are affecting the colour (e.g.
    [Show full text]
  • Metamorphic and Metasomatic Kyanite-Bearing Mineral
    Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Trebus, Marie Bitte, Benjamin Rondeau, Constantinos Mavrogonatos, Ian Graham, Marius Etienne, et al. To cite this version: Alexandre Tarantola, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Tre- bus, et al.. Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece). Minerals, MDPI, 2019, 10.3390/min9040252. hal-02932247 HAL Id: hal-02932247 https://hal.archives-ouvertes.fr/hal-02932247 Submitted on 7 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. minerals Article Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola 1,* , Panagiotis Voudouris 2 , Aurélien Eglinger 1, Christophe Scheffer 1,3, Kimberly Trebus 1, Marie Bitte 1, Benjamin Rondeau 4 , Constantinos Mavrogonatos 2 , Ian Graham 5, Marius Etienne 1 and Chantal Peiffert
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Tectonophysics 494 (2010) 201–210 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Elasticity of glaucophane, seismic velocities and anisotropy of the subducted oceanic crust L. Bezacier a,⁎, B. Reynard a, J.D. Bass b, J. Wang b, D. Mainprice c a Université de Lyon, Laboratoire de Sciences de la Terre, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France b Department of Geology, University of Illinois, Urbana, IL, 61801, USA c Géosciences Montpellier UMR CNRS 5343, Université Montpellier 2, 34095 Montpellier Cedex 05, France article info abstract Article history: Upon subduction, the oceanic crust transforms to blueschists and eclogites, with seismic properties that Received 8 March 2010 gradually become similar to those of the surrounding mantle. In order to evaluate the anisotropy of Received in revised form 30 July 2010 blueschists and glaucophane-bearing eclogites, the elastic constants of glaucophane single-crystal plates from Accepted 9 September 2010 the Sesia–Lanzo Zone (Aosta Valley, Western Alps) were measured using Brillouin spectroscopy at ambient Available online 17 September 2010 conditions. The mean P- and S-wave velocities are 7.8 and 4.6 km s−1 respectively, and the anisotropy is high Keywords: (38.1% (AVP) and 27.3% (AVS)). Glaucophane develops strong LPO, characterized by the [001]-axes Elasticity concentrated sub-parallel to the lineation, and the {110} poles concentrated sub-perpendicular to the Glaucophane foliation in both blueschist and eclogite rocks. The measured LPO is in good agreement with viscoplastic self- Epidote consistent numerical models.
    [Show full text]
  • Scientific Communication
    SCIENTIFIC COMMUNICATION NOTES ON FLUID INCLUSIONS OF VANADIFEROUS ZOISITE (TANZANITE) AND GREEN GROSSULAR IN MERELANI AREA, NORTHERN TANZANIA ELIAS MALISA; KARI KINNUNEN and TAPIO KOLJONEN Elias Malisa: University of Helsinki, Department of Geology, SF-00170 Helsinki, Finland. Kari Kinnunen and Tapio Koljonen: Geological Survey of Finland, SF-02150 Espoo, Finland. Tanzanite is a trade name for a gem-quality has been reported in Lalatema and Morogoro in vanadiferous zoisite of deep sapphire-blue colour Tanzania and in Lualenyi and Lilani in Kenya discovered in Merelani area, Tanzania in 1967. (Naeser and Saul 1974; Dolenc 1976; Pohl and This mineral was first described as a strontium Niedermayr 1978). -bearing zoisite by Bank, H. & Berdesinski, W., Crystals of tanzanite occur mainly in bou- 1967. Other minor occurrences of this mineral dinaged pegmatitic veins and hydrothermal frac- Fig. 1. Tanzanite-bearing horizon in the graphite-rich diopside gneiss. The yellow colour indicates hydrothermal alteration, which can be used in pros- pecting for tanzanite. Length of photo ca. 8 m. 54 Elias Malisa, Kari Kinnunen and Tapio Koljonen given as Ca2Al3Si30120H (Ghose & Tsang 1971). The chemical compositions of tanzanites studied are given in Table 1. Unit cell dimensions, measured by X-ray dif- fraction, are a = 16.21, b = 5.55, c = 10.03 ± 0.01 Å in agreement with Hurlbut (1969). Zoisite shows diffraction symmetry mmmPn-a, which limits the possible space groups to Pnma if centric or Pn2, if acentric (Dallace 1968). The most striking property of tanzanite is its pleochroism, which changes from trichroic to dichroic on heating; normally its pleochroism varies: X = red-violet, Y = c = deep blue, Z = a = yellow- Fig.
    [Show full text]
  • VOLUME 45, NO. 80 PLEOCHRONIC MINERALS Wednesday July 28 7:00—9:00 Pm Makiki District Park Administration Building NEXT MONTH
    VOLUME 45, NO. 80 JULY 2010 PLEOCHRONIC MINERALS MEETING BY DEAN SAKABE Wednesday Pleochroic minerals are miner- July 28 als that show different colors 7:00—9:00 pm depending on what direction Makiki District you are observing the crystal. Park In order to view pleochroism Administration you need an individual transpar- Building ent crystal. This effect can be very dramatic. Many minerals NEXT MONTH are technically pleochroic, but Wednesday most often the color change is August 25, 2010 so small that it can be barely detected. For those few other LAPIDARY minerals, the color change is very, very obvious. The great- Every Thursday est change is limited to three 6:30-8:30pm colors and is called trichroic(1-3). Second-floor Arts A two color change occurrence and Crafts Bldg is called dichroic (4-5). Pleo- Makiki District chroic, which means "many col- Park ors", is used to cover both of 1-3 Tanzanite with all 3 colors of the natural these color changes. Most of trichroic crystal present and strongly show- ing down different axes of view the time, the color change is MEMBERSHIP limited to shade changes such COSTS as from pale pink to dark pink. 2008 Single: $10.00 Family: $15.00 Rock and Mineral Society of Hawai‛i INC. PLEOCHRONIC MINERALS , PAGE 2 rhombic, monoclinic, and triclinic minerals that can be trichroic. This is because they have three unique axes of symmetry and therefore three unique directions that can absorb light in three different ways. The most famous dichroic mineral is Cordierite, a Magne- sium Aluminum Silicate.
    [Show full text]
  • Metamorphic Evolution of High-Pressure, Low-Temperature Mafic Rocks Near Kini on the Island of Syros, Greece
    Metamorphic evolution of high-pressure, low-temperature mafic rocks near Kini on the island of Syros, Greece Erica DiFilippo Department of Geology, Smith College, Clark Science Center, Northampton, MA 01063-0100 Faculty sponsor: John B. Brady, Smith College INTRODUCTION The island of Syros in the Greek Cyclades exposes Eocene high-pressure, low temperature metamorphic rocks including marbles, blueschists and pelitic schists (Ridley, 1981). It has been proposed that these units have experienced two major eclogite-blueschist facies metamorphic events, the first occurring at 470-520°C and 14-18 kb and the second not exceeding 460°C and 14 kb (Lister, 1996). At approximately 20-25 Ma, these units became regionally overprinted by a medium-pressure metamorphism (Schliestedt, 1987). A well exposed sequence of metamorphosed mafic and ultra-mafic rocks outcrops along a 2.5 km long coastal cliff near Kini on the western coast of Syros. This suite consists of segments of glaucophane schist, eclogite, omphacite-epidote rock, pelitic schist, and serpentinite with blackwall reaction zones separating the serpentinite from the other rock types. This study combines petrographic and chemical evidence in order to determine whether the difference in the units exposed at Kini is due to differing bulk compositions or to differing metamorphic grades. FIELD RELATIONS Lithologies change dramatically over the 2.5 km coastal cliff of Kini. There is no distinct gradational pattern to the rock units exposed. Beginning at the southern tip of the field area and working northward, the rock units are glaucophane schist, omphacite-zoisite rock, glaucophane schist, eclogite, serpentinite and blackwall reaction zones, glaucophane schist, a greenschist facies unit and pelitic schist.
    [Show full text]
  • Across the Cascade Range
    Series I B> DescriPtive Geology- 4l Bulletin No. 235 \ D, Petrography and Mineralogy, DEPARTMENT'OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES \). WALCOTT, Di HECTOR GEOLOGICAL RECONNAISSANCE ACROSS THE CASCADE RANGE NEAR THE FORTY-NINTH PARALLEL GEORGE OTIS SMITH AND FRANK C. CALKINS WASHINGTON GOVERNMENT PRINTING OFFICE 1904 Trri-o^) SL'BD C 0 N T E N T S. I'lliJO. Letter of transmittal. ---_--_---..-.._-_.____.._-______._....._.._____.._.. 9 Introduction-__-._.__,.__-.----._--._._.__..._....__....---_--__._.__.-.-_- 11 Scope of report ---.--_.____.._______-.--....._---.._...._.__ ._.- 11 Route followed ........................:......................... 12 Geography .............................................................. 12 Topography .......................................................... 12 Primary divisions of the region..--.........-.--.-.--.-.-.. 12 Okanogan Valley .................:.. ............................ 18 Cascade Range ...............:........,..._ ....^......i........ 13 General characteristics..._.....-.....-..----.--.----.-.-..-.. 13 Northern termination.,.---.....-......--.-.............._ 13 Subdivision .............................................. 14 Okanogan Mountains ........................................... 14 Hozonieen Range ............................................ 15 Skagit Mountains....-.... ......-.----....-.-----..-...--.--- 16 Drainage ..................................................... 17 Climate ...................................................... ...... 17 Roads and trails
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • Investigation of Dichroism by Spectrophotometric Methods
    Application Note Glass, Ceramics and Optics Investigation of Dichroism by Spectrophotometric Methods Authors Introduction N.S. Kozlova, E.V. Zabelina, Pleochroism (from ancient greek πλέον «more» + χρόμα «color») is an optical I.S. Didenko, A.P. Kozlova, phenomenon when a transparent crystal will have different colors if it is viewed from Zh.A. Goreeva, T different angles (1). Sometimes the color change is limited to shade changes such NUST “MISiS”, Russia as from pale pink to dark pink (2). Crystals are divided into optically isotropic (cubic crystal system), optically anisotropic uniaxial (hexagonal, trigonal, tetragonal crystal systems) and optically anisotropic biaxial (orthorhombic, monoclinic, triclinic crystal systems). The greatest change is limited to three colors. It may be observed in biaxial crystals and is called trichroic. A two color change may be observed in uniaxial crystals and called dichroic. Pleochroic is often the term used to cover both (2). Pleochroism is caused by optical anisotropy of the crystals Dichroism can be observed in non-polarized light but in (1-3). The absorption of light in the optically anisotropic polarized light it may be more pronounced if the plane of crystals depends on the frequency of the light wave and its polarization of incident light matches plane of polarization of polarization (direction of the electric vector in it) (3, 4). light that propagates in the crystal—ordinary or extraordinary Generally, any ray of light in the optical anisotropic crystal is wave. divided into two rays with perpendicular polarizations and The difference in absorbance of ray lights may be minor, but different velocities (v1, v2) which are inversely proportional to it may be significant and should be considered both when the refractive indices (n1, n2) (4).
    [Show full text]
  • "Paraíba" Tourmaline from Brazil
    AN UPDATE ON “PARAÍBA” TOURMALINE FROM BRAZIL By James E. Shigley, Brian C. Cook, Brendan M. Laurs, and Marcelo de Oliveira Bernardes Vivid blue, green, and purple-to-violet cuprian elbaites, renowned in the gem trade as “Paraíba” tourma- lines, continue to be recovered in small amounts from northeastern Brazil. Since the initial discovery of this copper-bearing tourmaline in 1982, production has been sporadic and has not kept up with the strong market demand. Mining currently takes place at the original discovery—the Mina da Batalha—and at adjacent workings near São José da Batalha in Paraíba State. At least two pegmatite localities (the Mulungu and Alto dos Quintos mines) in neighboring Rio Grande do Norte State have produced limited quantities of cuprian elbaites. All of these pegmatites occur within Late Proterozoic metamorphic rocks of the Equador Formation; the source of the copper is unknown. Six blue to blue-green elbaites from Mulungu had lower copper contents (up to 0.69 wt.% CuO) than the brightly colored Mina da Batalha material reported in the literature. nusually vivid “neon” blue, green-blue, Milisenda 2001; Smith et al., 2001; Zang et al., green, and violet elbaite tourmalines first 2001). The colors of some cuprian elbaites can be Uappeared in the jewelry trade in 1989 changed by heat treatment, and some are fracture- (Koivula and Kammerling, 1989a). Some of these filled to improve their apparent clarity. colors were so striking (figure 1) that initially there During the 1990 Tucson gem show, prices for was uncertainty over the identity of the material. this material skyrocketed from a few hundred dol- Eventually it was learned that they were recovered lars to over $2,000 per carat in just four days from several small granitic pegmatite dikes at a sin- (Federman, 1990; Reilly, 1990).
    [Show full text]