Observations of Saturn During the the ALPO, Contact: 1998-99 Apparition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Accurate Positions of Asteroids Observed in Bucharest During the Year 1931
ACCURATE POSITIONS OF ASTEROIDS OBSERVED IN BUCHAREST DURING THE YEAR 1931 GHEORGHE BOCŞA, MIHAELA LICULESCU, PETRE POPESCU Astronomical Institute of the Romanian Academy Str. Cuţitul de Argint 5, 040557 Bucharest, Romania E-mail: [email protected] Abstract. The paper contains the observations of minor planets performed in 1931 in Bucharest Astronomical Observatory with 380/6000 mm astrograph. Both Turner’s (constants) and Schlesinger’s (dependences) methods were used in the computation of the normal coordinates of the objects. Keywords: photographic astrometry – minor planets. 1. INTRODUCTION At Bucharest Observatory, within the framework of the Wide-Field Plate Archive Programme, part of the activities of the IAU Commission 9, 13 000 plates were catalogued. They were obtained through a systematic work beginning with the year 1930 until now, by means of the Prin-Merz refractor (f = 6 m, D = 38 cm). After a careful investigation of the whole plate archive, among other things, we discovered that a series of observations were not capitalized, such as a set of minor planets that were observed during 1930–1955. The lack of accurate star catalogues containing positions and proper motions, was one of the reasons for which the completion of the reductions has been neglected in that period. It is worth mentioning that the SAO Catalogue was issued starting from that period. Another thing worth mentioning is that the first Zeiss measuring machine was bought by the Observatory in 1957. However, systematic work on plate processing at Bucharest Observatory started beginning with 1956. The first paper on this subject was published by Cristescu et al. -
An Anisotropic Distribution of Spin Vectors in Asteroid Families
Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes. -
Asteroid Regolith Weathering: a Large-Scale Observational Investigation
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved. -
Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles. -
Rotation Periods for Small Main-Belt Asteroids?,??
A&A 415, 403–406 (2004) Astronomy DOI: 10.1051/0004-6361:20034585 & c ESO 2004 Astrophysics Rotation periods for small main-belt asteroids?;?? R. Almeida, C. A. Angeli, R. Duffard, and D. Lazzaro Observat´orio Nacional/MCT, Coordenac¸˜ao de Astronomia e Astrof´ısica – CAA, 20921-400 Rio de Janeiro, Brazil Received 29 November 2002 / Accepted 9 October 2003 Abstract. The results of new CCD observations are presented as part of the campaign we are performing in Brazil to measure rotational periods for small asteroids. The observations presented here have been acquired at the Pico dos Dias Observatory between 1997 and 2002 and result in 48 single night lightcurves for 20 asteroids, most of them Main-Belt objects with D < 40 km. We present the rotation periods – ranging from about 3 to 18 hr – along with the composite lightcurve obtained for each observed object. Key words. minor planets, asteroids – solar system: general 1. Introduction the picture of this population. The final aim is the analysis of all these periods, along with the ones available in the literature, in From the lightcurves of asteroids we can determine the distri- view of the diameters of those asteroids, to better understand bution of their rotation rates and put important constraints on their rotational evolution. Our rotation periods are based on the evolution of the asteroid population as a whole. Special at- 48 single-night lightcurves from data collected from April 1997 tention has been paid lately to small objects (D < 40 km), be- through April 2002. cause in this range of diameters the fast and the slow rotators of the population are concentrated. -
A Study of Asteroid Pole-Latitude Distribution Based on an Extended
Astronomy & Astrophysics manuscript no. aa˙2009 c ESO 2018 August 22, 2018 A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method 1 1 1 2 3 4 5 6 7 J. Hanuˇs ∗, J. Durechˇ , M. Broˇz , B. D. Warner , F. Pilcher , R. Stephens , J. Oey , L. Bernasconi , S. Casulli , R. Behrend8, D. Polishook9, T. Henych10, M. Lehk´y11, F. Yoshida12, and T. Ito12 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 4 Goat Mountain Astronomical Research Station, 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737, USA 5 Kingsgrove, NSW, Australia 6 Observatoire des Engarouines, 84570 Mallemort-du-Comtat, France 7 Via M. Rosa, 1, 00012 Colleverde di Guidonia, Rome, Italy 8 Geneva Observatory, CH-1290 Sauverny, Switzerland 9 Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel 10 Astronomical Institute, Academy of Sciences of the Czech Republic, Friova 1, CZ-25165 Ondejov, Czech Republic 11 Severni 765, CZ-50003 Hradec Kralove, Czech republic 12 National Astronomical Observatory, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan Received 17-02-2011 / Accepted 13-04-2011 ABSTRACT Context. In the past decade, more than one hundred asteroid models were derived using the lightcurve inversion method. Measured by the number of derived models, lightcurve inversion has become the leading method for asteroid shape determination. -
The Handbook of the British Astronomical Association
THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2012 Saturn’s great white spot of 2011 2011 October ISSN 0068-130-X CONTENTS CALENDAR 2012 . 2 PREFACE. 3 HIGHLIGHTS FOR 2012. 4 SKY DIARY . .. 5 VISIBILITY OF PLANETS. 6 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S. 7-8 ECLIPSES . 9-15 TIME. 16-17 EARTH AND SUN. 18-20 MOON . 21 SUN’S SELENOGRAPHIC COLONGITUDE. 22 MOONRISE AND MOONSET . 23-27 LUNAR OCCULTATIONS . 28-34 GRAZING LUNAR OCCULTATIONS. 35-36 PLANETS – EXPLANATION OF TABLES. 37 APPEARANCE OF PLANETS. 38 MERCURY. 39-40 VENUS. 41 MARS. 42-43 ASTEROIDS AND DWARF PLANETS. 44-60 JUPITER . 61-64 SATELLITES OF JUPITER . 65-79 SATURN. 80-83 SATELLITES OF SATURN . 84-87 URANUS. 88 NEPTUNE. 89 COMETS. 90-96 METEOR DIARY . 97-99 VARIABLE STARS . 100-105 Algol; λ Tauri; RZ Cassiopeiae; Mira Stars; eta Geminorum EPHEMERIDES OF DOUBLE STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 INTERNET RESOURCES. 110-111 GREEK ALPHABET. 111 ERRATA . 112 Front Cover: Saturn’s great white spot of 2011: Image taken on 2011 March 21 00:10 UT by Damian Peach using a 356mm reflector and PGR Flea3 camera from Selsey, UK. Processed with Registax and Photoshop. British Astronomical Association HANDBOOK FOR 2012 NINETY-FIRST YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 2 CALENDAR 2012 January February March April May June July August September October November December Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day of of of of of of of of of of of of of of of of of of of of of of of of of Month Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year 1 Sun. -
Journal Für Astronomie ISSN 1615-0880
Journal für Astronomie www.vds-astro.de ISSN 1615-0880 Nr. 72 1/2020 Zeitschrift der Vereinigung der Sternfreunde e.V. Beobachten mit kleiner Öffnung AMATEURTELESKOPE Ein „g‘scheiter“ Refraktor 60/700 DEEP SKY Beobachtung von Planetarischen Nebeln KOMETEN 40 Jahre Kometenbeobachtung Canon EOS 200D & 2000D modifiziert für die Astrofotografie ! Ob mit Kameraobjektiv oder am Teleskop: Modizierte Canon EOS DSLR Kameras bieten Ihnen einen einfachen Einstieg in die Astrofotograe! Die Vorteile im Überblick: • etwa fünffach höhere Empfindlichkeit bei H-alpha und SII • Infrarot Blockung der Kamera bleibt vollständig erhalten • kein Einbau eines teuren Ersatzfilters • mit Astronomik OWB-Clip-Filter uneingeschränkt bei Tag nutzbar • auch ohne Computer am Teleskop einsatzfähig • 14 Bit Datentiefe im RAW-Format, 24 Megapixel • bei der 200Da: Erhalt des EOS Integrated Cleaning System • bei der 200Da: Dreh- und schwenkbarer Bildschirm • kompatibel mit vielen gängigen Astronomieprogrammen • voller Erhalt der Herstellergarantie Weitere Modelle auf Anfrage Wir bauen auch Ihre bereits vorhandene Kamera um! Canon EOS 200Da € 70900 * Canon EOS 2000Da € 55900 * * Tagespreis vom 19. November 2019 mit 200mm 1:4 Reflektor ©Bruno Mattern, Aufnahme Astronomik Deep-Sky RGB Farbfiltersatz Neuentwicklung! + optimierte Bildschärfe + höchster Kontrast + maximale Transmission = optimale Ergebnisse © Michael Sidonio Annals of the Deep Sky - A Survey of Galactic and Extragalactic Objects astro-shop Diese englischsprachige Buchreihe ist als mehrbändiges Werk angelegt, das Das seit zwei Jahrzehnten erfolgreiche Konzept die heutige Sicht auf alle Sternbilder des Himmels und die in Ihnen beobacht- hat inzwischen viele Nachahmer gefunden. baren Objekte darstellt. Deshalb achten Sie unbedingt darauf, dass Sie Die Gliederung erfolgt alphabetisch nach Sternbildern. Vergleichbar sind die auf der richtigen astro-shop Seite landen: Bücher mit "Burnham's Celestial Handbook" oder "Taschenatlas der Sternbilder“, eben aktualisiert auf den Wissens- und Technikstand von heute. -
The Minor Planet Bulletin Is Open to Papers on All Aspects of 6500 Kodaira (F) 9 25.5 14.8 + 5 0 Minor Planet Study
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 32, NUMBER 3, A.D. 2005 JULY-SEPTEMBER 45. 120 LACHESIS – A VERY SLOW ROTATOR were light-time corrected. Aspect data are listed in Table I, which also shows the (small) percentage of the lightcurve observed each Colin Bembrick night, due to the long period. Period analysis was carried out Mt Tarana Observatory using the “AVE” software (Barbera, 2004). Initial results indicated PO Box 1537, Bathurst, NSW, Australia a period close to 1.95 days and many trial phase stacks further [email protected] refined this to 1.910 days. The composite light curve is shown in Figure 1, where the assumption has been made that the two Bill Allen maxima are of approximately equal brightness. The arbitrary zero Vintage Lane Observatory phase maximum is at JD 2453077.240. 83 Vintage Lane, RD3, Blenheim, New Zealand Due to the long period, even nine nights of observations over two (Received: 17 January Revised: 12 May) weeks (less than 8 rotations) have not enabled us to cover the full phase curve. The period of 45.84 hours is the best fit to the current Minor planet 120 Lachesis appears to belong to the data. Further refinement of the period will require (probably) a group of slow rotators, with a synodic period of 45.84 ± combined effort by multiple observers – preferably at several 0.07 hours. The amplitude of the lightcurve at this longitudes. Asteroids of this size commonly have rotation rates of opposition was just over 0.2 magnitudes. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 41, NUMBER 4, A.D. 2014 OCTOBER-DECEMBER 203. LIGHTCURVE ANALYSIS FOR 4167 RIEMANN Amy Zhao, Ashok Aggarwal, and Caroline Odden Phillips Academy Observatory (I12) 180 Main Street Andover, MA 01810 USA [email protected] (Received: 10 June) Photometric observations of 4167 Riemann were made over six nights in 2014 April. A synodic period of P = 4.060 ± 0.001 hours was derived from the data. 4167 Riemann is a main-belt asteroid discovered in 1978 by L. V. Period analysis was carried out by the authors using MPO Canopus Zhuraveya. Observations of the asteroid were conducted at the and its Fourier analysis feature developed by Harris (Harris et al., Phillips Academy Observatory, which is equipped with a 0.4-m f/8 1989). The resulting lightcurve consists of 288 data points. The reflecting telescope by DFM Engineering. Images were taken with period spectrum strongly favors the bimodal solution. The an SBIG 1301-E CCD camera that has a 1280x1024 array of 16- resulting lightcurve has synodic period P = 4.060 ± 0.001 hours micron pixels. The resulting image scale was 1.0 arcsecond per and amplitude 0.17 mag. Dips in the period spectrum were also pixel. Exposures were 300 seconds and taken primarily at –35°C. noted at 8.1200 hours (2P) and at 6.0984 hours (3/2P). A search of All images were guided, unbinned, and unfiltered. Images were the Asteroid Lightcurve Database (Warner et al., 2009) and other dark and flat-field corrected with Maxim DL. -
July 2014 BRAS Newsletter
July, 2014 Next Meeting July 19th, 11:00AM at LIGO The LIGO facility in Livingston Parish, LA What's In This Issue? President's Message Secretary's Summary of June Meeting Astroshort- Not-So-Rare Earths Message from the HRPO Globe At Night EBR Parish Library Children's Reading Program Recent BRAS Forum Entries Observing Notes from John Nagle President's Message WE WILL NOT MEET ON THE SECOND MONDAY NIGHT, AS WE USUALLY DO. Our next meeting will be Saturday, July 19, 2014, 11 AM – 4 PM at LIGO, Livingston. It will be a picnic/star-b-cue and enjoy each other’s company. We will meet under the pavilion by the pond at 11 AM to begin the picnic. BRAS will provide the main course. You can bring a small dish if you wish. At 1 PM, we can join the public for LIGO’s regular Saturday Science day activities. That includes the museum, hands on experiments, a video about LIGO “Einstein’s Messengers”, and a tour of the facility. One new thing we would like to do is set a table aside for anyone who has astronomical equipment they want to sell – telescopes, mounts, accessories, binoculars, cameras, books, etc. The idea is to have an impromptu garage sale (or swap meet). Bring what you have and let’s see if we can move it. LIGO is only open during the day, so the only stargazing we will be able to do will be solar. However, we will demonstrate the 35mm Lundt solar scope BRAS is raffling and sell tickets for the raffle.