Existence of Compatible Systems of Lisse Sheaves on Arithmetic Schemes

Total Page:16

File Type:pdf, Size:1020Kb

Existence of Compatible Systems of Lisse Sheaves on Arithmetic Schemes EXISTENCE OF COMPATIBLE SYSTEMS OF LISSE SHEAVES ON ARITHMETIC SCHEMES KOJI SHIMIZU Abstract. Deligne conjectured that a single `-adic lisse sheaf on a normal variety over a finite field can be embedded into a compatible system of `0-adic lisse sheaves with various `0. Drinfeld used Lafforgue’s result as an input and proved this conjecture when the variety is smooth. We consider an analogous existence problem for a regular flat scheme over Z and prove some cases using Lafforgue’s result and the work of Barnet-Lamb, Gee, Geraghty, and Taylor. 1. Introduction In [Del1], Deligne conjectured that all the Q`-sheaves on a variety over a finite field are mixed. A standard argument reduces this conjecture to the following one. Conjecture 1.1 (Deligne). Let p and ` be distinct primes. Let X be a connected normal scheme of finite type over Fp and E an irreducible lisse Q`-sheaf whose determinant has finite order. Then the following properties hold: (i) E is pure of weight 0. (ii) There exists a number field E ⊂ Q` such that the polynomial det(1 − Frobx t; Ex¯) has coefficients in E for every x 2 jXj. (iii) For every non-archimedean place λ of E prime to p, the roots of det(1 − Frobx t; Ex¯) are λ-adic units. (iv) For a sufficiently large E and for every non-archimedean place λ of E prime to p, there exists an Eλ-sheaf Eλ compatible with E, that is, det(1 − Frobx t; Ex¯) = det(1 − Frobx t; Eλ,x¯) for every x 2 jXj. Here jXj denotes the set of closed points of X and x¯ is a geometric point above x. The conjecture for curves is proved by L. Lafforgue in [Laf]. He also deals with parts (i) and (iii) in general by reducing them to the case of curves (see also [Del3]). Deligne proves part (ii) in [Del3], and Drinfeld proves part (iv) for smooth varieties in [Dri]. They both use Lafforgue’s results. We can consider similar questions for arbitrary schemes of finite type over Z[`−1]. This paper focuses on part (iv), namely the problem of embedding a single lisse Q`-sheaf into a compatible system of lisse sheaves. We have the following folklore conjecture in this direction. Conjecture 1.2. Let ` be a rational prime. Let X be an irreducible regular scheme that is flat and of finite type over Z[`−1]. Let E be a finite extension of Q and λ a prime of E above `. Let E be an irreducible lisse Eλ-sheaf on X and ρ the corresponding representation of π1(X). Assume the following conditions: (i) The polynomial det(1−Frobx t; Ex¯) has coefficients in E for every x 2 jXj. (ii) E is de Rham at ` (see below for the definition). 1 Then for each rational prime `0 and each prime λ0 of E above `0 there exists a lisse 0−1 Eλ0 -sheaf on X[` ] which is compatible with EjX[`0−1]. The conjecture when dim X = 1 is usually rephrased in terms of Galois repre- sentations of a number field (see Conjecture 1.3 of [Tay] for example). When dim X > 1, a lisse sheaf E is called de Rham at ` if for every closed point ∗ y 2 X ⊗ Q`, the representation iyρ of Gal k(y)=k(y) is de Rham, where iy is the morphism Spec k(y) ! X. Ruochuan Liu and Xinwen Zhu have shown that this is equivalent to the condition that the lisse Eλ-sheaf EjX⊗Q` on X ⊗ Q` is a de Rham sheaf in the sense of relative p-adic Hodge theory (see [LZ] for details). Now we discuss our main results. They concern Conjecture 1.2 for schemes over the ring of integers of a totally real or CM field. Theorem 1.3. Let ` be a rational prime and K a totally real field which is unram- −1 ified at `. Let X be an irreducible smooth OK [` ]-scheme such that • the generic fiber is geometrically irreducible, • XK (R) 6= ; for every real place K,! R, and • X extends to an irreducible smooth OK -scheme with nonempty fiber over each place of K above `. Let E be a finite extension of Q and λ a prime of E above `. Let E be a lisse Eλ-sheaf on X and ρ the corresponding representation of π1(X). Suppose that E satisfies the following assumptions: (i) The polynomial det(1−Frobx t; Ex¯) has coefficients in E for every x 2 jXj. (ii) For every totally real field L which is unramified at ` and every morphism ∗ α: Spec L ! X, the Eλ-representation α ρ of Gal(L=L) is crystalline at each prime v of L above `, and for each τ : L,! Eλ it has distinct τ-Hodge-Tate numbers in the range [0; ` − 2]. (iii) ρ can be equipped with symplectic (resp. orthogonal) structure with multi- × plier µ: π1(X) ! Eλ such that µjπ1(XK ) admits a factorization µK × µjπ1(XK ) : π1(XK ) −! Gal(K=K) −! Eλ with a totally odd (resp. totally even) character µK (see below for the definitions). (iv) The residual representation ρjπ1(X[ζ`]) is absolutely irreducible. Here ζ` is a primitive `-th root of unity and X[ζ`] = X ⊗OK OK [ζ`]. (v) ` ≥ 2(rank E + 1). Then for each rational prime `0 and each prime λ0 of E above `0 there exists a lisse 0−1 Eλ0 -sheaf on X[` ] which is compatible with EjX[`0−1]. For an Eλ-representation ρ: π1(X) ! GL(Vρ), a symplectic (resp. orthogonal) structure with multiplier is a pair (h ; i; µ) consisting of a symplectic (resp. orthog- × onal) pairing h ; i: Vρ × Vρ ! Eλ and a continuous homomorphism µ: π1(X) ! Eλ 0 0 0 satisfying hρ(g)v; ρ(g)v i = µ(g)hv; v i for any g 2 π1(X) and v; v 2 Vρ. We show a similar theorem without assuming that K is unramified at ` using the potential diagonalizability assumption. See Theorem 4.1 for this statement and Theorem 4.2 for the corresponding statement when K is CM. The proof of Theorem 1.3 uses Lafforgue’s work and the work of Barnet-Lamb, Gee, Geraghty, and Taylor (Theorem C of [BLGGT]). The latter work concerns Galois representations of a totally real field, and it can be regarded as a special 2 case of Conjecture 1.2 when dim X = 1. We remark that their theorem has several assumptions on Galois representations since they use potential automorphy. Hence Theorem 1.3 needs assumptions (ii)-(v) on lisse sheaves. The main part of this paper is devoted to constructing a compatible system of lisse sheaves on a scheme from those on curves. Our method is modeled after Drinfeld's result in [Dri], which we explain now. For a given lisse sheaf on a scheme, one can obtain a lisse sheaf on each curve on the scheme by restriction. Conversely, Drinfeld proves that a collection of lisse sheaves on curves on a regular scheme defines a lisse sheaf on the scheme if it satisfies some compatibility and tameness conditions (Theorem 2.5 of [Dri]). See also a remark after Theorem 1.4. This method originates from the work of Wiesend on higher dimensional class field theory ([Wie], [KS]). Drinfeld uses this method to reduce part (iv) of Conjecture 1.1 for smooth vari- eties to the case when dim X = 1, where he can use Lafforgue’s result. Similarly, one can use his result to reduce Conjecture 1.2 to the case when dim X = 1. However, Drinfeld's result cannot be used to reduce Theorem 1.3 to the results of Lafforgue and Barnet-Lamb, Gee, Geraghty, and Taylor since his theorem needs a lisse sheaf on every curve on the scheme as an input. On the other hand, the results of [Laf] and [BLGGT] only provide compatible systems of lisse sheaves on special types of curves on the scheme: curves over finite fields and totally real curves, that is, open subschemes of the spectrum of the ring of integers of a totally real field. Thus the goal of this paper is to deduce Theorem 1.3 using the existence of compatible systems of lisse sheaves on these types of curves. We now explain our method. Fix a prime ` and a finite extension Eλ of Q`. Fix a positive integer r. On a normal scheme X of finite type over Spec Z[`−1], each lisse Eλ-sheaf E of rank r defines a polynomial-valued map fE : jXj ! Eλ[t] of degree r given by fE;x(t) = det(1 − Frobx t; Ex¯). Here we say that a polynomial-valued map is of degree r if its values are polynomials of degree r. Moreover, fE determines E up to semisimplifications by the Chebotarev density theorem. Conversely, we can ask whether a polynomial-valued map f : jXj ! Eλ[t] of degree r arises from a lisse sheaf of rank r on X in this way. Let K be a totally real field. Let X be an irreducible smooth OK -scheme which has geometrically irreducible generic fiber and satisfies XK (R) 6= ; for every real place K,! R. In this situation, we show the following theorem. Theorem 1.4. A polynomial-valued map f of degree r on jXj arises from a lisse sheaf on X if and only if it satisfies the following conditions: (i) The restriction of f to each totally real curve arises from a lisse sheaf. (ii) The restriction of f to each separated smooth curve over a finite field arises from a lisse sheaf.
Recommended publications
  • Potential Automorphy of $\Widehat {G} $-Local Systems
    Potential automorphy of G-local systems Jack A. Thorneb September 4, 2019 Abstract Vincent Lafforgue has recently made a spectacular breakthrough in the setting of the global Langlands correspondence for global fields of positive characteristic, by constructing the ‘automorphic–to–Galois’ direction of the correspondence for an arbitrary reductive group G. We discuss a result that starts with Lafforgue’s work and proceeds in the opposite (‘Galois– to–automorphic’) direction. 1 Introduction Let Fq be a finite field, and let G be a split reductive group over Fq. Let X be a smooth projective connected curve over Fq, and let K be its function field. Let AK denote the ring of ad`eles of K. Automorphic forms on G are locally constant functions f : G(AK ) → Q which are invariant under left translation 1 by the discrete group G(K) ⊂ G(AK ). The space of automorphic forms is a representation of G(AK ), and its irreducible constituents are called automorphic representations. Let ℓ ∤ q be a prime. According to the Langlands conjectures, any automor- phic representation π of G(AK ) should give rise to a continuous representation ´et ρ(π): π1 (U) → G(Qℓ) (for some open subscheme U ⊂ X). This should be com- patible with the (known) unramified local Langlands correspondence, which de- arXiv:1909.00655v1 [math.NT] 2 Sep 2019 b ´et scribes the pullback of ρ(π) to π1 (Fqv ) for every closed point v : Spec Fqv ֒→ U ′ in terms of the components πv of a factorization π = ⊗vπv into representations of the local groups G(Kv).
    [Show full text]
  • Shtukas for Reductive Groups and Langlands Correspondence for Functions Fields
    SHTUKAS FOR REDUCTIVE GROUPS AND LANGLANDS CORRESPONDENCE FOR FUNCTIONS FIELDS VINCENT LAFFORGUE This text gives an introduction to the Langlands correspondence for function fields and in particular to some recent works in this subject. We begin with a short historical account (all notions used below are recalled in the text). The Langlands correspondence [49] is a conjecture of utmost impor- tance, concerning global fields, i.e. number fields and function fields. Many excellent surveys are available, for example [39, 14, 13, 79, 31, 5]. The Langlands correspondence belongs to a huge system of conjectures (Langlands functoriality, Grothendieck’s vision of motives, special val- ues of L-functions, Ramanujan-Petersson conjecture, generalized Rie- mann hypothesis). This system has a remarkable deepness and logical coherence and many cases of these conjectures have already been es- tablished. Moreover the Langlands correspondence over function fields admits a geometrization, the “geometric Langlands program”, which is related to conformal field theory in Theoretical Physics. Let G be a connected reductive group over a global field F . For the sake of simplicity we assume G is split. The Langlands correspondence relates two fundamental objects, of very different nature, whose definition will be recalled later, • the automorphic forms for G, • the global Langlands parameters , i.e. the conjugacy classes of morphisms from the Galois group Gal(F =F ) to the Langlands b dual group G(Q`). b For G = GL1 we have G = GL1 and this is class field theory, which describes the abelianization of Gal(F =F ) (one particular case of it for Q is the law of quadratic reciprocity, which dates back to Euler, Legendre and Gauss).
    [Show full text]
  • The Mathematical Work of the 2002 Fields Medalists, Volume 50
    The Mathematical Work of the 2002 Fields Medalists Eric M. Friedlander, Michael Rapoport, and Andrei Suslin The Work of Laurent Lafforgue hand and of the idèle class group A×/F × on the Michael Rapoport other hand. This is the reciprocity law of T. Takagi Laurent Lafforgue was awarded the Fields Medal for and E. Artin established in the 1920s as a far-reach- his proof of the Langlands correspondence for the ing generalization of the quadratic reciprocity law general linear groups GLr over function fields of going back to L. Euler. At the end of the 1960s, positive characteristic. His approach to this prob- R. Langlands proposed a nonabelian generaliza- lem follows the basic strategy introduced twenty- tion of this reciprocity law. It conjecturally relates five years ago by V. Drinfeld in his proof for GL2. the irreducible representations of rank r of Gal(F/F¯ ) Already Drinfeld’s proof is extremely difficult. Laf- (or, more generally, of the hypothetical motivic forgue’s proof is a real tour de force, taking up as Galois group of F) with cuspidal automorphic rep- it does several hundred pages of highly condensed resentations of GL (A). In fact, this conjecture is reasoning. By his achievement Lafforgue has proved r part of an even grander panorama of Langlands (the himself a mathematician of remarkable strength functoriality principle), in which homomorphisms and perseverance. In this brief report I will sketch the background between L-groups of reductive groups over F induce of Lafforgue’s result, state his theorems, and then relations between the automorphic representations mention some ingredients of his proof.
    [Show full text]
  • Large Complex Networks: Deterministic Models
    Internet C. Elegans Large Complex Networks: Deteministic Models (Recursive Clique-Trees) WWW Erdös number Air routes http://www.caida.org/tools/visualization/plankton/ Francesc Comellas Departament de Matemàtica Aplicada IV, Proteins Universitat Politècnica de Catalunya, Barcelona [email protected] Power grid Real networks very often are Most “real” networks are Large Complex systems small-world scale-free self-similar Small-world Different elements (nodes) Interaction among elements (links) small diameter log(|V|), large clustering Scale-free power law degree distribution ( “hubs” ) Complex networks Self-similar / fractal Mathematical model: Graphs Deterministic models Small diameter (logarithmic) Power law Fractal (degrees) Based on cliques Milgram 1967 Song, Havlin & (hierarchical graphs, recursive High clustering Barabási & Makse Watts & Albert 1999 2005,2006 clique-trees, Apollonian graphs) Strogatz 1998 6 degrees of separation ! Stanley Milgram (1967) Main parameters (invariants) 160 letters Omaha -Nebraska- -> Boston Diameter – average distance Degree Δ degree. Small-world networks P(k): Degree distribution. small diameter (or average dist.) Clustering Are neighbours of a vertex also neighbours among high clustering them? Small world phenomenon in social networks What a small-world ! Structured graph Small-world graph Random graph Network characteristics •highclustering •highclustering • small clustering • large diameter • small diameter • small diameter # of links among neighbors •regular Clustering C(v) = Erdös number •almostregular n(n-1)/2 http://www.oakland.edu/enp/ Diameter or Average distance Maximum communication delay 1- 509 Degree distribution 2- 7494 Resilience N= 268.000 Jul 2004 |V| = 1000 Δ =10 |V|=1000 Δ =8-13 |V|=1000 Δ = 5-18 Real life networks are clustered, large C(p), but have small (connected component) D = 100 d =49.51 D = 14 d = 11.1 D = 5 d = 4.46 average distance L(p ).
    [Show full text]
  • Shtukas for Reductive Groups and Langlands Correspondence for Function Fields
    P. I. C. M. – 2018 Rio de Janeiro, Vol. 1 (635–668) SHTUKAS FOR REDUCTIVE GROUPS AND LANGLANDS CORRESPONDENCE FOR FUNCTION FIELDS V L Abstract This text gives an introduction to the Langlands correspondence for function fields and in particular to some recent works in this subject. We begin with a short historical account (all notions used below are recalled in the text). The Langlands correspondence Langlands [1970] is a conjecture of utmost impor- tance, concerning global fields, i.e. number fields and function fields. Many excel- lent surveys are available, for example Gelbart [1984], Bump [1997], Bump, Cogdell, de Shalit, Gaitsgory, Kowalski, and Kudla [2003], Taylor [2004], Frenkel [2007], and Arthur [2014]. The Langlands correspondence belongs to a huge system of conjec- tures (Langlands functoriality, Grothendieck’s vision of motives, special values of L- functions, Ramanujan–Petersson conjecture, generalized Riemann hypothesis). This system has a remarkable deepness and logical coherence and many cases of these con- jectures have already been established. Moreover the Langlands correspondence over function fields admits a geometrization, the “geometric Langlands program”, which is related to conformal field theory in Theoretical Physics. Let G be a connected reductive group over a global field F . For the sake of simplicity we assume G is split. The Langlands correspondence relates two fundamental objects, of very different nature, whose definition will be recalled later, • the automorphic forms for G, • the global Langlands parameters , i.e. the conjugacy classes of morphisms from the Galois group Gal(F /F ) to the Langlands dual group G(Q ). b ` For G = GL1 we have G = GL1 and this is class field theory, which describes the b abelianization of Gal(F /F ) (one particular case of it for Q is the law of quadratic reciprocity, which dates back to Euler, Legendre and Gauss).
    [Show full text]
  • Galois Theory and Arithmetic NAW 5/7 Nr
    Laurent Lafforgue, Mathieu Florence Galois Theory and Arithmetic NAW 5/7 nr. 3 september 2006 167 Laurent Lafforgue Mathieu Florence Institut des hautes études scientifiques (IHES), Avenue de la Poste 24 Le Bois-Marie, 35 route de Chartres, 1020 Renens, Zwitserland Bures-sur-Yvette, Frankrijk mathieu.fl[email protected] [email protected] Overzichtsartikel Galois Theory and Arithmetic At the age of twenty, in the night before the duel that would end his general question of determining all relations between algebraic life, Evariste Galois (1811–1832) wrote an account of his thoughts of equations with coefficients in a field F. To each we associate the the previous years. These concerned a theory of algebraic equations finite set of its solutions endowed with the action of a group GF, that now bears his name: Galois theory. Now more than ever, it is the Galois group of F. The relations between equations then cor- central to arithmetic, where it brings together algebra, geometry, respond to maps between the associated finite sets that respect the topology, and harmonic analysis. In this article, Laurent Lafforgue, action of GF. professor at the Institut des Hautes Etudes Scientifiques (IHES) and Between 1958 and 1970, the French mathematician Alexander Field Medalist in the year 2002, connects the classical theory with Grothendieck brought a new vision and two important general- the contemporary state of the research area. His text is supplement- izations to Galois theory, in the setting of his recasting of algebraic ed with frames by Mathieu Florence, post-doc at the Ecole Polytech- geometry into theory of schemes.
    [Show full text]
  • Potential Automorphy of CG-Local Systems
    Potential automorphy of Gb-local systems Abstract Vincent Lafforgue has recently made a spectacular breakthrough in the setting of the global Langlands correspondence for global fields of positive characteristic, by constructing the `automorphic{to{Galois' direction of the correspondence for an arbitrary reductive group G. We discuss a result that starts with Lafforgue’s work and proceeds in the opposite (`Galois{ to{automorphic') direction. 1 Introduction Let Fq be a finite field, and let G be a split reductive group over Fq. Let X be a smooth projective connected curve over Fq, and let K be its function field. Let AK denote the ring of ad`elesof K. Automorphic forms on G are locally constant functions f : G(AK ) ! Q which are invariant under left translation 1 by the discrete group G(K) ⊂ G(AK ). The space of automorphic forms is a representation of G(AK ), and its irreducible constituents are called automorphic representations. Let ` - q be a prime. According to the Langlands conjectures, any automor- phic representation π of G(AK ) should give rise to a continuous representation ´et ρ(π): π1 (U) ! Gb(Q`) (for some open subscheme U ⊂ X). This should be com- patible with the (known) unramified local Langlands correspondence, which de- ´et scribes the pullback of ρ(π) to π1 (Fqv ) for every closed point v : Spec Fqv ,! U 0 in terms of the components πv of a factorization π = ⊗vπv into representations of the local groups G(Kv). Vincent Lafforgue has given an amazing construction of the representation ρ(π), which crystallizes and removes many of the ambiguities in this picture in a beautiful way.
    [Show full text]
  • ICM 2002 in Beijing
    ICM 2002 in Beijing ICM 2002 in Beijing by Allyn Jackson The 2002 International Congress of Mathematicians (ICM), held in Beijing, China, August 20–29, 2002, was full of firsts. It was the first time an ICM was held in a developing country. It was the first time the top governmental official of the host country came to the ICM opening ceremonies. And for many of the mathematicians attending the congress, it was their first trip to China; even for those who had been to China before, the tremendous changes the country has gone through in recent years made it seem like a new place. The warmth and enthusiasm of the Chinese organizers reflected not only the country’s long-standing reverence for learning and knowledge but also its recognition that strengthening China’s scientific research capacity is critical to the country’s future development. “This was a very special and indeed unique ICM”, said Jacob Palis, president of the International Mathematical Union. With 4,260 registered participants, this was the Convention Center, located in the northern part of largest ICM ever held. A total of forty-six satel- the city near the sports complex built for the Asian lite conferences – also a record number – drew about Games that were held in Beijing in 1990. 4,000 participants, half of whom also attended the Throughout the congress there were clear signs of the congress. The satellite conferences were held all over significance China attached to the ICM. One example Asia, including in Shanghai, Tianjin, Hanoi, Ky- was the opening ceremonies, held in the Great Hall of oto, Lhasa, Macau, and Taipei; one was even held the People in Tiananmen Square; were Washington, in Moscow.
    [Show full text]
  • Hankel Transform, Langlands Functoriality and Functional Equation of Automorphic L-Functions
    Hankel transform, Langlands functoriality and functional equation of automorphic L-functions Ngô Bảo Châu dedicated with affection to the memory of Hiroshi Saito 1 Introduction The functoriality conjecture of Langlands, as stated in [33], offers a general organizational scheme for all automorphic representations. This conjecture can be roughly stated as follows: if H and G are reductive groups defined over a global field k, ξ : L H L G a homomorphism between their Langlands dual groups, then it is possible to attach to! each automorphic rep- H H resentation π = vπv of H a packet of automorphic representations π = vπv of G. In ⊗ ⊗ the formula π = vπv, local components πv are irreducible admissible representations of ⊗ G(kv), kv being the completion of k at a place v k . The automorphic functoriality is expected to be of local nature in the sense that it should2 j j be compatible with the local func- toriality principle that consists in a map from the set of packets of irreducible admissible representations of H(kv) to the set of packets of irreducible admissible representations of G(kv). Since unramified representations of H(kv) at an unramified nonarchimedean place v are parametrized by certain semi-simple conjugacy classes in L H, the local functoriality is required to be compatible with the transfer of conjugacy classes from L H to L G. A crucial part of the functoriality program, known as endoscopy, is now almost completely understood thanks to cumulative efforts of many mathematicians over the last 40 years, see [5]. Its main ingredients include in particular the construction of the general trace formula, mainly due to Arthur [4] and the proof of the transfer conjecture and the fundamental lemma, L see [54] and [39].
    [Show full text]
  • How Winning the Fields Medal Affects Scientific Output
    NBER WORKING PAPER SERIES PRIZES AND PRODUCTIVITY: HOW WINNING THE FIELDS MEDAL AFFECTS SCIENTIFIC OUTPUT George J. Borjas Kirk B. Doran Working Paper 19445 http://www.nber.org/papers/w19445 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 September 2013 The findings reported in this paper did not result from a for-pay consulting relationship. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer- reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2013 by George J. Borjas and Kirk B. Doran. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. Prizes and Productivity: How Winning the Fields Medal Affects Scientific Output George J. Borjas and Kirk B. Doran NBER Working Paper No. 19445 September 2013, Revised May 2014 JEL No. J22,J24,J33,O31 ABSTRACT Knowledge generation is key to economic growth, and scientific prizes are designed to encourage it. But how does winning a prestigious prize affect future output? We compare the productivity of Fields medalists (winners of the top mathematics prize) to that of similarly brilliant contenders. The two groups have similar publication rates until the award year, after which the winners’ productivity declines. The medalists begin to “play the field,” studying unfamiliar topics at the expense of writing papers.
    [Show full text]
  • The Alfred Brauer Lectures, March 28-30, 2011 Gérard Laumon Université Paris-Sud (Orsay)
    The Alfred Brauer Lectures, March 28-30, 2011 Gérard Laumon Université Paris-Sud (Orsay) "The Fundamental Lemma And The Hitchin Fibration" The Langlands-Shelstad fundamental lemma and Arthur's weighted fundamental lemma are a series of combinatorial identities which are required in order to complete the endoscopic part of the Langlands program. In particular, they are needed for computing the multiplicities in the spectrum of L2 (Gamma \ X) where X is an hermitian symmetric space and Gamma an arithmetic group acting on X. They are also needed for computing the Hasse-Weil zeta functions of Shimura varieties. The Hitchin fibration is a marvelous construction in algebraic geometry which was introduced by Hitchin for studying the Yang-Mills equations in mathematical physics. It is closely linked to Drinfeld's geometric Langlands program. Ngô Bao Châu has proved the Langlands-Shelstad Fundamental Lemma in general as a consequence of his cohomological study of the elliptic part of the Hitchin fibration. In the same way, with Pierre-Henri Chaudouard, we have obtained Arthur's weighted Fundamental Lemma by extending Ngô's cohomological study to the hyperbolic part of the Hitchin fibration. I would like to present the recent progress in the Langlands program and to explain the geometric argument which is involved in the proof of the fundamental lemma. Lecture 1: Phillips 215, Monday, March 28, 3:30-4:30 Pm Lecture 2: Phillips 332, Tuesday, March 29, 4:00-5:00 Pm Lecture 3: Phillips 332, Wednesday, March 30, 4:00-5:00 Pm There will be a reception in the Mathematics Faculty/Student Lounge on the third floor of Phillips Hall, Room 330, starting at 4:45 P.M.
    [Show full text]
  • Looking Towards the Future
    VVolumeolume 1100 IIssuessue 2 WWinterinter 22007007 Looking Towards the Future his is a 10th anniversary issue and the question naturally arises: what is PIMS going to look like in T10 years? Now generally, what is the scientifi c world going to look like in 2017? It seems to us that, by that time, problems arising from the global effects of human activity will feature much more prominently in the scientifi c agenda than they do now. Understanding and mitigat- ing global warming, preserving biodiversity and natural resources, preventing new infectious diseases from arising and spreading, creating the conditions of fair economic development and just societies around the world, all these challenges will have to be dealt with, and all of them have some component of mathematical modeling. This is where PIMS wants to go. Three of the CRGs we will open in 2007 are oriented towards the environment. But no institute, in fact no country by itself can make a signifi cant contribution to solving such problems. This is really a problem for global scientifi c networks, stretching across oceans and boundaries. PIMS by itself is a regional network, and we are now associating with others to create international networks. In 10 years, we hope that the PRIMA network, which is barely one year old, will have become a global enterprise for training and research in emerging areas of mathematics. We also hope that PIMS will have become an active part of the CNRS network and through the CNRS a member of the European research community. In this way PIMS will stand as a gateway, a crossroads between the Pacifi c Rim, the Americas and Europe, bringing different mathematical traditions to study global problems.
    [Show full text]